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We consider the  problem of character iz ing the  m i n i m u m  of a s u b m o d u l a r  funct ion  when the  
min imiza t ion  is restr icted to a family of subsets .  We show tha t ,  for m a n y  in teres t ing  cases, there  
exist  two e lements  a and b of the  groundse t  such t ha t  the  problem is equivalent  to the  problem 
of min imiz ing  the  s u b m o d u l a r  funct ion over the  sets  conta in ing  a bu t  not  b. Th i s  leads to a 
polynomial - t i ,ne  a lgor i thm for min imiz ing  a s u b m o d u l a r  ffmction over these  [amilies of sets.  Our  
resul ts  apply, for example ,  to the  fmnilies of odd cardinal i ty subse ts  or even cardinal i ty  subse t s  
separa t ing  two given vertices, or to the  complemen t  of a latt ice faInily of subse ts .  We also derive 
t ha t  the  second smal les t  value of a submodu l a r  flmction over a lat t ice family  can be compu ted  in 
polynomial - t ime.  These  resul ts  generalize and unify several known results.  

1. Introduction 

Submodular set-functions arise in a variety of fields, including combinatorial 
optimization, probability and geometry. Examples include the rank function of a 
matroid, the sizes of cutsets in a directed or undirected graph, tile probability that, 
a subset of events do not simultaneously occur, or tile logarithm of the volume of 
tile parallelepiped spanned by a subset of linearly independent vectors. For a survey 
of submodular functions and their properties, the reader is referred 1;o LovSsz [9] 
and Fujishige [2]. 

Many problems in combinatorial optimization can be formulated as the t)rob- 
lem of minimizing a submodulm" flmction. Illustrations include the minimum cut 
or s-t cut problem in an undirected or directed graph, or the problem of finding 
the largest independent set common to two matroids. In several settings though, 
the minimization of the submodular function is restricted to a family of subsets. 
In the minimum cut problem, one would like to exclude the empty set or tile en- 
tire set, or in the minimum odd cut problem, one would like to consider only the 
subsets with odd cardinality. Several restricted minimum cut problems have been 
shown to be polynomially solvable: the odd-cut or T-odd cut problem by Padberg 
and Rao [12J, the even-cut or T-even cut problem by Barahona and Conforti [1] 
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and any "proper" cut problem by Gabow, Goemans and Williamson [3]. Exam- 
ples of families of proper cuts are tlle T-odd cuts and the generalized Steiner cuts. 
GrStschel, LovSsz and Schrijver [6] (see also [7, 8]) have generalized Padberg and 
Rao's result to any submodular flmction and to more general families of subsel, s. 
Their algorithm can be used to solve the miniiumn s-t T-odd cut, or s-t T-even cut 
in polynomial time. 

In this paper, we consider what we call par'ity families, which are even more 
general fanfilies of subsets than the ones considered in Gr6tschel et al. [8]. We show 
that the minimization of a submodular flmction over a parity family can be done 
in polynomial time. Our algorithm and the corresponding characterization differs 
significantly fl'om the approach used in GrStschel et al. [8]. Their algorithm as well 
as the original algorithm of Padberg and Rao and the algorithm of Bm'ahona and 
Conforti exploit certain uncrossing properties of minimmn sets or minimum cuts. 
We show that,  in general, this property does not hold for parity families, rendering 
the approach infeasible. Our characterization, however, shows the existence of two 
elements a and b (or two vertices) such that the minimization over the parity fanfily 
is equivalent to the minimization over the sets containing a but not b. 

The paper is structured as follows. In Section 2, we define all the necessary 
terminology and we describe our main result and its algorithnfic implications. 
Section 3 describes special cases of our result and also relates our result to results 
from the literature. The proof of out' main result is given in Section 4 and the 
derivation of the algorithmic consequences is discussed in Section 5. In the last 
section, we use the techniques developed in this paper to give a simple proof of a 
recent result of Nagamoehi et al. [11] on the maximmn number of approximately 
minimum cuts in an undirected graph. 

2. Definitions, Preliminaries and Results 

Let V be a finite set. A family ~ of subsets of V is called a lattice farn.ily if 

A, B c f ~  A n B ,  A u B r  

We also introduce a new type of family of subsets. A subfamily N of a lattice family 

g C 2  v is called a parity fam, ily I if 

A related family of subsets was introduced by Grgtschel, Lovgsz and Schrijver [7] 
to provide a general setting for the minimization of a submodular flmction over 
odd-eardinality or even-cardinality members of a lattice family. A subfamily N g 
is a triple family if, for any S,T c ~, whenever three of the four sets S, T, S a T  
and S U T are in g \ N, then the fourth set is also in g \ N. It is easy to see that 
triple families are a subclass of parity families. We will give several examples of 

1 Often, to emphasize  ti le dependence on g,  we shall  refer to L~ as a par i ty  subfami ly  of g, 



MINIMIZING SUBMODULAR FUNCTIONS 501 

triple and parity families in Section 3. We will also explore further the relationship 
between these families and the differences in algorithmic approaches to minimizing 
submodular functions over them. 

Given a family $C_ 2 g of subsets and two elements s and t in V, we define g~st 
to be the family {A G ~ : s C A, t ~ A}. If ~ is a lattice family then ~st is still a lattice 
family. Also, if N is a parity subfamily of ~ then Nst is a pari ty subfamily 2 of ~Sst. 

A function f : 2 V - + R  is said to be submodular on 2 V if 

f(A) + f(B) > f ( A n  B) + f (A U B) for all A , B  C 14 

A function f is said to be submodular on the family ~ of subsets if 

f(A) + .f(B) > f(A A B) + f(A U B) whenever A, B, A U B ,  A M B E ~. 

We say that  a set S minimizes a function f over a family ~ if S r ~ and f ( S )  is 
as small as possible. Throughout,  we assume that  the submodular function f is 
given by an oracle returning f(S) for each query S_C V. Minimizing a submodular  
flmction over a lattice family can be done in oracle-polynomial time 3 via the 
ellipsoid algorithm, as was shown by GrStsehel, Lovs and Schrijver [6]. This also 
trivially implies that  one can minimize a submodular function over the union of a 
polynomial number of lattice families in oracle-polynomial time. For example, given 
a set T C_ V, one can minimize a submodular function over ~ = { S : SNT r O, T\S r ~ } 

by expressing the family as ~ = U 2 V. In this case, the number of submodular  
s,tET, sr 

function minimizations over lattice families can be reduced to 2IT 1-2 by expressing 
o ~ as 

for any element s E T, or even to only ITI submodular function ininimizations since 

l 

(2) t,iQ+ t 
i=1 

where T = { t l , . . . , t l }  and tl+ 1=tl. 
Throughout the paper, minimal and maximal refer to minimal and maximal 

under inclusion. 
The following theorem constitutes our main result. 

2 It is important  to embed ~st in 5,st; ~st may not be a parity subfamily of 5'. 

3 Oracle-polynomial time means that  the number  of operations, counting each call to the oracle 

as one operation, is polynomially bounded in IV] and in an upper  bound/3  on the size of f (S)  for 

any S. 
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Theorem 1. Let g C_ 2 v be a lattice family and ~ C_ ~ be a parity family. Let; f be 
a subinodular function on g. Let S* E N be a set minimizing f over ~. Then either 
S*E {O,V} or there exist a ,bc  V such that S* minimizes f over the lattice family 

gab. 

The previous theorem is however not sufficient to derive a polynomial-t ime 
algorithm for the minimization over parity fanfilies. Indeed, even if we know a and 
b, the minimization over the lattice family gab might not return a set, belonging to 
N. Nevertheless, Theorem 1 can be refined as follows. 

Theorem 2. Let g C_ 2 v be a lattice family and ~ C_ g be a parity t~zmily. Let f be 
a submodular fimction on g. Let S* E ~ be a minimal set minimizing .f over ~. 
Then either S* E {0, V} or there exist a,b E V such that S* is the unique minirrml 
set minimizing f over the lattice family gab" 

Theorem 2 implies the following algorithmic consequence. 

Corollary 3. Let ~ C_ 2 v be a lattice family and ~ C g be a pari(y family. Let f 
be a submodular function on ~. Then a set minimizing f over ~ can be obtained 

in oracle-polynomial time by solving O(]VI 2) submodular function minimizations 
over lattice families. 

In the next section, we elaborate on applications and special cases of out' main 
result and its algorithmic implication. 

3. Previous Work and Applications 

We begin by reviewing some examples of triple families. 

Lemma 4. (Gr5tschel et al. [8]) Let ~ C_ 2 V be any lattice family and T be a non- 
empty subset of V. Then, for any p,q E Z, the family N := {S E g : I s n r [  ~ q 
(mod p)} is a triple family. | 

In particular, letting p = 2, we conclude that  both  the family of odd sets and 
the fanfily of even sets are triple families. More generally, given integers ai for i E V 
and integers p and q, the family N = { S E g : ~ i E s a i ~ q  (modp)}  is a triple 
family. Lemma 4 corresponds to the case ai = 1 for i E T and 0 otherwise. The 
triple family { S E g :  I S n r l l  ~ ISnT2 f  (modp)} corresponds to the case a i = l  for 
i ETI \ T2, a i = - I  for i ET2 \ T1, ai=O otherwise, and q=0 .  

Gr5tschel et al. [8] also show that  g \M is a triple family where g is a lattice 
family and M is an antichain. A family M is called an antichain if, for distinct 
S1,$2 Cod, S1 (L $2. For example, the exclusion of all sets of cardinality q leads to 
a triple family (this also follows front Lemma 4 with p >  IVI and T = V ) .  

We observed earlier that  triple families are a subclass of parity families and, 
thus, the above families are also parity families. However, the inclusion is strict. 
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An impor t an t  class of par i ty  families which are not necessarily tr iple families is 
given in the following lemma.  

L e m m a  5. Let  ~ C 15 C 2 v where o~ a.nd ~ are both lattice thmilies. Then ~ = ~ \ 
is a pari ty family. 

The  proof  is immediate .  Since ~ \ N = `7 is a latt ice family, 1,he condil;ion 
A, I 3 C g \ N  implies tha t  bo th  AFIB and AtO/3 also belong to 15\N. 

To argue tha t  the families addressed in I . emma  .5 are typical ly not triple 
families, consider the special case where ~ is a chain. A family `7 of subsels  is 
a chain it', for any 5'1, $2 E`7, $1 C_ $2 or $2 C_ SI.  If ~ is a chain with I o ~] > 3 then 
g \ ~  is not a triple fanfily. To show this, let S1, $2 and $3 be dist inct  nmmbers  of.7.  
Since 5~ is a chain, we may  assume tha t  S 1 C $2 C ,5'3. Consider the subsets  ,5"2 and 
( S 3 \ S 2 ) U S  1 . Now S 2 C ~ ,  S2A((S3\S2)CJS1 ) = $1 C .7 and S2U((S':~\S2)USI ) = ,5':~ ~ J 
bul, (Sa \ S'2) U $1 E g \ .7.  Therefore 15 \ .7  cannot  be a triple fanfily. 

If f is a submodula r  function on a latt ice family g then it. is easy to see tha t  
.7,,i.n. = {A C g :  f ( A )  = rain [ (S)}  is a latt ice familv. L e m m a  .5 then guarantees  

s '~g'  " 
tha t  g\~m{r t  is a par i ty  family. Using Corollary 3 we therefore derive the tbUowing 
result. 

Corol lary  6. Let  ~ C_ 2 V be a lattice [an~il, y and let f t)e a submoduhlr  fhnction 
on ~. Then a set attaining the second smallest value o f  f over ~ can be obtained 

in oracle-pol3qmn~ial t ime b.v solving o(ivl 2) submodular  fimction minimizat ions  
over lattice families. 

Grgtschel,  LovSsz and Schrijver [7] reduce the prob lem of minimizing a sub- 

modu la r  function over a triple family to a sequence of O(IV] 3) submodula r  func- 
t ion minimizat ions  over lattice families. By using the decomposi t ion  (1) or (2), one 

can in fact decrease the number  of submodula r  flmction minimiza t ions  to O(IVI2).  
Their  approach is in the spirit  of Gomory  and Hu 's  a lgori thm [5] to find a con> 
pact  representa t ion of min imum cuts between all pairs of vertices of a weighted 
undirected graph and the procedure  of Padberg  and !Rao [12] to find a min imum-  
weight T-odd  cut. At the hear t  of these methods  is the following l e m m a  which is a 
general izat ion of the notion of u~crossing in t roduced by Gomory  and tIu.  

L e m m a  7. (The Uncrossing Lemma)  Let  ~ G 2 V be a lattice ta.mil,y" and ~ C_ T~ be 
a triple family: Let  f be a submodular  function defined on ~. Let X minimize  ./" 
over ~ and let; A minimize  f o v e r t .  Then, i f  A ~ ~ then either X U A or X N A 
minimizes  f over ~. 

In actual  algori thmic applications,  variat ions of this lmnma are used, where 
the definition of A is somewhat  different but  the conclusion is identical. 

Proof. By submodula r i ty  of f on g, we have 

(3) f (A)  + f(X) > .f(A N X) + f(A O X). 
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Since A minimizes f over ~ we have f(AUX)>_ f(A) and f(AnX) >_ f(A). Combined 
with (3), this implies that f ( ANX) <  f(X)  and f(AUX)<_ f(X).  Therefore, we 
only need to prove that either X A A or X U A belongs to N. This follows from the 
definition of the triple family ~ as applied to X E ~} and A E ~ \ ~. | 

If we replace the triple family by a parity family in the Uncrossing Lemma, it 

is no longer valid, as described in the following example. Let V = {1,2}, $ = 2 V, 
N={{2}} and f(S)=y~iESa i where a l = - I  and a 2 = l .  Since ~\~}={0,{1},V} is 

a chain of cardinality 3, ~} is a parity subfamily of the lattice family/~, but N is not 
a triple family, f is modular and, hence, submodular. By inspection, we get that 
A =  {1} ~ N (uniquely) minimizes f over ~ and that  X = {2} (uniquely) mininfizes 
f over N. But neither XUA={1 ,2}  nor XnA=O minimize f over ~} (in fact, they 
are not even members of N). 

The example above clearly demonstrates that  an algorithmic approach based 
on the Uncrossing Lemma will not work for all parity families. Our approach is 
based on the characterization described in Theorem 1, which is valid for any parity 
family. In the case where ~ \ N  is a chain, Theorem 1 is easily derived. Indeed, let 
us assume that ~ \ N  = {C1, ' "  ,C/~} where C1 C C2 C ... C Ck. For simplicity of 
notation, let C0=O and C/c+l =V.  Given a set S* ~ {O,V} minimizing f over ~5, let 
l=max{i:Ci C_ S*}. Since S*E N, we must have S* \C  lr Also, by definition of 
l, CZ+I \S*r  Let aES*\Ct and bECI+I\S*. It is easy to see that  S*E~ab and 
$ab C_ ~. Thus S* must minimize f over $ab" Observe that,  in this special case, the 
submodularity of f is not exploited. 

3.1. Symmetric Submodular Functions and Families 

In this section, we consider the special case in which the submodular function 
is symmetric: 

f(S) = f (Y  \ S) for all S. 

The best known example of a symmetric submodular function is given by the cut 
function of an undirected graph. More precisely, let G - -  (V,E) be an undirected 

graph and let c : E ~ Z  + be a weight function on the edges of G. For any set 
S C_ V, let f(S) = ~ee~(S) ce where 6(S) = {(i,j)  E E : i E S,j ~ S} is the cutset 

induced by S. In particular, f ( O ) =  f ( V ) =  0. The cut function f is symmetric 

and is submodular on any lattice family ~ C_ 2 V. Using the compact representation 
of a lattice family in terms of a digraph [8, Section 10.3], the minimum of the cut 
function .f over any lattice family can be obtained by solving a single rninimum s-t 
cut problem in a related digraph. 

Most properties of the cut function also apply to any symmetric submodular 
function f .  In particular, any symmetric submodular function admits a so-called 
cut-equivalent tree as was shown by Gomory and Hu [5] for the cut flmction. A cut 
equivalent tree is a tree H = (V,T) on the groundset V such that  a minimum set 
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minimizing f over 2~ for any two elements s and t corresponds to either connected 
component obtained by removing an edge along the path from s to t in H. A cut 
equivalent tree can be obtained by solving [VI-1 submodular function minimizations 

over [21. 
Since f is symmetric, we can also restrict out' attention to symmetric fanfilies 

of sets, i.e. families ~ such that S E g iff V \ S E g. In the case of a symmetric 
lattice family g, notice first that the empW set and V belong to g: if A E g then 
V \ A is also in ~, and this implies that AU (V \ A) = V and A n  (V \ A) = 
belong to 5. Moreover, the minimum of a symmetric submodular function over 
a nonempty symmetric lattice family is trivially attained by the empty set, since 
2f(A) = f (A) + f ( V  \ A) >_ f (V)  + f(~) = 2f(~)). Observe also that if g is a lattice 
family then its symmetrized family ~.syrr,. = {S :S  E ~ or V \ S  r 5} is not necessarily 

a lattice family (consider, for example, 2 V~, but the following lemma implies that s t]  

~s?mz is a parity subfamily of 2 V. 

Lemma 8. Let N be a parity subfamily of a symmetric lattice famih." g_C 2 v. Then 
Nsym C_g is a symmetric parity family where Nsym = { S E g : S E t ~  or V \ S r N}. 

Proof. It is easy to see that Nsym is symmetric. To show that it is a parity family, 

assume that A, B E ~ \ Nsym. By definition, A, 13, V \ A and V \ B belong to g \ N. 
Hence, AU/3 E N iff AC~B E ~, and V\(AUB) E ~ iff V\(ANB) E ~. If" AU/3 r ~'\N.svm 

(the other case is identical), the above conditions imply that A ~ B  and V \ ( A N B )  
are both in ~ \ ~ ,  implying that AABE~\~s~pn.  | 

Without loss of generality, then, when minimizing a symmetric submodular 
function over a parity family N, we assume that this parity family is symmetric. To 
make the minimization problem non-trivial, we further assume that ~), V ~ N. The 
following lemma gives alternate characterizations of such families. 

Lemma 9. Let ~ C_ 2 v be a symmetric lattice family and let ~ be a symmetric 
subfamily of g with O, V ~ ~. Then the following are equivalent: 

(i) ~ is a parity family. 
(ii) ~ satisfies: If  A , B f f ~ \ ~  and A, B are disjoint then A L J B f f ~ \ ~ .  

(iii) N sa.tisfies: For A, t? disjoint, if, among A, t? and A U B, two sets belong to 
~ \ ~  then the third set also belongs to ~ \ ~ .  

(iv) N is a triple family. 

Proof. We show that (iv) ~ (i) ~ (ii) ~ (iii) ~ (iv). It is clear that (iv) ~ (i). Also, 
(i) ~ (ii) since the definition of a parity fanfily N applied to disjoint sets A and B 
in ~ \ N implies that A u B E ~ \ N iff ~ E ~ \ ~. 

We next show that (ii) ~ (iii). Assume that N satisfies (ii) but not (iii). Thus 
there must exist disjoint sets A and B such that A E ~ \ N ,  A U B E ~ \ N  but BEN. 
Condition (ii) applied to A and V\(AuB)  implies that AU(V\(AUB))= V \ B  E ~\~,  
a contradiction since B ff N. 
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Finally, we show that ( i i i ) ~  (iv). Assume that N satisfies (iii) and consider 
two sets A and B in $ such that exactly one out of A,B ,AUB and A n B  belongs to 
N, say set X. Consider now condition (iii) applied to the triplets { A \ B , A N B , A } ,  
{B \A ,  ANB,B} ,  { A \ B , B , A U B }  and { B \ A , A , A U B } .  The two triplets involving 
the set X imply that both A \ B  and B \ A  belong to N, but the two other triplets 
imply that they belong to ~ \ ~. This is a contradiction. | 

In the case of the cut function, families satisfying condition (ii) of Lemma 9 
were defined as proper families by Goemans and Williamson [4]. Examples of proper 
families or proper cuts include: 

| T-odd cuts. Given an even set T of vertices, a T-odd cut is a set S C_ V such 
that ISNT] is odd. Tile minimum T-odd cut problem arises as the separation 
problem over the matching or T-join polytopes. Padberg and Rao [12] have 
shown that minimunl T-odd cuts can be obtained through a sequence of 
O(IV]) minimum s-t cut problems. More precisely, they have shown that a 
mininmm T-odd cut is induced by one of the edges of the Gomory-tfu cut tree. 
This immediately implies the existence of two vertices a and b as claimed in 
Theorem 1. 

�9 More generally, families N = {S : ~ i c s a i  ~ 0 (modp)}, where ai C Z and 

I)C X + �9 
�9 Generalized Steiner cuts. Given sets T1,... ,Tk C_ V of terminals, a generalized 

Steiner cutset is induced by a set S such that SNTi # 0 and Ti \ S r 0 for some 
S, 

Gabow et al. [3, Section 5.1] have shown that any minimum proper cut problem 
can be solved by first constructing a cut equivalent tree. The result is described in 
the following theorem. It also applies to general symmetric submodular functions. 

Theorem 10. (Gabow et al. [5]) Let f be the cut function of a weigl~ted undirected 
graph G = (V,E) and let ~ be a.ny proper f~mily of cuts. Then the minimum of f 
o~r  ~ can be obtained by taking the smallest cut in ~ among the cuts induced by 
a cut equivalent tree. 

This result does not follow immediately from Theorem 1 since there might 
be several minimum cuts between two vertices s and t, some of which are not 
in N. Nevertheless, Theorem 10 can be indirectly derived from Theorem 1, as 
demonstrated below. We Should however point out that the proof in [3] is simpler 
and more direct. 

Proof. Consider a cut equivalent tree H = (V,T) corresponding to the weighted 

graph G = (V,E). We define a new weighted graph G / obtained from G by adding 
a new edge e with weight e > 0 for each edge e C T of the cut equivalent tree. 
Observe that the cuts induced by the edges of the cut equivalent tree will increase 
by e while all other cuts will increase by at least 2e. Thus, for G ~, all minimum s-t 
cuts are induced by edges of the cut equivalent tree. From Theorem 1, we know the 
existence of vertices a and b such that the minimum proper cut for G ~ is a miniature 
a-b cut. As a result, any minimum proper cut for G ~ must be induced by an edge 
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of the cut  equivalent tree. Lett ing ~ be arbitrari ly small, we derive the existence of 
a min imum proper cut for G induced by one of tile edges of the cut  tree. l 

In the rest of this section, we discuss min imum cut problems which are not 
proper  but  which can still be solved in polynomial- t ime using our characterization.  
We define a T-even cut as a set SC_V such tha t  Sr S C V  and ISNTI is even. 
We emphasize that  we exclude S = ~ and S = V in this definition. 

3.1.1. s - t  T-even and s- t  T-odd cuts 

An s-t T-odd  cut (resp. s-t T-even cut) for some prespecified vertices s and t is 
a T-odd  cut (resp. T-even cut) containing s but  not t. Consider the lattice family 

V I S n T  I odd}. It  is easy to 2s tV = {S :  s E S.t ~ S} and its subfamily N = {S E 2st : . 

see tha t  N is a pari ty subfamily of 2 V and even a triple familv. The algori thm of st~ .. 
GrStschel et al. [7, 8] thus solves the s-t T-odd cut problem as a sequence of O(IVI 2) 
min imum s-t cut problems. This also follows fl'om Corollary 3. In a similar vein, 
finding a minimum s-t T-even cut can lye formulated and solved the same way. 

3.1.2. T-even cuts 

A polynomial  time algori thm to solve the min inmm T-even cut, problem was 
devised by Barahona  and Conforti  [1]. They  reduce the problem to a sequence of 

O(IV[ ~) minimum s-t cut problems. Using an arguinent sinfilar to (1), one can 

decrease the number  of nfinimuin s-t cut problems to O(IV[4). 

The min immn T-even cut problem cannot lye formulated directly as the nfin- 
imization over a pari ty family. Indeed, if one mininfizes over the par i ty  family 
N = { S :  [SNT] even} then one would obtain S * = ~  or S * = V  as the op t inmm solu- 
tion. The min imum T-even cut is thus equivalent to the problem of minimizing the 
cut  function f over the family N \ { ~ , V } .  Let Nst = {SG N:s E S,t ~ S}. Observe 

tha t  Nst is a pari ty subfamily of 2 V and that  

<v\{~} 

where s is any vertex (we could also use a decomposit ion similar to (2)). This 
shows tha t  the nfininmm T-even cut problem can be reduced to o(Ivl) minimmn 

s-t T-even cut problems, and thus can be solved in O(IVI 3) s-t cut mininfizations 
by using Corollary 3. The decomposit ion of N used above can be applied whenever 
we need to exclude 0 and V from the minimizat ion over a par i ty  family. 

4. Proofs 

In this section, we prove Theorem 1. We first establish a key lemma from 
which our main result will follow easily. Tile proof  technique we use was inspired 

by a result of Williamson et al. [13]. In what  follows, we assume tha t  ~g C 2 v is a 
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lattice family, that N C_ ~ is a parity family, that f is a submodular function on 
and that S* minimizes f over N. We further assume that S*~ {0,V}. 

Lemma 11. There exists a E S* such that f ( A ) >_ f ( S* ) for all A C_ S*, A E ~ and 
aEA. 

Proof. The proof is by contradiction. Suppose not. Then, for all a E S*, there 
exists TaKS* such that aETa, TaE~ and f (Ta)<f(S*).  For each dES*, we can 
choose Ta to be a maximal such set. By definition of S*, Ta ~ ~ for all a E S*. 

Claim 11.1. n T a E ~ \ ~  for anyO#ICS* .  
aEI 

Proof. Since n Ta E ~, observe that the claim would follow from the definition 
aEI 

of S* and a proof that f ( n Tal < f(S*) for any I. G i v e n a n o n e m p t y l C S * ,  
\~EI / 

choose a maximal set I '  C_ I such that f(D) < f(S*) where D = n Ta. If I '  r I, 
aEI'  

choose any b E I \ I  I. Notice that D, Tb, DUTb and DNTb all belong to g. By the 
submodularity of f on the lattice family ~, 

(4) 2f(S*) > f(D) + f(Tb) >_ f (D U Tb) + f (D N Tb). 

Since T b was chosen to be maximal, DOTb must satisfy f(DUTb) > f(S*). Inequality 

(4) now implies that f (DnTb) < f(S*). But this contradicts the maxilnality of I '  

implying that  Y =  I, and proving the claim. I 

Claim 11.2. Let I and J be two disjoint subsets of S*. Then 

Proof. We prove the claim by double induction on (i,j) where i =  III and j = IJ], 
according to the following ordering of the pairs: ( i l , j l )  < (i2,J2) if either il + J l  < 
i2+J2, or i l + j l  =i2+J2 and Jl <J2. For notational convenience, we set TI = n Ta, 

aEI 

TO'= U Tb and T / = T I N T j .  
bEJ 

The base case corresponding to pairs (i,j) with j _< 1 was proved in Claim 11.1. 
We consider two cases. 

Case 1. i = 0 , j > l .  
Let cE J. For simplicity, we denote d\{c}  by J - c .  Since ( 0 , j - 1 ) <  (0,j),  by 

induction, we have that T d-c E ~ \ N. From the definition of the parity family 

applied t o  T J - c  and Tc, we derive that 

TJ-C U Tc = T d E ~ \ ~ r T J-c n Tc = TJ -c E ~ \ ~. 
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By induction, since (1, j - 1) < (0, j ) ,  Tc J - c  E V \ N and, therefore, T J E ~ \ ~. 

Case  2. i > 0 , j > l .  

Let cE J. Notice that 

(5) T / = T  I N T  J = T IDI(T J-cUTe)  = ( T I N T  J-c) U(T  INTo)  = T / - c t o T I + c ,  

where I + c = I U { c } .  From Claim 11.1, we have that  TI+ c E t5\~. By induction, 

since ( i , j - 1 ) <  (i,j), we have that T J - c  C g \ N .  From the parity of N and using 

(5), we get that 

:r/ce\a  :r/-c n = :r/-'+7 c e \ a .  

However, the latter set does not belong to N by induction, since ( i + l , j - 1 )  < (i,j). | 

For I = 0  and J = S * ,  Claim 11.2 implies that Ubes.T b =S* C ~\N, contradicting 
the choice of S*. This completes the proof of the lemma. | 

Remark 12. When N is defined to be {SE~g: IS'l~q (modp)},  where q,pEZ +, we 
can give a shorter proof of Ua6S. Ta E ~ \ ~ using the inclusion-exclusion principle: 

Proof. Let I =  IS*I and arbitrarily label the elenmnts in S* from 1 through I. By 
the inclusion-exclusion principle, 

l 

i=1 

l 

i=1 i<j i<j<k 

By Claim 11.1, every term of the form ITiN �9 .•Tkl is congruent to q (modp),  so 
we have 

l 

= ( 1 - ( 1 - 1 ) / ) q  ( m o d p ) - q  (modp) .  

(mod p) 

We can obtain a similar result as in Lemma 11 for V - S * .  Consider the 
submodular function f ' (S )  = f ( V  - S) on the lattice family ~' = {S:  V - S E 15}. 

Notice that  V - S* minimizes f /  over the parity family Nl = {S : V - S E N}. From 
Lemma 11, we then derive: 

Lelnma 13. There exists b C V -  S* such that f (B )  >_ .f(S*) for ali B D_ S*, B C 
and b ~ B. 

We are now ready to prove Theorem 1. 
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Proof  of Theorem 1. Let a be the element of S* referred to in Lemma 11 and b the 
element of V - S *  referred to in Lemma 13. Let W be a set minimizing f over gab. 
Thus f(S*)>_ f (W) since S*E gab" By the submodulari ty of f ,  

(6) 2f(S*)  _> f (S*)  + f ( W )  _> I (S*  N W) + f (S* U W). 

By the choice of a, f ( S * n  W)>_ f(S*) and, by the choice of b, f ( S * U  W)_> f (S*) .  
Therefore, all inequalities of (6) must be equalities, implying that  f ( S * ) =  f ( W ) .  
This implies that  S* also minimizes f o v e r  ~ab" | 

By strengthening Lemma 11, one can also derive Theorem 2. 

Lemma 14. Let S* be a minimal set minimizing f over ~. Then there exists a C S* 
such that f (A)> I(S*) for all A c S * ,  A E g  and aEA. 

Proof. The proof is almost identical to the proof of Lemma 11. Suppose the claim 
is not true. Then, for all a E S*, there exists T~ C S* such that  a E T~, T~ E g and 
f(Ta) <_ I(S*). For each a E S*, we can choose Ta to be a maximal  such set. By 
definition of S*, Ta E ~ \ ~  for all a E S*. Below we present a modification of the 
proof of Claim 11.1. Claim 11.2 and its proof remain unaltered. 

Clalm 14.1. [-1 T a E g \ ~  for any(~7~IC_S *. 
a E I  

Proof. Since ~ Ta E g, observe that  the claim would follow fl'om the definition 
aEI  

/ \  

of S* and a proof that  f ( , g l T a ) < _ f ( S * ) f o r  any I.  Given a nonempty IC_S*, 

choose a mazimal set I' C_ I such that  f(D) < f(S*) where D = ~ Ta. If I ' r  I, 
a E I  ~ 

choose any b E [ \ I  ~. Notice that  D, Tb, DUTb and DNTb all belong to g. By the 
submodulari ty of f on the lattice falnily g, 

(7) 2f(S*) >_ f(D) + f(Tb) >_ f (D U Tb) + f (D n Tb). 

We claim that  f (DUTb) >_ f(S*). Indeed, either D U T  b = S* in which case 
f(DUTb) = f(S*)  or N U T  b C S* in which case the maxiInality of Tb implies that  
f(DUTb) > f(S*). Inequality (7) now implies that  f(DnTb) <_ f(S*), contradicting 

the maximali ty of I/. | 

For I = ~ and J = S*, Claim 11.2 implies that  UbES* Tb = S* E ~\~, contradicting 
the choice of S*. This completes the proof of the lemma. | 

P roof  of Theorem 2. Let S* be a minimal set minimizing f over ~. Let ~ be 
the element of S* referred to in Lemma 14 and b the element of V -  S* referred 
to in Lemma 13. Let W be a set minimizing f o v e r  gab" As in the proof of 
Theorem 1, we derive that  all inequalities in (6) are satisfied at equality, i.e. 
.f(S*) = / ( W )  = f(S* n W) = f(S* u W), implying that  S* mininfizes f over gab. 
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Moreover, S* ~ W = S ~ for otherwise S* ~ W E gab and f (S* ~ W) = .f(S*) will 
contradict the choice of a. Thus, every set. W nfinimizing .f over ~(,b contains S* 
and hence S* is the unique minimal set. minimizing f over ~. | 

5. Algorithmic Implications 

In this section, we deduce the algorithmic consequences of Theorems 1 and 
2. In what follows, we assume that  the lattice family ~ is compactly encoded 
by a digraph as described in [8, Section 10.3], that  the parity family is given by a 
nmmbership oracle and that  the submodular flmction is given by an oracle returning 
f ( S )  for each query S C_ V. Let ,~ be an upper bound on the size of f ( S )  for any 
set S. 

As mentioned previously, t.he minimization of a submodular function f over a 

lattice filmily ~ C_ 2 t/ can be done in oracle-polynomial t ime [6]. We claim further 
that  tile algorithm can be used to find a minimal set minimizing f over t.}te tattice 
family. Indeed, letting 9(S) = f(S)+elSI, we observe that  9 is submodular and tha.t, 
[or e sufficiently small, every set minimizing g will be a minimal set minimizing ./'. 

t ~ 2f3 since the definition of 9 implie, s The scalar e, for example, can be set to be iiT~z 

that  i f ( S t ) -  f(S2)[ _> 2 .29 whenever $1 r $2. Observe that  the size o[ g(S) is 
O( '2+logIVj)  , implying that  the algorithm of OrStschel et al. [6] as applied to 9 
will find a minimal set minimizing f in oracle-polynomial time. 

Corollary 3 follows easily from Theorem 2. The algorithm proceeds as l'ollows. 
We first find a minimal set Sab minimizing f over the lattice family gab for every 
a and b in I/'. The compact representation for g~b can easily be obtained in linear 
time from the compact representation for g. We then select in the collection 
{~),V}U{S~b : a,b E V} "a set S C N having the smallest value f (S) .  Theorem 2 
guarantees thai; this set S is a minimal set minimizing f over the family N. This 

algorithm requires the computation of O(IVl 2) submodulm' [unction minimizations 
over lattice families. 

We would like to make a few remarks. First, the algorithm can also be used 
to output  all minimal sets minimizing f over N in tile same amount of time. Iu 
particular, observe that  Theorem 2 implies l;ha.t there are at most I V l ( [ v I -  1) 
minimal sets minimizing f over a parity family. Also, we would like to emphasize 
that  the collection {f), V} U {Sab : a, b E V} is independent of which parity subfamily 
of f is being considered. This implies that  we can find a nfinimal set minimizing f 
over any parity subfamily of f easily, once this collection is constructed. 

6. Approximately Minimum Cuts 

Tile techniques developed in this paper  can also be used in other settings. 
r Consider the recent, result of Nagamochi, Nishimura and Ibaraki [11] which says that  
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there are at most (~) cuts in an undirected graph whose value is less than 4/3 times 
the minimum cut value. This result follows from the following characterization of 
such cuts. 

Theorem 15. Let f be the cut function of a weighted undirected graph G(V,E) 

and let 2( = { S C_ V \  {1}: f ( S) < 4 r  (T) }. Then for any S E oqC, there exist 

a, b E V \  { 1 } (a and b are not necessarily distinct) such that S is the unique minimal 
set in ~ containing both a and b. 

There are at most (n21) + n -  1 =  (~) different choices for a,b, implying the 

result of Nagamochi et al. that  [NI < (~). The proof of Theorem 15 is much in the 
spirit of the proof of Theorem 1. The non-existence of the vertices a, b for a given 
set S can be seen to imply the existence of vertices x ,y , z  E S and sets X,Y,Z C~ 
such that  z C (Y ~ Z \ X) ,  y C (Z N X \ Y) and z C (X ~ Y \ Z). However, the triple 
submodular inequality [10, Ex. 6.48] then implies that  

4 min f ( T ) < I ( Y ~ Z \ X ) + f ( Z n X \ Y ) + I ( X n Y k Z ) + I ( V \ ( X u Y U Z ) )  
OCTCV - 

<_f(X) + f ( Y )  + f ( Z )  < 4 rain f (T ) ,  
O#TCV 

which is a contradiction. 
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