This is a 60-minute exam. The actual exam will be a little bit shorter. It will also resemble this practice exam less than the first exam resembled the first practice exam. (I’m thinking about having a true/false section.)

1. (24 points) Assume f is defined on the interval $[a, b]$. State the
 (a) Intermediate value theorem for f.
 (b) Extreme value theorem for f.
 (c) Mean value theorem for f.
 (d) First fundamental theorem of calculus for f (about the derivative of the integral).

Make sure you include the hypotheses for each theorem.

2. (16 points) Compute the following limit using the limit properties.
 [Hint: Consider the definition of $f'(2)$ if $f(x) = x^3$.]

$$\lim_{h \to 0} \frac{(h + 2)^3 - 8}{h(h - 2)}.$$

3. (24 points)
 (a) State the definition of uniform continuity for a function f defined on a set $S \subseteq \mathbb{R}$.
 (b) Prove that $f(x) = 3x + 5$ is uniformly continuous on \mathbb{R}.

4. (16 points) Let $f(x)$ be continuous for all x except $x = 2$. Let

$$g(x) = \begin{cases} x^2 & \text{for } x \geq 0 \\ x^2 + 1 & \text{for } x < 0. \end{cases}$$

For what values of x can you be sure that the function $h(x) = f(g(x))$ is continuous?

5. (20 points) The following table was computed for the strictly increasing function f and its first two derivatives. (Assume f' and f'' exist for all x.)

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
<th>$f'(x)$</th>
<th>$f''(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-2</td>
<td>3</td>
<td>-2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3/2</td>
<td>-1/2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Let g be the inverse function to f. Find the values of $g(0)$, $g(1)$, $g'(0)$, and $g''(0)$.