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We consider the problem of characterizing the minimum of a submodular function when the
minimization is restricted to a family of subsets. We show that, for many interesting cases, there
exist two elements a and b of the groundset such that the problem is equivalent to the problem
of minimizing the submodular function over the sets containing a but not b. This leads to a
polynomial-time algorithm for minimizing a submodular function over these families of sets. Our
results apply, for example, to the families of odd cardinality subsets or even cardinality subsets
separating two given vertices, or to the complement of a lattice family of subsets. We also derive
that the second smallest value of a submodular function over a lattice family can be computed in
polynomial-time. These results generalize and unify several known results.

1. Imtroduction

Submodular set-functions arise in a variety of fields, including combinatorial
optimization, probability and geometry. Examples include the rank function of a
matroid, the sizes of cutsets in a directed or undirected graph, the probability that
a subset of events do not simultaneously occur, or the logarithm of the volume of
the parallelepiped spanned by a subset of linearly independent vectors. For a survey
of submodular functions and their properties, the reader is referred to Lovasz [9]
and Fujishige [2].

Many problems in combinatorial optimization can be formulated as the prob-
lem of minimizing a submodular function. Illustrations include the minimum cut
or s-t cut problem in an undirected or directed graph, or the problem of finding
the largest independent set common to two matroids. In several settings though,
the minimization of the submodular function is restricted to a family of subsets.
In the minimum cut problem, one would like to exclude the empty set or the en-
tire set, or in the minimum odd cut problem, one would like to consider only the
subsets with odd cardinality. Several restricted minimum cut problems have been
shown to be polynomially solvable: the odd-cut or T-odd cut problem by Padberg
and Rao [12], the even-cut or T-even cut problem by Barahona and Conforti [1]
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and any “proper” cut problem by Gabow, Goemans and Williamson [3]. Exam-
ples of families of proper cuts are the T-odd cuts and the generalized Steiner cuts.
Grotschel, Lovész and Schrijver [6] (see also [7, 8]) have generalized Padberg and
Rao’s result to any submodular function and to more general families of subsets.
Their algorithm can be used to solve the minimum s-t T-odd cut or s-{ T-even cut
in polynomial time.

In this paper, we consider what we call parity families, which are even more
general families of subsets than the ones considered in Grétschel et al. [8]. We show
that the minimization of a submodular function over a parity family can be done
in polynomial time. Our algorithm and the corresponding characterization differs
significantly from the approach used in Grotschel et al. [8]. Their algorithm as well
as the original algorithm of Padberg and Rao and the algorithm of Barahona and
Conforti exploit certain uncrossing properties of minimum sets or minimum cuts.
We show that, in general, this property does not hold for parity families, rendering
the approach infeasible. Our characterization, however, shows the existence of two
elements a and b (or two vertices) such that the minimization over the parity family
is equivalent to the minimization over the sets containing o but not b

The paper is structured as follows. In Section 2, we define all the necessary
terminology and we describe our main result and its algorithmic implications.
Section 3 describes special cases of our resnlt and also relates our result to results
from the literature. The proof of our main result is given in Section 4 and the
derivation of the algorithmic consequences is discussed in Section 5. In the last
section, we use the techniques developed in this paper to give a simple proof of a
recent result of Nagamochi et al. [11] on the maximum number of approximately
minimum cuts in an undirected graph.

2. Definitions, Preliminaries and Results

Let V be a finite set. A family 6 of subsets of V is called a lattice family if
A, Be6=>ANB AUBES®,

We also introduce a new type of family of subsets. A subfamily & of a lattice family
€ C2Y is called a parity family! if

A, Beb\¥=(AnBec¥iffAuUBcY®),

A related family of subsets was introduced by Grétschel, Lovdsz and Schrijver [7]
ta provide a general setting for the minimization of a submodular function over
odd-cardinality or even-cardinality members of a lattice family. A subfamily ¥ C%¢
is a triple family if, for any S,T € €, whenever three of the four sets S, T, SNT
and SUT are in €\ %, then the fourth set is also in €\¥. It is easy to see that
triple families are a subclass of parity families. We will give several examples of

L Often, to emphasize the dependence on 8, we shall refer to % as a parity subfamily of €.
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triple and parity families in Section 3. We will also explore further the relationship
between these families and the differences in algorithmic approaches to minimizing
submodular functions over them.

Given a family 8 C 2V of subsets and two elements s and t in V, we define €
to be the family {A€B:s€ A,t¢ A}. If € is a lattice family then 8, is still a lattice
family. Also, if % is a parity subfamily of 8 then $g; is a parity subfamily? of €.

A function f:2¥ SR is said to be submodular on 2V if
flA+ f(B) 2 f(ANB)+ f(AUB) foral A, BCV.
A function f is said to be submodular on the family € of subsets if
flA)+ f(B) > flANnB)+ f(AUB) whenever A, B, AUB, ANB¢€ 8.

We say that a set S minimizes a function f over a family € if S€ € and f(S5) is
as small as possible. Throughout, we assume that the submodular function f is
given by an oracle returning f(S) for each query SCV. Minimizing a submodular
function over a lattice family can be done in oracle-polynomial time3 via the
ellipsoid algorithm, as was shown by Grétschel, Lovdsz and Schrijver [6]. This also
trivially implies that one can minimize a submodular function over the union of a
polynomial number of lattice families in oracle-polynomial time. For example, given
aset T CV, one can minimize a submodular function over F={S: ST #0,T\S # 0}
by expressing the familyas F= | 2;/,5. In this case, the number of submodular
s,t€T, s#t
function minimizations over lattice families can be reduced to 2|T'|—2 by expressing

F as

(1) g= U (2%u2h)
teT\{s}

for any element s€T, or even to only |T| submodular function minimizations since

l
(2 7= U thiﬂ
i=]

where T={t1,...,#;} and t;; 1 =11.

Throughout the paper, minimal and mazimal refer to minimal and maximal
under inclusion.

The following theorem constitutes our main result.

2 1t is important to embed ¥y in G5 %, may not be a parity subfamily of 8.

3 Oracle-polynomial time means that the number of operations, counting each call to the oracle
as one operation, is polynomially bounded in |V| and in an upper bound 3 on the size of f(.S) for
any S.
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Theorem 1. Let 8C2Y be a lattice family and $C 8 be a parity family. Let [ be
a submodular function on 6. Let S* €% be a set minimizing f over . Then either
S*e{0,V} or there exist a,b€V such that S* minimizes f over the lattice family

6 ap-

The previous theorem is however not sufficient to derive a polynomial-time
algorithm for the minimization over parity families. Indeed, even if we know « and
b, the minimization over the lattice family €, might not return a set belonging to
%. Nevertheless, Theorem 1 can be refined as follows.

Theorem 2. Let € C2Y be a lattice family and % C 8 be a parity family. Let [ be
a submodular function on 8. Let S* € & be a minimal set minimizing f over %.
Then either S* € {0,V} or there exist a,b€V such that S* is the unique minimal
set minimizing f over the lattice family €.

- Theorem 2 implies the following algorithmic consequence.

Corollary 3. Let 8 C 2" be a lattice family and % C € be a parity family. Let f
be a submodular function on €. Then a set minimizing [ over % can be obtained

in oracle-polynomial time by solving O(|V|?) submodular function minimizations
over lattice families.

In the next section, we elaborate on applications and special cases of our main
result and its algorithmic implication.

3. Previous Work and Applications

We begin by reviewing some examples of triple families.

Lemma 4. (Grotschel et al. [8]) Let 8 C2Y be any lattice family and T be a non-
empty subset of V. Then, for any p,q € Z, the family % :={Sc 6 :|SNT|#q
(mod p)} is a triple family. |

In particular, letting p =2, we conclude that both the family of odd sets and
the family of even sets are triple families. More generally, given integers a; for i€V
and integers p and g, the family $={Se€8:} ;. ca; Zq (modp)} is a triple
family. Lemma 4 corresponds to the case a; =1 for i € T and 0 otherwise. The
triple family {S€8:|SNT1|#£|SNTa| (modp)} corresponds to the case a;=1 for
1€T1\ Ty, aj=—1 for € Th\T1, a;=0 otherwise, and ¢=0.

Grétschel et al. [8] also show that 6\ A4 is a triple family where € is a lattice
family and A is an antichain. A family « is called an antichain if, for distinct
S1,52 €4, S1€Sy. For example, the exclusion of all sets of cardinality ¢ leads to
a triple family (this also follows from Lemma 4 with p>{V| and T=V).

We observed earlier that triple families are a subclass of parity families and,
thus, the above families are also parity families. However, the inclusion is strict.
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An important class of parity families which are not necessarily triple families is
given in the following lemma.

Lemma 5. Let FC8C2Y where F and € are both lattice families. Then C=6\F
is a parity family.

The proof is immediate. Since B\ % = F is a lattice family, the condition
A, B€B\% implies that both ANB and AU B also belong to €\ 9.

To argue that the families addressed in Lemma 5 are typically not triple
families, consider the special case where & is a chain. A family & of subsets is
a chain if, for any S1,S2€ %, 51 C Sy or So CSy. If & is a chain with |#] >3 then
6\F is not a triple family. To show this, let S7,S9 and S3 be distinct members of .
Since ¥ is a chain, we may assume that Sy C S9CSy. Consider the subsets So and
(Sg\SQ)USl. Now 55 € %, Sgﬂ((s:i\SQ)USl) =51€% and SQU((S;;\SQ)US|): SyeF
but (S3\ S2)US; €6\ F. Therefore 6\ F cannot be a triple family.

If f is a submodular function on a lattice family € then it is easy to sec that
Fmin={AcE: f(A)= 13112/‘(5)} is a lattice family. Lemuna 5 then guaraniees

Se

that 6\F,,.;,, is a parity family. Using Corollary 3 we therefore derive the following
result.

Corollary 6. Let 6 C 2V be a lattice family and let f be a submodular function
on 8. Then a set attaining the second smallest value of | over 8 can be obtained

in oracle-polynomial time by solving O(|V|*) submodular function minimizations
over lattice families.

Grotschel, Lovédsz and Schrijver 7] reduce the problem of minimizing a suhb-

modular function over a triple family to a sequence of O(|V[*) submodular func-
tion minimizations over lattice families. By using the decomposition (1) or (2), one

can in fact decrease the number of submodular function minimizations to O(|V|?).
Their approach is in the spirit of Gomory and Hu's algorithm [5] to find a com-
pact representation of minimum cuts between all pairs of vertices of a weighted
undirected graph and the procedure of Padberg and Rao [12] to find a minimumn-
weight T-odd cut. At the heart of these methods is the following lemma which is a
generalization of the notion of uncrossing introduced by Gomory and Hu.

Lemma 7. (The Uncrossing Lemma) Let 8 C2Y be a lattice family and % C € be
a triple family. Let f be a submodular function defined on 6. Let X minimize [
over % and let A minimize f over 6. Then, if A¢ % then either XUA or XNA
minimizes f over &.

In actual algorithmic applications, variations of this lemma are used, where
the definition of A is somewhat different but the conclusion is identical.

Proof. By submodularity of f on 6, we have

(3) A+ (X)) = f(AnX) + f(AU X).
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Since A minimizes f over 8 we have f(AUX)> f(A) and f(ANX)> f(A). Combined
with (3), this implies that f(ANX) < f(X) and f(AUX) < f(X). Therefore, we
only need to prove that either X M A or X UA belongs to %. This follows from the
definition of the triple family ¥ as applied to X €% and Ac6\ &. 1

If we replace the triple family by a parity family in the Uncrossing Lemma, it

is no longer valid, as described in the following example. Let V ={1,2}, §=2V,
$={{2}} and f(S)=3";cga; where a;=—1 and ag=1. Since B\G={0,{1},V} is
a chain of cardinality 3, ¥ is a parity subfamily of the lattice family 6, but ¥ is not
a triple family. f is modular and, hence, submodular. By inspection, we get that
A={1}¢% (uniquely) minimizes f over % and that X ={2} (uniquely) minimizes
f over $. But neither XUA={1,2} nor XNA=0 minimize f over & (in fact, they
are not even members of 9).

The example above clearly demonstrates that an algorithmic approach based
on the Uncrossing Lemma will not work for all parity families. Our approach is
based on the characterization described in Theorem 1, which is valid for any parity
family. In the case where $\¥ is a chain, Theorem 1 is easily derived. Indeed, let
us assume that 6\% = {C},---,C}} where C; CCy C ... C Ci. For simplicity of
notation, let Co=0 and Cpq1=V. Given a set S* ¢ {#,V'} minimizing f over &, let
I=max{i:C; CS*}. Since S* €Y, we must have §*\ C;#0. Also, by definition of
I, Ci41\S*#0. Let a€ S*\C; and be 1\ S*. It is easy to see that S* €8, and
B4, C%. Thus S* must minimize f over B4,. Observe that, in this special case, the
submodularity of f is not exploited.

3.1. Symmetric Submodular Functions and Families

In this section, we consider the special case in which the submodular function
is symmetric:

F(S)=f(V\S) forallS.

The best known example of a symmetric submodular function is given by the cut
function of an undirected graph. More precisely, let G = (V,E) be an undirected

graph and let ¢: E — ZT be a weight function on the edges of G. For any set
SCV, let f(S) =) ces(s)ce Where 5(S)={(i,j) e E:i€ 85,7 ¢ S} is the cutset

induced by S. In particular, f(#) = f(V)=0. The cut function f is symmetric

and is submodular on any lattice family € cav. Using the compact representation
of a lattice family in terms of a digraph (8, Section 10.3], the minimum of the cut
function f over any lattice family can be obtained by solving a single minimum s-¢
cut problem in a related digraph.

Most properties of the cut function also apply to any symmetric submodular
function f. In particular, any symmetric submodular function admits a so-called
cut-equivalent tree as was shown by Gomory and Hu [5] for the cut function. A cut
equivalent tree is a tree H = (V,T') on the groundset V such that a minimum set
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minimizing f over 2;@ for any two elements s and t corresponds to either connected
component obtained by removing an edge along the path from s to ¢ in H. A cut
equivalent tree can be obtained by solving |V|-1 submodular function minimizations
over 2%, [5].

Since f is symmetric, we can also restrict our attention to symmetric families
of sets, i.e. families € such that S €@ iff V\ S € 8. In the case of a symmetric
lattice family €, notice first that the empty set and V belong to €: if A€ % then
V\ A is also in 8, and this implies that AU(V\A) =V and AN(V\A) =10
belong to 6. Moreover, the minimum of a symmetric submodular function over
a nonempty symmetric lattice family is trivially attained by the empty set, since
2f(A)=f(A)+ fF(VNA) > f(V)+ f(@)=2f(D). Observe also that if € is a latticc
family then its symmetrized family €, ={S5:5€% or V\S €8} is not necessarily

a lattice family (consider, for example, 2;?), but the following lemma implies that

€sym is a parity subfamily of 2V,

Lemma 8. Let % be a parity subfamily of a symmetric lattice family 8 C2Y. Then
Gsym C 8 Is a symmetric parity family where Ggym ={S€6:5€% or V\Se¥}.

Proof. It is easy to see that Gy, is symmetric. To show that it is a parity family,
assume that A, B€ 8\ $sym. By definition, A, B,V \ A and V' \ B belong to 6\ ¥.
Hence, AUB€ % iff ANB€Y, and V\(AUB) €9 iff V\(ANB) €Y. If AUB€6\Esym

(the other case is identical), the above conditions imply that ANB and V\ (AN B)
are both in 8\ ¥, implying that ANB €8\ Gsym. 1

Without loss of generality, then, when minimizing a symmetric submodular
function over a parity family ¥, we assume that this parity family is symmetric. To
make the minimization problem non-trivial, we further assume that ¢,V ¢ $. The
following lemma gives alternate characterizations of such families.

Lemma 9. Let 8 C 2Y be a symmetric lattice family and let % be a symmetric
subfamily of € with 9,V ¢$. Then the following are equivalent:
(1) ¥ is a parity family.
(1) & satisfies: If A,B€6\Y and A, B are disjoint then AUB€eB\%.
(ili) & satisfies: For A,B disjoint, if, among A, B and AU B, two sets belong to
6\ Y then the third set also belongs to €\ %.
(iv) ¥ is a triple family.

Proof. We show that (iv)= (i) = (i¢) = (it1) = (4v). It is clear that (iv)=> (). Also,
(i) = (it) since the definition of a parity family ¥ applied to disjoint sets A and B
in 6\ % implies that AUBe 8\ ¥ iff 0B\ .

We next show that (ii)=-(i47). Assume that % satisfies (i7) but not (4i7). Thus
there must exist disjoint sets A and B such that Ac8\¥, AUBcE\% but Be¥.
Condition (z7) applied to A and V\{AUB) implies that AU(V\(AUB))=V\B€8\¥,
a contradiction since B€®.
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Finally, we show that (ii7) = (iv). Assume that ¢ satisfies (ii7) and consider
two sets A and B in 8 such that exactly one out of 4, B, AUB and ANB belongs to
%, say set X. Consider now condition (#i7) applied to the triplets { A\ B, ANB, A},
{B\A,ANB, B}, {A\B,B,AUB} and {B\ A, A, AUB}. The two triplets involving
the set X imply that both A\ B and B\ A belong to &, but the two other triplets
imply that they belong to §\%. This is a contradiction. |

In the case of the cut function, families satisfying condition (ii) of Lemma 9
were defined as proper families by Goemans and Williamson [4]. Examples of proper
families or proper cuts include:

a T-odd cuts. Given an even set T of vertices, a T-odd cut is a set SCV such
that |SNT)| is odd. The minimum T-odd cut problem arises as the separation
problem over the matching or T-join polytopes. Padberg and Rao [12] have
shown that minimum T-odd cuts can be obtained through a sequence of
O(]V]) minimum s-t cut problems. More precisely, they have shown that a
minimum 7-odd cut is induced by one of the edges of the Gomory-Hu cut tree.
This immediately implies the existence of two vertices a and b as claimed in
Theorem 1.

o More generally, families &= {S: ) ;cga; #0 (modp)}, where a; € Z and
peELT.
e Generalized Steiner cuts. Given sets T7,...,7, CV of terminals, a generalized

Steiner cutset is induced by a set S such that SNT;## and T;\ S#® for some
S.

Gabow et al. [3, Section 5.1] have shown that any minimum proper cut problem
can be solved by first constructing a cut equivalent tree. The result is described in
the following theorem. It also applies to general symmetric submodular functions.

Theorem 10. (Gabow et al. [5]) Let f be the cut function of a weighted undirected
graph G=(V,E) and let ¢ be any proper family of cuts. Then the minimum of f
over & can be obtained by taking the smallest cut in % among the cuts induced by
a cut equivalent tree.

This result does not follow immediately from Theorem 1 since there might
be several minimum cuts between two vertices s and ¢, some of which are not
in ¥. Nevertheless, Theorem 10 can be indirectly derived from Theorem 1, as
demonstrated below. We should however point out that the proof in [3] is simpler
and more direct.

Proof. Consider a cut equivalent tree H = (V,T) corresponding to the weighted
graph G=(V,E). We define a new weighted graph G’ obtained from G by adding
a new edge e with weight € > 0 for each edge e € T of the cut equivalent tree.
Observe that the cuts induced by the edges of the cut equivalent tree will increase
by ¢ while all other cuts will increase by at least 2e. Thus, for G/, all minimum s-¢
cuts are induced by edges of the cut equivalent tree. From Theorem 1, we know the
existence of vertices a and b such that the minimum proper cut for G’ is a minimum
a-b cut. As a result, any minimum proper cut for G’ must be induced by an edge
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of the cut equivalent tree. Letting ¢ be arbitrarily small, we derive the existence of
a minimum proper cut for G induced by one of the edges of the cut tree. |

In the rest of this section, we discuss minimum cut problems which are not
proper but which can still be solved in polynomial-time using our characterization.
We define a T-even cut as a set SCV such that S#0, S£V and |SNT] is even.
We emphasize that we exclude S=§ and S=V in this definition.

3.1.1. s-t T-even and s-t T-odd cuts

An s-t T-odd cut (vesp. s-t T-even cut) for some prespecified vertices s and ¢ is
a T-odd cut (rvesp. T-even cut) containing s but not #. Consider the lattice family

2Y,={S:s€S.,t¢ S} and its subfamily $={Se€2¥,:[SNT| odd}. It is easy to

see that ¥ is a parity subfamily of 22/11, and even a triple family. The algorithm of

Grotschel et al. [7, 8] thus solves the s-t T-odd cut problem as a sequence of O(|V[?)
minimum s-{ cut problems. This also follows from Corollary 3. In a similar vein,
finding a minimum s-¢ T-even cut can be formulated and solved the same way.
3.1.2. T-even cuts

A polynomial time algorithm to solve the minimum T-even cut problem was
devised by Barahona and Conforti [1]. They reduce the problem to a sequence of
O(}V]®) minimum s-t cut problems. Using an argument similar to (1), one can
decrease the number of minimum s-¢ cut problems to O(|V[1).

The minimum T-even cut problem cannot be formulated directly as the min-
imization over a parity family. Indeed, if one minimizes over the parity family
%={5:|SNT] even} then one would obtain S*={ or S*=V as the optimum solu-
tion. The minimum T-even cut is thus equivalent to the problem of minimizing the
cut function f over the family %\ {0,V}. Let 9y ={S€%:s5€S5,t¢S}. Observe

that Y is a parity subfamily of 2¥, and that
) st

% \ {@, V} = U (tgst U tgi&s)

teV{s}

where s is any vertex (we could also use a decomposition similar to (2)). This
shows that the minimum T-even cut problem can be reduced to O(|V]) minimum

s-t T-even cut problems, and thus can be solved in O(|V|3) s-t cut minimizations
by using Corollary 3. The decomposition of ¥ used above can be applied whenever
we need to exclude § and V' from the minimization over a parity family.

4. Proofs

In this section, we prove Theorem 1. We first establish a key lemma from
which our main result will follow easily. The proof technique we use was inspired

by a result of Williamson et al. [13]. In what follows, we assume that € C2" is a
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lattice family, that ¥ C § is a parity family, that f is a submodular function on 6
and that S* minimizes f over . We further assume that S* ¢ {6,V}.

Lemma 11. There exists a € S* such that f{A)> f(S*) for all ACS*, A€e$ and
a€A.

Proof. The proof is by contradiction. Suppose not. Then, for all a € S*, there
exists T, C S* such that a €Ty, Tg €8 and f(Ty) < f(S*). For each a € S*, we can
choose T, to be a maximal such set. By definition of S*, T ¢ for all a € S*.

Claim 11.1. [ To €8\ ¥ for any §£1CS*.
acl

Proof. Since [ Tq € 8, observe that the claim would follow from the definition
acl

of 8* and a proof that f < N Ta> < f(S*) for any I. Given a nonempty I C S*,
a€l

choose a mazimal set I' C I such that f(D) < f(S*) where D= ( T,. If I' #1,
acl’

choose any be I'\I'. Notice that D, Ty, DUTy, and DNT} all belong to 8. By the
submodularity of f on the lattice family €,

(4) 2f(8*) > f(D)+ f(Tp) =2 S(DUTy) + f(DNT).

Since T}, was chosen to be maximal, DUT}, must satisfy f(DUT}) > f(S*). Inequality
(4) now implies that f(DNT},) < f(S*). But this contradicts the maximality of I’
implying that I’=1, and proving the claim. |

Claim 11.2. Let I and J be two disjoint subsets of S*. Then

{ﬂTa}ﬂ UTp ) e8\%

acl beJ

Proof. We prove the claim by double induction on (i,7) where =1} and j=|J|,

according to the following ordering of the pairs: (i1,71) < (i2,j2) if either i1 + 71 <

ig+jo, or i1+j1 =ig+jo and j; < jo. For notational convenience, we set T = [ Tg,
ael

TszUJTb and TY =Ty nT;.
€

The base case corresponding to pairs (¢,7) with j <1 was proved in Claim 11.1.
We consider two cases.

Case 1. i=0,7>1.

Let ce€ J. For simplicity, we denote J\ {c} by J—c. Since (0,5 —1)<(0,5), by
induction, we have that 77/~¢ € 6\ ¥. From the definition of the parity family %
applied to T7¢ and T, we derive that

T/cuT, =T eg\Y T/ nT.=T/cc6\ %
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By induction, since (1,5 —1) <(0,7), T ~¢€ 6\ % and, therefore, T/ ¢ 6\ ¥.
Case 2. i>0,7>1.
Let ce J. Notice that
G) T/ =T 0T/ =Ty (T UT) = (TN T/~ U (TrnT) =T] Cu Ty,

where I 4+c=1U{c}. From Claim 11.1, we have that T;,.€ 6\ %. By induction,

since (1,7 — 1) < (4,5), we have that TIJ'C €8\%. From the parity of ¥ and using
(5), we get that

T/ e\ T/ nT =T/ fcB\ %

However, the latter set does not belong to % by induction, since (i+1,5—1) < (4,5).

For I=0 and J=5%, Claim 11.2 implies that Upc g+ T, = S* € 6\, contradicting
the choice of S*. This completes the proof of the lemma. 1

Remark 12. When ¥ is defined to be {S€8:|S|#q (modp)}, where ¢,p€ZT, we
can give a shorter proof of U,c g+ T, € 6\¢ using the inclusion-exclusion principle:

Proof. Let {={S*| and arbitrarily label the elements in S* from 1 through I. By
the inclusion-exclusion principle,

l

Uz

1=1

{
=S -S BT+ Y ILNT AT .
=1

i<j i<j<k

By Claim 11.1, every term of the form |T;N---NT}| is congruent to ¢ (mod p), so

we have
(i)q— <;>q+ (é)q— N (_1)1+1<§>q (mod p)

= (1 —(1- 1)1) g (modp)=gq (modp). |

I

We can obtain a similar result as in Lemma 11 for V — S*. Consider the
submodular function f'(S) = f(V —S) on the lattice family ' ={S:V — S € 6}.

Notice that V —S* minimizes f’ over the parity family ¥’ ={S:V -~ Sc¥}. From
Lemma 11, we then derive:

Lemma 13. There exists be V —S* such that f(B)> f(S*) for all BD S*, B€§
and b¢ B.

We are now ready to prove Theorem 1.
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Proof of Theorem 1. Let a be the element of S* referred to in Lemma 11 and b the
element of V —S* referred to in Lemma 13. Let W be a set minimizing [ over 6,
Thus f(S*) > f(W) since $*€8,;,. By the submodularity of f,

(6) 25(S%) = F(S™) + F(W) = F(S™ W) + F(STUW).

By the choice of a, f(S*NW) > f(5*) and, by the choice of b, f(S*UW)> f(5™).
Therefore, all inequalities of (6) must be equalities, implying that f(S*) = f(W).
This implies that S* also minimizes f over 8. 1

By strengthening Lemma 11, one can also derive Theorem 2.

Lemma 14. Let S* be a minimal set minimizing f over %. Then there exists a € 5*
such that f(A)> f(S*) for all ACS*, Ac8 and a€ A.

Proof. The proof is almost identical to the proof of Lemma 11. Suppose the claim
is not true. Then, for all a € S*, there exists T, C S* such that a € T,, T, € € and
J(Ty) < f(S*). For each a € S*, we can choose T to be a maximal such set. By
definition of S*, Ty, € 6\ ¥ for all a € §*. Below we present a modification of the
proof of Claim 11.1. Claim 11.2 and its proof remain unaltered.

Claim 14.1. () T, €6\ % for any 0#1CS*.
a€l

Proof. Since [} T, € 8, observe that the claim would follow from the definition
a€l

of $* and a proof that f ( N Ta> < f(8*) for any I. Given a nonempty [ C 5%,
agl
choose a mazimal set I' C I such that f(D)< f(S*) where D= (| T,. If I' #1,
acl’
choose any be I\ I'. Notice that D, Ty, DUT}, and DNTy all belong to €. By the
submodularity of f on the lattice family 6,

(M) 2f(S%) = f(D) + J(T}) 2 A(DUTy) + f(DNTy).

We claim that f(DUTy) > f(S*). Indeed, either DUT, = S* in which case
f(DUT,) = f(S*) or DUT, C S* in which case the maximality of T}, implies that
f(DUT) > f(S*). Inequality (7) now implies that f(DNT;) < f(S™), contradicting
the maximality of I’. 1

For I=0 and J=S*, Claim 11.2 implies that Uy g« T} = S™ € B\, contradicting
the choice of §*. This completes the proof of the lemma. R

Proof of Theorem 2. Let S* be a minimal set minimizing f over %. Let « he
the element of S* referred to in Lemma 14 and b the element of V —.S* referred
to in Lemma 13. Let W be a set minimizing f over 8,. As in the proof of
Theorem 1, we derive that all inequalities in (6) are satisfied at equality, i.e.
f(8*) = f(W) = f(S*NW) = f(S*UW), implying that S* minimizes f over €.
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Moreover, S*NW = S* for otherwise S*NW € 6,5 and f(S*NW) = f(5*) will
contradict the choice of a. Thus, every set W minimizing f over ,; contains S*
and hence S* is the unique minimal set minimizing [ over %. 1

5. Algorithmic Implications

In this section, we deduce the algorithmic consequences of Theorems 1 and
2. In what follows, we assume that the lattice family € is compactly cncoded
by a digraph as described in [8, Section 10.3], that the parity family is given by a
membership oracle and that the submodular [unction is given by an oracle returning
F(S) for each query SCV. Let 3 be an upper bound on the size of f(.S) lor any
set S,

As mentioned previously, the minimization of a submodular function [ over a

lattice family € C 2" can be done in oracle-polynomial time [6]. We claim further
that the algorithm can be used to find a minimal set minimizing f over the lattice
family. Indeed, letting g(S) = f(5) e observe that ¢ is submodular and that,
for ¢ sufficiently small, every set minimizing q will be a minimal set minimizing J.

2 . L Ly . .
The scalar ¢, for example. can be set to be IVI ~25 gince the definition of 3 implies

that [f(S1) — (So)[ > 272 whenever S1 # So. Observe that the size of g(S) is
O(3+log|V]), implying that the algorithm of Grotschel et al. [6] as applied to ¢
will find a minimal set minimizing f in oracle-polynomial time.

Corollary 3 follows easily from Theorem 2. The algorithin proceeds as [ollows.
We first find a minimal set S,; minimizing [ over the lattice family 6, for every
a and b in V. The compact representation for 6, can easily be obtained in linear
time from the compact representation for 6. We then select in the collection
{0,VIU{Sy 1 a,b eV} aset S€ % having the smallest value f(S). Theorem 2
guarantees that this set S is a minimal set minimizing f over the family 9. This
algorithm requires the computation of O(|V]?) submodular function minimizations
over lattice families.

We would like to make a few remarks. First, the algorithm can also be used
to output all minimal sets minimizing f over % in the same amount of time. In
particular, observe that Theorem 2 implies that there are at most |V|(|V] - 1)
minimal sets minimizing f over a parity family. Also, we would like to emphasize
that the collection {#,V}U{Ss @, b€V} is independent of which parity subfamily
of € 1s being considered. This implies that we can find a minimal set minimizing [
over any parity subfamily of 8 easily, once this collection is constructed.

6. Approximately Minimum Cuts

The techniques developed in this paper can also be used in other settings.
Consider the recent result of Nagamochi, Nishimura and Ibaraki [11] which says that
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there are at most (721) cuts in an undirected graph whose value is less than 4/3 times
the minimum cut value. This result follows from the following characterization of
such cuts.

Theorem 15. Let f be the cut function of a weighted undirected graph G(V,E)
and let X={SCV\{1}:f(S) < %@;ﬁlpinvf(T)}. Then for any S €, there exist
c

a,b€ V\{1} (a and b are not necessarily distinct) such that S is the unique minimal
set in # containing both a and b.

There are at most (”51) +n—1=(3) different choices for a,b, implying the
result of Nagamochi et al. that |#] < (%). The proof of Theorem 15 is much in the
spirit of the proof of Theorem 1. The non-existence of the vertices a,b for a given
set S can be seen to imply the existence of vertices z,y,2€ S and sets X,Y,ZcH
such that z€ (YNZ\X), y€(ZNX\Y) and 2€ (X NY\ Z). However, the triple
submodular inequality [10, Ex. 6.48] then implies that

4 min f(T)<fYNZ\X)+FfZNX\Y)+ f(XNY\Z)+ f(V\(XUYUZ))
PATCV

SFX)+fY)+£(2) < 4w¢11¥élvf(T)’

which is a contradiction.
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