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Abstract. We introduce a class of “stochastic covering” problems where
the target set X to be covered is fixed, while the “items” used in the cov-
ering are characterized by probability distributions over subsets of X.
This is a natural counterpart to the stochastic packing problems intro-
duced in [5]. In analogy to [5], we study both adaptive and non-adaptive
strategies to find a feasible solution, and in particular the adaptivity gap,
introduced in [4].
It turns out that in contrast to deterministic covering problems, it makes
a substantial difference whether items can be used repeatedly or not. In
the model of Stochastic Covering with item multiplicity, we show that
the worst case adaptivity gap is Θ(log d), where d is the size of the target
set to be covered, and this is also the best approximation factor we can
achieve algorithmically. In the model without item multiplicity, we show
that the adaptivity gap for Stochastic Set Cover can be Ω(d). On the
other hand, we show that the adaptivity gap is bounded by O(d2), by
exhibiting an O(d2)-approximation non-adaptive algorithm.

1 Introduction

Stochastic optimization deals with problems involving uncertainty on the input.
We consider a setting with multiple stages of building a feasible solution. Initially,
only some information about the probability distribution of the input is avail-
able. At each stage, an “item” is chosen to be included in the solution and the
precise properties of the item are revealed (or “instantiated”) after we commit to
selecting the item irrevocably. The goal is to optimize the expected value/cost
of the solution. This model follows the framework of Stochastic Packing [4, 5]
where the problem is to select a set of items with random sizes, satisfying given
capacity contraints. We obtain profit only for those items that fit within the ca-
pacity; as soon as a capacity constraint is violated, the procedure terminates and
we do not receive any further profit. It is an essential property of this model that
once an item is selected, it cannot be removed from the solution. The objective
is to maximize the expected profit obtained.

In this paper, we study a class of problems in a sense dual to Stochastic
Packing: Stochastic Covering. Here, items come with random sizes again but the
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goal is to select sufficiently many items so that given covering constraints are
satisfied. An example is the Stochastic Set Cover problem where the ground set
X is fixed, while the items are characterized by probability distributions over
subsets of X . We select items knowing only these distributions. Each item turns
out to be a certain subset of X and we repeat this process until the entire set
X is covered. For each item used in the solution, we have to pay a certain cost.
The objective is then to minimize the expected cost of our solution.

A central paradigm in this setting is the notion of adaptivity. Knowing the
instantiated properties of items selected so far, we can make further decisions
based on this information. We call such an approach an adaptive policy. Alter-
natively, we can consider a model where this information is not available and we
must make all decisions beforehand. This means, we choose an ordering of items
to be selected, until a feasible solution is obtained, only based on the known
probability distributions. Such an approach is called a non-adaptive policy. A
fundamental question is, what is the benefit of being adaptive? We measure this
benefit quantitatively as the ratio of expected costs incurred by optimal adaptive
vs. non-adaptive policies (the adaptivity gap). A further question is whether a
good adaptive or non-adaptive policy can be found efficiently.

1.1 Definitions

Now we define the class of problems we are interested in. The input comes in
the form of a collection of items. Item i has a scalar value vi and a vector size
S(i). Unless otherwise noted, we assume that S(i) is a random vector with
nonnegative components, while vi is a deterministic nonnegative number. The
random size vectors of different items are assumed independent.

We start with the deterministic form of a general covering problem, which is
known under the name of a Covering Integer Program (see [17]). The forefather
of these problems is the well-known Set Cover.

Definition 1 (CIP). Given a collection of sets F = {S(1), S(2), . . . , S(n)},
⋃n

i=1 S(i) = X, Set Cover is the problem of selecting as few sets as possible so
that their union is equal to X.

More generally, given a nonnegative matrix A ∈ R
n×d
+ and vectors b ∈

R
d
+, v ∈ R

n
+, a Covering Integer Program (CIP) is the problem of minimizing

v ·x subject to Ax ≥ b and x ∈ {0, 1}d. Set Cover corresponds to the case where
A is a 0/1 matrix, with columns representing the sets S(1), . . . , S(n).

We define a Stochastic Covering problem as a stochastic variant of CIP
where the columns of A, representing items sizes S(i), are random. The “de-
mand vector” b is considered deterministic. By scaling, we can assume that
b = 1 = (1, 1, . . . , 1).

Definition 2 (Stochastic Covering). Stochastic Covering (SP) is a stochas-
tic variant of a CIP where A is a random matrix whose columns are independent
random nonnegative vectors, denoted S(1), . . .S(n). Stochastic Set Cover is a



special case where the S(i) are random 0/1 vectors. A given instantiation of a
set of items F is feasible if

∑

i∈F S(i) ≥ 1. The value of S(i) is instantiated
and fixed once we include the item i in F . Once this decision is made, the item
cannot be removed.

When we refer to a stochastic optimization problem “with multiplicity”, it
means that each item on the input comes with an unlimited number of identical
copies. This makes sense for deterministic CIP as well, where we could allow
arbitrary integer vectors x ∈ Z

n
+. In the stochastic case, this means that the

probability distributions for the copies of each item are identical; their instanti-
ated sizes are still independent random variables.

We require a technical condition that the set of all items is feasible with
probability 1. For Stochastic Covering with multiplicity, it is sufficient to require
that the set of all items is feasible with positive probability.

For all variants of Stochastic Covering problems, we consider adaptive and
non-adaptive policies.

Definition 3 (Adaptive and non-adaptive policies.). A non-adaptive pol-
icy is a fixed ordering of items to be inserted.

An adaptive policy is a function P : 2[n] × R
d
+ → [n]. The interpretation of

P is that given a configuration (I, b) where I represents the items still available
and b the remaining demand, P(I, b) determines which item should be chosen
next among the items in I.

The cost incurred by a policy is the total value of the items used until a
feasible covering is found. For an instance of a Stochastic Covering problem, we
define

– ADAPT = minimum expected cost incurred by an adaptive policy.
– NONADAPT = minimum expected cost incurred by a non-adaptive policy.
– α = NONADAPT/ADAPT is the adaptivity gap.

For a class of Stochastic Covering problems, we define α∗ as the maximum pos-
sible adaptivity gap.

1.2 Our results

We present several results on Stochastic Covering problems. We develop an LP
bound on the adaptive optimum, based on the notion of “mean truncated size”.
For Stochastic Covering with multiplicity, we show that the worst case adap-
tivity gap is Θ(log d). We prove the upper bound by presenting an efficient
non-adaptive O(log d)-approximation algorithm, based on the LP bound.

For Stochastic Covering without multiplicity, we have results in the special
case of Stochastic Set Cover. We show that the adaptivity gap in this case can
be Ω(d) and it is bounded by O(d2). Again, the upper bound is constructive, by
an efficient non-adaptive approximation algorithm. Also, we show an adaptive
O(d)-approximation algorithm for Stochastic Set Cover. This, however, does not
bound the worst-case adaptivity gap which could be anywhere between Ω(d)
and O(d2). We leave this as an open question.



1.3 Previous work

Stochastic optimization with recourse. Recently, stochastic optimization
has come to the attention of the computer science community. An optimization
model which has been mainly under scrutiny is the two-stage stochastic opti-
mization with recourse [10, 8, 15]. In the first stage, only some information about
the probability distribution of possible inputs is available. In the second stage,
the precise input is known and the solution must be completed at any cost.
The goal is to minimize the expected cost of the final solution. This model has
been also extended to multiple stages [9, 16]. However, an essential difference
between this model and ours is whether the randomness is in the properties of
items forming a solution or in the demands to be satisfied. Let’s illustrate this
on the example of Set Cover: Shmoys and Swamy consider in [15] a Stochastic
Set Cover problem where the sets to be chosen are deterministic and there is
a random target set A to be covered. In contrast, we consider a Stochastic Set
Cover problem where the target set is fixed but the covering sets are random.
This yields a setting of a very different flavor.
Stochastic Knapsack. The first problem analyzed in our model of multi-stage
optimization with adaptivity was the Stochastic Knapsack [4]. The motivation
for this problem is in the area of stochastic scheduling where a sequence of jobs
should be scheduled on a machine within a limited amount of time. The goal
is to maximize the expected profit received for jobs completed before a given
deadline. The jobs are processed one by one; after a job has been completed, its
precise running time is revealed - but then it is too late to remove the job from
the schedule. Hence the property of irrevocable decisions, which is essential in
the definition of our stochastic model.

In [4, 6], we showed that adaptivity can provide a certain benefit which is,
however, bounded by a constant factor. A non-adaptive solution which achieves
expected value at least 1/4 of the adaptive optimum is achieved by a greedy
algorithm which runs in polynomial time. Thus the adaptivity gap is upper-
bounded by 4. Concerning adaptive approximation, we showed that for any
ε > 0, there is a polynomial-time adaptive policy achieving at least 1/3 − ε
of the adaptive optimum.
Stochastic Packing. Stochastic Packing problems generalize the Stochastic
Knapsack in the sense that we allow multidimensional packing contraints. This
class contains many combinatorial problems: set packing, maximum matching,
b-matching and general Packing Integer Programs (PIP, see e.g. [14]). In the
stochastic variants of these problems we consider items with random vector sizes
which are instantiated upon inclusion in the solution. Our motivation for this
generalization is scheduling with multiple resources.

The analysis of Stochastic Packing in [5] reveals a curious pattern of re-
sults. Let us present it on the example of Stochastic Set Packing. Here, each
item is defined by a value and a probability distribution over subsets A ⊆ X
where X is a ground set of cardinality |X | = d. A feasible solution is a collec-
tion of disjoint sets. It is known that for deterministic Set Packing, the greedy
algorithm provides an O(

√
d)-approximation, and there is a closely matching in-



approximability result which states that for any fixed ε > 0, a polynomial-time
d1/2−ε-approximation algorithm would imply NP = ZPP [2].

For Stochastic Set Packing, it turns out that the adaptivity gap can be as
large as Θ(

√
d). On the other hand, this is the worst case, since there is a

polynomial-time non-adaptive policy which gives an O(
√

d)-approximation of
the adaptive optimum. Note that even with an adaptive policy, we cannot hope
for a better approximation factor, due to the hardness result for deterministic
Set Packing.

These results hint at a possible underlying connection between the quantities
we are investigating: deterministic approximability, adaptivity gap and stochas-
tic approximability. Note that there is no reference to computational efficiency
in the notion of adaptivity gap, so a direct connection with the approximability
factor would be quite surprising.

In this paper, we are investigating the question whether such phenomena
appear in the case of covering problems as well.
Covering Integer Programs. Stochastic Covering problems can be seen as
generalizations of Covering Integer Programs (CIP, see [17]). The forefather of
Covering Integer Programs is the well-known Set Cover problem. For Set Cover,
it was proved by Johnson [11] that the greedy algorithm gives an approximation
factor of ln d. This result was extended by Chvátal to the weighted case [3].
The same approximation guarantee can be obtained by a linear programming
approach, as shown by Lovász [13]. Finally, it was proved by Uriel Feige [7]
that these results are optimal, in the sense that a polynomial-time (1 − ε) ln d
approximation algorithm for Set Cover would imply NP ⊂ TIME(nO(log log n)).

Note. Usually the cardinality of the ground set is denoted by n, but to be
consistent with Stochastic Packing problems, we view this parameter as “dimen-
sion” and denote it by d.

For general Covering Integer Problems, the optimal approximation has been
found only recently [1, 12]. The approximation factor turns out to be again
O(log d) but the approximation algorithm is more sophisticated. Also, the nat-
ural LP can have an arbitrarily large integrality gap.

2 Stochastic Covering with multiplicity

Let’s start with the class of Stochastic Covering problems where each item can
be used arbitrarily many times.

Lemma 1. There are instances of Stochastic Set Cover with multiplicity where
the adaptivity gap is at least 0.45 ln d.

Proof. Consider item types for i = 1, 2, . . . , d where S(i) = 0 or ei with prob-
ability 1/2. All items have unit values. An adaptive policy inserts an expected
number of 2 items of each type until the respective component is covered;
ADAPT ≤ 2d.

Assume that a nonadaptive policy at some point has inserted ki items of
type i, for each i. Denote the total size at that point by S. We estimate the



probability that this is a feasible solution:

Pr[S ≥ 1] =
d
∏

i=1

Pr[Si ≥ 1] =
d
∏

i=1

(1 − 2−ki) ≤ exp

(

−
d
∑

i=1

2−ki

)

.

Assume that k =
∑d

i=1 ki = d log2 d. By convexity, the probability of covering is
maximized for a given d when ki = k/d = log2 d, and then still Pr[S ≥ 1] ≤ 1/e.
Thus whatever the non-adaptive policy does, there is probability 1− 1/e that it
needs more than d log2 d items, which means NONADAPT ≥ (1−1/e)d log2 d >
0.9d ln d.

Now we would like to prove that O(log d) is indeed the worst possible adaptiv-
ity gap, not only for Stochastic Set Cover with multiplicity but for all Stochastic
Covering problems with multiplicity. First, we need a bound on the adaptive
optimum. For this purpose, we define the mean truncated size of an item, in
analogy to [4].

Definition 4. We define the mean truncated size of an item with random size
S by components as

µj = E[min{Sj , 1}].
For a set of items A, we let µj(A) =

∑

i∈A µj(i).

We prove that in expectation, the mean truncated size of the items inserted
by any policy must be at least the demand required for each coordinate.

Lemma 2. For a Stochastic Covering problem and any adaptive policy, let A
denote the (random) set of items which the policy uses to achieve a feasible
covering. Then for each component j,

E[µj(A)] ≥ 1.

Proof. Consider component j. Denote by Mj(c) the minimum expected µj(A)
for a set A that an adaptive policy needs to insert in order to satisfy remaining
demand c in the j-th component. We prove, by induction on the number of
available items, that Mj(c) ≥ c. Suppose that an optimal adaptive policy, given
remaining demand c, inserts item i. Denote by cover(i, c) the indicator variable
of the event that item i covers the remaining demand (i.e., Sj(i) ≥ c, and in
that case the policy terminates). We denote by s̃j(i) the truncated size s̃j(i) =
min{Sj(i), 1}:

Mj(c) = µj(i)+E[(1−cover(i, c))Mj(c−s̃j(i))] = E[s̃j(i)+(1−cover(i, c))Mj(c−s̃j(i))]

and using the induction hypothesis,

Mj(c) ≥ E[s̃j(i) + (1 − cover(i, c))(c − s̃j(i))] = c −E[cover(i, c)(c − s̃j(i))] ≥ c

since cover(i, c) = 1 only if s̃j(i) ≥ c.



Note that this lemma does not depend on whether multiplicity of items is
allowed or not. In any case, having this bound, we can write an LP bounding the
expected cost of the optimal adaptive policy. We introduce a variable xi for every
item i which can be interpreted as the probability that a policy ever inserts item
i. For problems with item multiplicities, xi represents the expected number of
copies of item i inserted by a policy. Then the expected cost of the policy can be
written as

∑

i vixi. Due to Lemma 2, we know that E[µj(A)] =
∑

i xiµj(i) ≥ 1
for any policy. So we get the following lower bound on the expected cost of any
adaptive policy.

Theorem 1. For an instance of Stochastic Covering with multiplicity, ADAPT ≥
LP where

LP = min

{

∑

i

xivi :

∑

i xiµ(i) ≥ 1
xi ≥ 0

}

.

For a problem without multiplicity, xi ≥ 0 would be replaced by xi ∈ [0, 1].

Now we are ready to prove an upper bound on the adaptivity gap, for d ≥ 2.
(The case d = 1 can be viewed as a special case of d = 2.)

Theorem 2. For Stochastic Covering with multiplicity in dimension d ≥ 2,

NONADAPT ≤ 12 lnd ADAPT

and the corresponding non-adaptive policy can be found in polynomial time.

Proof. Consider the LP formulation of Stochastic Covering with multiplicity:

LP = min

{

∑

i

xivi :
∑

i

xiµ(i) ≥ 1, xi ≥ 0

}

.

We know from Theorem 1 that ADAPT ≥ LP . Let xi be an optimal solution.
We inflate the solution by a factor of c ln d (hence the need to be able to repeat
items) and we build a random multiset F where item i has an expected number
of copies yi = xi c ln d. This can be done for example by including byic copies of
item i deterministically and another copy with probability yi − byic. Then the
total size of set F in component j can be seen as a sum of independent random
[0, 1] variables and the expected total size is

E[Sj(F)] =
∑

i

yiE[Sj(i)] ≥
∑

i

yiµj(i) ≥ c ln d.

By Chernoff bound, with µ = E[Sj(F)] ≥ c ln d and δ = 1 − 1/µ:

Pr[Sj(F) < 1] = Pr[Sj(F) < (1 − δ)µ] < e−µδ2/2 ≤ e−µ/2+1 ≤ e

dc/2
.

We choose c = 9 and then by the union bound

Pr[∃j; Sj(F) < 1] <
e

d3.5
.



For d ≥ 2, F is a feasible solution with a constant nonzero probability at least
1 − e/23.5. Its expected cost is

E[v(F)] =
∑

i

yivi = 9 ln d LP ≤ 9 ln d ADAPT.

If F is not a feasible solution, we repeat; the expected number of iterations is
1/(1− e/23.5) < 4/3. Therefore

NONADAPT ≤ 12 ln d ADAPT.

This randomized rounding algorithm can be derandomized using pessimistic es-
timators in the usual way.

3 General Stochastic Covering

Now we turn to the most general class of Stochastic Covering problems, where
each item can be used only once (unless the input itself contains multiple copies
of it) and the random item sizes are without any restrictions. Unfortunately, in
this setting there is little that we are able to do. We can write a linear program
bounding the adaptive optimum, analogous to Theorem 1:

LP = min

{

∑

i

xivi :

∑

i xiµ(i) ≥ 1
xi ∈ [0, 1]

}

.

However, this LP can be far away from the actual adaptive optimum, even
for d = 1. Consider one item of size S(1) = 1 − ε and an unlimited supply of
items of size S(2) = 1 with probability ε and S(2) = 0 with probability 1 − ε.
I.e., µ(1) = 1 − ε, µ(2) = ε. All items have unit values. We can set x1 = x2 = 1
and this gives a feasible solution with LP = 2. However, in the actual solution
the item of size 1 − ε does not help; we need to wait for an item of the second
type to achieve size 1. This will take an expected number of 1/ε items, therefore
ADAPT = 1/ε.

This example illustrates a more general issue with any approach using mean
truncated sizes. As long as we do not use other information about the probability
distribution, we would not distinguish between the above instance and one where
the actual sizes of items are µ(1) = 1 − ε and µ(2) = ε. Such an instance would
indeed have a solution of cost 2. Thus using only mean truncated sizes, we
cannot prove any approximation result in this case. It would be necessary to
use a more complete description of the distributions of S(i), but we leave this
question outside the scope of this paper.

4 Stochastic Set Cover

Perhaps the circumstances are more benign in the case of Set Cover, i.e. 0/1 size
vectors. However, the adaptivity gap is certainly not bounded by O(log d), when
items cannot be used repeatedly.



Lemma 3. For Stochastic Set Cover without multiplicity, the adaptivity gap can
be d/2.

Proof. Consider S(0) = 1 − ek, where k ∈ {1, 2, . . . , d} is uniformly random,
v0 = 0, and S(i) = ei deterministic, vi = 1, for i = 1, 2, . . . , d. An adaptive
policy inserts item 0 first; assume its size is S(0) = 1− ek. Then we insert item
k which completes the covering for a cost equal to 1. An optimal non-adaptive
policy still inserts item 0 first, but then, for any ordering of the remaining items
that it chooses, the expected cost incurred before it hits the one which is needed
to complete the covering is d/2.

The question is whether this is the worst possible example. First, let’s con-
sider the problem in dimension 1, where the size of each item is just a Bernoulli
random variable. Thus the instance is completely characterized by the mean size
values. In this case, a greedy algorithm yields the optimal solution.

Lemma 4. For Stochastic Set Cover of one element (d = 1), assume the items
are ordered, so that

v1

µ(1)
≤ v2

µ(2)
≤ v3

µ(3)
≤ . . .

vn

µ(n)

(call such an ordering “greedy”). Then inserting items in a greedy ordering yields
a covering of minimum expected cost. The adaptivity gap in this case is equal to
1.

Proof. First, note that in this setting, adaptivity cannot bring any advantage.
Until a feasible solution is obtained, we know that all items must have had size 0.
An adaptive policy has no additional information and there is only one possible
configuration for every subset of available items. Thus there is an optimal item
to choose for each subset of available items and an optimal adaptive policy is in
fact a fixed ordering of items.

For now, we assume that the items are not ordered and we consider any
ordering (not necessarily the greedy ordering), say (1, 2, 3, . . .). The expected
cost of a feasible solution found by inserting in this order is

C =

n
∑

k=1

vk

k−1
∏

j=1

(1 − µ(j)).

Let’s analyze how switching two adjacent items affects C. Note that switching
i and i + 1 affects only the contributions of these two items - the terms corre-
sponding to k < i and k > i + 1 remain unchanged. The difference in expected
cost will be

∆C = vi





i−1
∏

j=1

(1 − µ(j))



 (1 − µ(i + 1)) + vi+1





i−1
∏

j=1

(1 − µ(j))







− vi





i−1
∏

j=1

(1 − µ(j))



 − vi+1





i
∏

j=1

(1 − µ(j))





=



µ(i)µ(i + 1)

i−1
∏

j=1

(1 − µ(j))





(

vi+1

µ(i + 1)
− vi

µ(i)

)

.

Therefore, we can switch any pair of elements such that vi

µ(i) ≥ vi+1

µ(i+1) and obtain

an ordering whose expected cost has not increased.
Assume that O is an arbitrary greedy ordering and O∗ is a (possibly different)

optimal ordering. If O 6= O∗, there must be a pair of adjacent items in O∗ which
are swapped in O. By switching these two items, we obtain another optimal
ordering O′. We repeat this procedure, until we obtain O which must be also
optimal.

The adaptive greedy algorithm. For Stochastic Set Cover in dimension d, we
generalize the greedy algorithm in the following way: For each component i ∈ [d],
we find an optimal ordering restricted only to component i; we denote this by Oi.
Then our greedy adaptive algorithm chooses at any point a component j which
has not been covered yet, and inserts the next available item from Oj . Observe
that this algorithm is adaptive as the decision is based on which components
have not been covered yet.

Corollary 1. For Stochastic Set Cover in dimension d, the greedy adaptive pol-
icy achieves expected cost

GREEDY ≤ d · ADAPT.

Proof. When the policy chooses an item from Oj , we charge its cost to a random
variable Xj . Note that items from Oj can be also charged to other variables but
an item which is charged to Xj can be inserted only after all items preceding it in
Oj have been inserted already. Thus the value of Xj is at most the cost of covering
component j, using the corresponding greedy ordering, and E[Xj ] ≤ ADAPT .

Consequently, GREEDY =
∑d

i=1 E[Xi] ≤ d · ADAPT .

Thus we have a d-approximation, but this approximation algorithm is adap-
tive so it doesn’t settle the adaptivity gap for Stochastic Set Packing. The final
answer is unknown. The best upper bound we can prove is the following.

Theorem 3. For Stochastic Set Cover,

NONADAPT ≤ d2 · ADAPT

and the corresponding non-adaptive policy can be found in polynomial time.

Proof. Consider the greedy ordering Oj for each component j. We interleave
O1,O2, . . . ,Od in the following way: We construct a single sequence O∗ =



(i(1), i(2), i(3), . . .) where i(t) is chosen as the next available item from Oj(t); j(t)
to be defined. We set Xi(0) = 0 for each 1 ≤ i ≤ d, Xj(t)(t) = Xj(t)(t− 1)+ vi(t)

and Xk(t) = Xk(t − 1) for k 6= j(t). In other words, we charge the cost of i(t)
to Xj(t) which denotes the “cumulative cost” of component j(t). At each time t,
we choose the index j(t) in order to minimize Xj(t)(t) among all possible choices
of j(t).

Consider a fixed component k and the time τ when component k is covered.
This is not necessarily by an item chosen from Ok, i.e. j(τ) doesn’t have to be
k. If j(τ) = k, denote by q the item from Ok covering component k: q = i(τ).
If j(τ) 6= k, denote by q the next item to be chosen from Ok if component k
had not been covered yet. We denote by Qk the prefix of sequence Ok up to
(and including) item q. We claim that for any j, Xj(τ) is at most the cost of
Qk: If there is some Xj(τ) > v(Qk), the last item that we charged to Xj should
not have been chosen; we should have chosen an item from Ok which would
have kept Xk still bounded by v(Qk) and thus smaller than Xj(τ). Therefore
Xj(τ) ≤ v(Qk). For the total cost Zk spent up to time τ when component k is
covered, we get

Zk =

d
∑

j=1

Xj(τ) ≤ d v(Qk).

Now consider the set of items Qk which is a prefix of Ok. The probability
that Qk has length at least l is at most the probability that an (optimal) policy
covering component k using the ordering Ok needs to insert at least l items
from Ok; this is the probability that the first l − 1 items in Ok attain size 0 in
component k. If ADAPTk denotes the minimum expected cost of an adaptive
policy covering component k, we get E[v(Qk)] ≤ ADAPTk ≤ ADAPT and
E[Zk] ≤ d · ADAPT .

Finally, the total cost spent by our policy is Z = maxk Zk, since we have to
wait for the last component to be covered. Therefore,

E[Z] = E[ max
1≤k≤d

Zk] ≤
d
∑

k=1

E[Zk] ≤ d2 ADAPT.

5 Concluding remarks

We have seen that allowing or not allowing items to be used repeatedly makes a
significant difference in Stochastic Covering. The case where items can be used re-
peatedly is basically solved, with the worst-case adaptivity gap and polynomial-
time approximation factor being both on the order of Θ(log d). This would sup-
port the conjecture that there is some connection between the adaptivity gap
and the optimal approximation factor for the deterministic problem. However,
the general class of Stochastic Covering problems without item multiplicity does
not follow this pattern. The adaptivity gap for Set Cover can be Ω(d), while the
optimal approximation in the deterministic case, as well as the integrality gap
of the associated LP, is O(log d).



Our main open question is what is the worst possible adaptivity gap for Set
Cover. We conjecture that it is Θ(d) but we are unable to prove this. Also, it
remains to be seen what can be done for general Stochastic Covering when the
complete probability distributions of item sizes are taken into account.
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