This is a 65-minute exam. The actual exam will be a little bit shorter.

1. (27 points) Evaluate:
 (a) \(\int \frac{dx}{x^3 + x^2} \).
 (b) \(\int e^{x^2} \frac{dx}{x \ln^2 x} \).
 (c) \(\int \frac{x^3 dx}{\sqrt{1-x^2}} \).

2. (15 points) Prove that \(\lim_{x \to +\infty} f(x) = 3 \) if and only if \(\lim_{t \to 0^+} f(1/t) = 3 \).

3. (23 points) Prove that a sequence can not converge to two different limits.

4. (12 points) There is a positive integer \(m \) such that
 \[
 \lim_{x \to 0} \frac{\sin(2x^3) - 2x^3}{x^m}
 \]
 is finite and nonzero. What is \(m \), and what is the limit \(L \)?

5. (27 points) Evaluate:
 (a) \(\lim_{x \to 0} \frac{\sin^2(ax)}{1 - \cos(bx)} \).
 (b) \(\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right) \).
 (c) \(\lim_{x \to 0^+} \frac{e^{-1/x}}{x} \).

6. (26 points) If \(f(x+y) = f(x)f(y) \) for all \(x \) and \(y \) and if \(f(x) = 1+ xg(x) \), where \(g : \mathbb{R} \to \mathbb{R} \) such that \(\lim_{x \to 0} g(x) = 1 \), prove that
 (a) \(f'(x) = f(x) \) for every \(x \),
 (b) \(f(x) = e^x \). [Hint: Let \(h(x) = e^{-x}f(x) \) and take its derivative.]