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We discuss the use of semide�nite programming for combinato�
rial optimization problems� The main topics covered include �i�
the Lov�asz theta function and its applications to stable sets� per�
fect graphs� and coding theory� �ii� the automatic generation of
strong valid inequalities� �iii� the maximum cut problem and re�
lated problems� and �iv� the embedding of �nite metric spaces and
its relationship to the sparsest cut problem�

� Introduction

Recently� there has been increasing interest in the use of convex optimization
techniques and more speci�cally semide�nite programming in solving combina�
torial optimization problems� This started with the seminal work of Lov�asz ���	
on the so�called theta function� and this led Gr
otschel� Lov�asz and Schrijver
������	 to develop the only known �and non�combinatorial polynomial�time
algorithm to solve the maximum stable set problem for perfect graphs� More
recently� the development of e�cient interior�point algorithms for semide�nite
programming� the results of Lov�asz and Schrijver ������	 on stronger formu�
lations using semide�nite programming� improved approximation algorithms
for the maximum cut and related problems� and striking hardness of approx�
imation results have spawned much focus on the power �and limitation of
semide�nite programming for combinatorial optimization problems�

In this paper� we give a brief tour d�horizon of semide�nite programming in
combinatorial optimization� In addition to some of the classical results� we also
present a few either very recent or less well known results and observations� In
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particular� we describe the relationship between the Lov�asz theta function and
the Delsarte linear programming approach in Section �� discuss the use of the
dual for solving maximum cut instances in practice in Section �� and elaborate
on the connection between a classical eigenvalue bound and a semide�nite
programming approach for the sparsest cut problem in Section �� Because
of space limitations� we can barely scratch the surface� and there are many
aspects �e�g� computational of the area that we will not cover� We refer the
reader to Alizadeh ��	� Lov�asz ���	 and Rendl ���	 for additional coverage of
the topic�

� Preliminaries

In this section� we collect several basic results about �positive semide�nite
matrices and semide�nite programming� Further results will be mentioned as
needed� Most of the results on matrices quoted in this paper can be found in
standard matrix theory books� such as ���	 or ���	�

Let Mn denote the cone of n� n matrices �over the reals� and let Sn denote
the subcone of symmetric n � n matrices� A matrix A � Sn is said to be
positive semide�nite if its associated quadratic form xTAx is nonnegative for
all x � Rn� The positive semide�niteness of a matrixA will be denoted by A �
�� similarly� we write A � B for A�B � �� The cone of positive semide�nite
matrices will be denoted by PSDn� The following statements are equivalent
for a symmetric matrix A �see e�g� ���	� �i A is positive semide�nite� �ii all
eigenvalues of A are nonnegative� and �iii there exists a matrix B such that
A � BTB �Cholesky decomposition� �iii gives a representation of A � �aij	
as a Gram matrix� there exist vectors vi such that aij � vTi vj for all i� j� A
symmetric positive semide�nite matrix A can be expressed as LDLT in O�n�
elementary operations �where L is lower triangular andD is diagonal� and this
leads to a Cholesky decomposition �provided square roots can be computed�

Given A�B �Mn� we consider the �Frobenius inner product A�B de�ned by
A�B � Tr�ATB �

P
i

P
j AijBij� The quadratic form xTAx can thus also be

written as A� �xxT � Since the extreme rays of PSDn are of the form xxT � we
derive that A �B � � whenever A�B � �� We can also similarly derive Fejer�s
theorem which says that PSDn is self�polar� i�e� PSD�

n �� fA � Sn � A�B � �
for all B � �g � PSDn�

Semide�nite programs are linear programs over the cone of positive semide��
nite matrices� They can be expressed in many equivalent forms� e�g�

SDP � inf C � Y ��

subject to�
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Ai � Y � bi i � �� � � � �m
Y � ��

In general a linear program over a pointed closed convex cone K is formulated
as z � inffcTx � Ax � b� x � Kg� and its dual �see ���	 is w � supfbTy � ATy�
s � c� s � K�g where K� �� fa � aTb � � for all b � Kg� Weak duality always
holds� cTx� yT b � �ATy� sTx� yTAx � sTx � � �since x � K and s � K�
for any primal feasible x and dual feasible y� If we assume that A has full row
rank� fx � intK � Ax � bg �� 	� and f�y� s � ATy � s � c� s � int K�g �� 	�
then z � w �strong duality and both the primal and dual problems attain
their optimum value� In the case of semide�nite programs� the dual to �� is
supfPn

i�� biyi �
P

i yiAi 
 Cg�

Semide�nite programs can be solved �more precisely� approximated in poly�
nomial time within any speci�ed accuracy either by the ellipsoid algorithm
������	 or more e�ciently through interior�point algorithms� For the latter� we
refer the reader to ��������	 and to the recent article by Kojima ���	 for the
latest developments� To be precise� these algorithms are polynomial only for
�well�behaved� instances �e�g�� if we can give a priori estimates on the sizes of
primal and dual solutions that are polynomial in the size of the input� see ��	�
The above algorithms produce a strictly feasible solution �or slightly infeasible
for some versions of the ellipsoid algorithm and� in fact� the problem of decid�
ing whether a semide�nite program is feasible �exactly is still open� However�

we should point out that since

�
B� � x

x a

�
CA � � is equivalent to jxj � p

a� a special

case of semide�nite programming feasibility is the square�root sum problem�
given positive integers a�� � � � � an and k� decide whether

Pn
i��

p
ai � k� The

complexity of this problem in the Turing machine model is still open �but the
problem is easy in the �unit�cost algebraic RAM�� see Malajovich ���	 and
Tiwari ���	�

Many of the semide�nite programs that arise in combinatorial optimization
can also be viewed as eigenvalue bounds ��	� The literature on such bounds is
vast� and we refer the reader to a comprehensive survey by Mohar and Poljak
���	� In certain cases� the semide�nite programs can be strengthened by adding
valid inequalities� We will see several examples in the forthcoming sections�
We would also like to refer the reader to ���	 for a discussion on eigenvalue
optimization in general�
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� Lov�asz�s Theta Function

Given a graph G � �V�E� a stable �or independent set is a subset S of
vertices such that no two vertices of S are adjacent� The maximum cardinality
of a stable set is the stability number �or independence number of G and is
denoted by ��G� In a seminal paper ���	� Lov�asz proposed an upper bound on
��G known as the theta function ��G� The theta function can be expressed
in many equivalent ways� as an eigenvalue bound� as a semide�nite program�
or in terms of orthogonal representations� In this section� we describe some of
these formulations� the quality of the resulting approximation� and connections
to perfect graphs and coding theory� For simplicity� we restrict our attention
to the unweighted case �as de�ned above� although most results generalize to
the weighted case� We refer the reader to the original paper ���	� to Chapter �
in Gr
otschel et al� ���	� or to the survey by Knuth ���	 for additional details�

As an eigenvalue bound� ��G can be derived as follows� Consider P � fA �
Sn � aij � � if �i� j �� E �or i � jg� If there exists a stable set of size k� the
corresponding principal submatrix of any A � P will be Jk� the all ones matrix
of size k� By a classical result on interlacing of eigenvalues for symmetric
matrices �see ���	� we derive that �max�A � �max�Jk � k for any A � P �
where �max�� denotes the largest eigenvalue� As a result� minA�P �max�A is
an upper bound on ��G� and this is one of the equivalent formulations of
Lov�asz�s theta function�

This naturally leads to a semide�nite program� Indeed� the largest eigenvalue
of a matrix can easily be formulated as a semide�nite program� �max�A �
minft � tI �A � �g� This follows from the fact that the eigenvalues of tI �A
are precisely t��i where f�ig denote the eigenvalues of A� In order to express
��G as a semide�nite program� we observe that A � P is equivalent to A�J
being generated by Eij for �i� j � E� where all entries of Eij are zero except
for �i� j and �j� i� Thus� we can write

��G � min t

subject to�

tI �
X

�i�j��E

xijEij � J�

By strong duality� we can also write�

��G � max J � Y ��

subject to�

yij � � �i� j � E ��

I � Y � � �i�e� T r�Y  � � ��

Y � �� ��
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Lov�asz�s �rst de�nition of ��G was in terms of orthonormal representa�
tions� An orthonormal representation of G is a system v�� � � � � vn of unit vec�
tors in Rn such that vi and vj are orthogonal �i�e� vTi vj � � whenever
i and j are not adjacent� The value of the orthonormal representation is
z � minc�jjcjj��maxi�V

�
�cTui��

� This is easily seen to be an upper bound on

��G �since jjcjj� � P
i�S�c

Tui� � jSj�z for any stable set S� Taking the
minimum value over all orthonormal representations of G� one derives an�
other expression for ��G as was shown by Lov�asz ���	� This result can be
restated in a slightly di�erent form� If x denotes the incidence vector of a
stable set then we have that

X
i

�cTvi
�xi � �� ��

In other words� the orthonormal representation constraints �� are valid in�
equalities for STAB�G� the convex hull of incidence vectors of stable sets ofG�
Gr
otschel et al� ���	 show that if we let TH�G � fx � x satis�es �� and x �
�g� then ��G � maxfPi xi � x � TH�Gg� Yet more formulations of � are
known �it seems all paths lead to ��� we strongly urge the reader to read
Lov�asz�s original article or ������	 for additional results�

Schrijver ���	 proposed a strengthening of ��G by adding simple inequalities�
We describe this improved upper bound on ��G in terms of the various for�
mulations discussed above �other formulations of ��G can also be similarly
improved� The validity of these formulations follow easily from the same ar�
guments as before�

Theorem � �Schrijver ��	
� ��G � ���G � ��G where ���G is equal to

minf�max�A � aij � � for �i� j �� E�A � �aij	 � Sng
�maxfJ � Y � yij � � for �i� j � E� yij � � for �i� j �� E�Tr�Y  � �� Y � �g
�minmax

i�V
f �

�cTui�
� uTi uj � � for �i� j �� E� jjuijj � � for i � V� jjcjj � �g�

��� Perfect Graphs

A graph G is called perfect if� for every induced subgraph G�� its chromatic
number is equal to the size of the largest clique in G� �see ������	 for details�
Even though perfect graphs have been the focus of intense study� there are
some basic questions which are still open� The strong perfect graph conjecture
of Berge is that a graph is perfect if and only if it does not contain an odd
cycle of length at least �ve or its complement� It is not even known if the

�



recognition problem of deciding whether a graph is perfect is in P or is NP�
complete� However� the theta function gives some important characterizations
�but not a �good� or NP�co�NP characterization of perfect graphs�

Theorem � �Gr�otschel et al ���
� The following are equivalent�

� G is perfect	

� TH�G � fx � � �
P

i�C xi � � for all cliques Cg
� TH�G is polyhedral�

Moreover� even though recognizing perfect graphs is still open� one can �nd
a largest stable set in a perfect graph in polynomial time by computing the
theta function using semide�nite programming �Gr
otschel et al� ������	� sim�
ilarly one can solve the weighted problem� or �nd the chromatic number or a
largest clique� Observe that if we apply this algorithm to a graph which is not
necessarily perfect� we would either �nd a largest stable set or have a proof
that the graph is not perfect�

��
 Quality of approximations based on �

For perfect graphs� we have seen that ��G � ��G� Unfortunately� for general
graphs� ��G can provide a fairly poor upper bound on ��G� as was estab�
lished recently� In this section� we discuss the quality of the approximation
given by ��G�

In ���	� Lov�asz showed that for any graph G on n vertices� we have that
��G�� �G � n �with equality if G is vertex�transitive� see also ���	� Thus� for
any G� max���G� �� �G � p

n� while� for a random graph �each edge being
selected with probability ��� independently� max���G� �� �G � O�log n
with high probability� In fact� ��G � ��

p
n for random graphs ���	� Until

quite recently� this was the largest gap known between � and �� However�
Feige �� 	 has shown the existence of graphs for which ��G���G � !�n���
for any � 	 �� His construction uses �randomized graph products�� See also
Karger et al� ���	� Szegedy ���	� Alon and Kahale ��	 for related results� The
fact that ��G does not provide a good approximation is not too surprising
given the recent result of H"astad ���	 showing that the stable set problem
is hard to approximate within n��� for any � 	 � unless NP�co�R �co�R is
the class of languages L for which there exists a polynomial�time randomized
algorithm which always accepts elements of L and rejects elements not in L
with probability at least ����

Regarding the complementary problem of �nding a vertex cover of minimum
cardinality� Kleinberg and Goemans ���	 have shown that n � ��G �where
n is the number of vertices can be arbitrarily close to half the size of the
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minimum vertex cover �i�e� n � ��G� thus not improving in the worst�case
the linear programming bound �� 	� Very recently� Lagergren and Russell ���	
have also shown that the same holds for Schrijver�s n� ���G�

��� Coding Theory

Lov�asz�s theta function provides interesting results for several coding theory
problems� We �rst discuss the Shannon capacity� and then relate the theta
function to Delsarte�s linear programming approach ���	�

The strong product G �H of G � �V�E and H � �W�F  is the graph whose
vertex set is the cartesian product of V and W and �v�w is adjacent to
�v�� w� if v is adjacent or equal to v� and w is adjacent or equal to w�� Given
a graph G � �V�E in which the vertices represent symbols of an alphabet
and �a� b � E if the symbols a and b cannot be distinguished� the maximum
number of distinguishable words that can be written with k symbols is equal
to ��Gk� where Gk � G � G � � �G �k times� The Shannon capacity �also
called the zero�error capacity ���	 of a graph� denoted by ��G� is equal to
supk ��G

k��k� This quantity appears to be hard to compute even for very small
graphs �although it is not known to be NP�hard� Lov�asz showed that ��G
provides an upper bound on ��G� This for example implies that ��G � ��G
for perfect graphs� a result which follows directly from Shannon�s early work�
For most graphs �but not for all� see the discussion in McEliece ���	� ��G
provides the best known upper bound on ��G� In particular� for an odd cycle
Cn with n vertices� Lov�asz computed ��Cn � n��� � �� cos�
�n� and this
implies the celebrated result that ��C� �

p
�� However� the exact value for

��C	 is still unknown�

In order to show that ��G � ��G� Lov�asz �rst proved that ��G � H �
��G��H� This immediately implies that ��Gk � ��Gk � ��Gk� which
gives the desired inequality� We should point out that Lov�asz�s proof does not
generalize to Schrijver�s ���G� i�e� ���G is not guaranteed to be an upper
bound on ��G�

In certain cases when the graph G has a great deal of symmetry �to be de�ned
formally below� the theta function �as well as Schrijver�s �� reduces to a linear
programming problem� Such situations arise in coding theory� and more pre�
cisely in association schemes �see ������	� Consider graphs whose adjacency
matrix can be written as

P
i�M Di where M  f�� � � � � lg and D
�D�� � � � �Dl

are n� n �� � symmetric matrices such that

�i D
 � I�
�ii

Pl
i�
Di � J �

�iii there exist pijk �� � i� j� k � l such that DiDj � DjDi �
Pn

k�
 pijkDk�

 



For concreteness� we consider one such example� Given a� b � f�� �gn� the
Hamming distanceH�a� b between a and b is simply the number of coordinates
in which they di�er� Let A�n� d � maxfjSj � H�a� b � d for all distinct a� b �
Sg� A�n� d represents the maximum number of codewords of a binary code
of length n and minimum distance d� Such a �so�called error�correcting code
can correct any number of errors less than d�� introduced during transmission
�see MacWilliams and Sloane ���	 for background material� A�n� d can be
viewed as the stability number of the graph Gn�d with vertex set f�� �gn and
two strings being adjacent if their Hamming distance is between � and d���
Gn�d arises from the Hamming association scheme� in which adjacency in Di

corresponds to pairs of strings having Hamming distance exactly i�

In a seminal paper� Delsarte ���	 introduced a beautiful and powerful linear
programming approach to upper bound ��G for graphs arising from associa�
tion schemes� In the case of the Hamming scheme� given any binary code S of
length n with minimum distance d� consider the vector x with �n components
de�ned by xv �

�
jSj
jf�a� b � S �S � a� b � v �mod �gj for any v � f�� �gn�

x is called the inner distribution of S� Observe that x
 � �� and
P

v xv � jSj�
Moreover� for any w � f�� �gn� we have that

X
v�f
��gn

���v
Twxv �

�

jSj
X

�a�b��S�S

����a�b�
Tw �

�

jSj
X

�a�b��S�S

���a
Tw���b

Tw

�
�

jSj

�X
a�S

���a
Tw

��

� ��

by de�nition of xv and the fact that ���k only depends on the parity of k�
�For any w � f�� �gn� the vector ���v

Tw is actually an eigenvector of Gn�d

�for any d� We can thus obtain an upper bound on ��Gn�d by solving

max
X
v

xv � 

subject to�X
v�f
��gn

���v
Twxv � � w � f�� �gn

x
 � �� xv � � v � f�� �gn
xv � � � � jvj � d�

where jvj represents the weight of v �the number of ��s in v� This is a huge
linear program in which the constraint matrix has only �� coe�cients� A more
compact equivalent relaxation can be obtained by observing that� because of
symmetry�we can assume that xv depends only on the weight of v� At the same
time� this allows to write one constraint for each possible weight for w� This
gives a linear program with n�� variables and n�� constraints� but with fairly
nasty coe�cients �depending on so�called Krawtchouk polynomials� For an
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explicit upper bound on A�n� d based on this linear programming approach�
see ������	� In general� for association schemes� the linear program obtained
can be reduced to l � � variables and constraints� where l � � denotes the
number of matrices Di�

Somewhat surprisingly� Schrijver ���	 has shown that the above upper bound
is precisely ���Gn�d and that if we were to relax the nonnegativity constraints
on xv we would obtain precisely Lov�asz�s theta function ��Gn�d �see also
McEliece ���	� We will now sketch this equivalence� The fact that the Dj �s
commute imply that they share a system of eigenvectors �see e�g� ���	� i�e�
Dj � V #�j�V T where #�j� is a diagonal matrix with the eigenvalues of Dj � and
V is independent of j� This implies that the �so�called Bose�Mesner algebra
spanned by the Dj �s consists of all matrices of the form V $V T where $ is a
linear combination of the #�j��s� Furthermore� since the vector u of all ��s is
the unique eigenvector of J �which is spanned by the Dj �s corresponding to
a nonzero eigenvalue� u must also be an eigenvector of Dj and thus Dj has a
constant row sum that we denote by dj �which is the largest eigenvalue of Dj�
Suppose that in formulation �� of �� we restrict our attention to matrices Y in
this Bose�Mesner algebra� Y � �

Pl
j�
 xjDj�n �where we have normalized by

n for simplicity� Observe that nTr�Y  �
Pl

j�
 xjTr�Dj � x
Tr�I � nx
�
Thus �� reduces to x
 � �� while �� reduces to xj � � for j � M � Since

the eigenvalues of Y are simply �
Pl

j�
 xj�
�j�
i �n �i � �� � � � � n� �� reduces toPl

j�
 xj�
�j�
i � � for all i� Finally� since J �Dj � ndj � we derive that

��G � max
X
j ��M

djxj ��

subject to�X
j ��M

�
�j�
i xj � � i � �� � � � � n ��

x
 � ��

So far� we have only used the commutativity of the Dj �s� and not the fact that
DiDj is also in the Bose�Mesner algebra �as is stipulated in the de�nition of
association schemes� In fact� if we do not assume this latter condition but
only assume commutativity of the Dj�s� the value of this linear program may
be strictly smaller than ��G �contradicting an informal claim of McEliece
���	� For example� for any regular graph G� we can select E� and E� to be the
adjacency matrices of G and its complement �and E� and E� commute if G
is regular� and the above linear program �with only one nontrivial variable
can easily be seen to have value �� �max�E���min�E� which can be strictly
less than ��G �consider the �perfect cycle C� for example� However� if �G is
edge�transitive �i�e� for every pair of edges of �G� there exists an automorphism
mapping one to the other� then one can easily argue that there exists an
optimum solution Y to �� in the Bose�Mesner algebra� and hence we will
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have equality in ���

Schrijver proved that we also have equality in �� ifG arises from an association
scheme� This is based on additional properties of eigenvalues of association
schemes� He similarly showed that� for association schemes� ���G is equal to
the value of the linear program �� in which one adds the constraints xj � �
for j ��M �

Finally� the size of the linear program �� �or augmented with nonnegative
constraints can be much reduced for association schemes� Indeed� one can
show �see e�g� ���	 that there are only l�� di�erent eigenspaces for the Dj �s�
and thus there are are only l�� distinct constraints ��� �The constraint corre�
sponding to the largest eigenvalue is actually redundant and can be removed�
the number of constraints is thus only l� Furthermore� the resulting LP after
adding the inequalities xj � � for j �� M takes precisely the same form as
Delsarte�s LP �  �once generalized to association schemes� See ���������	 for
details�

� Deriving Valid Inequalities

Lov�asz and Schrijver ������	 have proposed a technique for automatically gen�
erating stronger and stronger formulations for integer programs� Because of
space limitation� we can only brie%y describe their approach� We also refer the
reader to Sherali and Adams ���	� Balas et al� � 	� Lov�asz ���	 for additional
results and related work�

Let P � fx � Rn � Ax � b� � � x � �g� and let P
 � conv�P �f�� �gn denote
the convex hull of � � � solutions� Suppose we multiply a valid inequalityP

i cixi�d � � for P by either ��xj � � or by xj � �� We obtain a quadratic
inequality that we can linearize by replacing xixj by a new variable yij� But we
haven�t used yet the fact that we are only interested in ��� solutions� Observing
that x�i � xi if xi � f�� �g� we can also replace xi by yii� hence obtaining a
linear ��matrix� inequality on the entries of Y � LetM�P  denote the set of all
symmetric matrices satisfying all the matrix inequalities that can be derived
in this way� and let N�P  � fx � Y � M�P � x � diag�Y g� where diag�Y 
denotes the diagonal of Y � thus N�P  is a projection of M�P  and conversely
M�P  can be viewed as an extended formulation for N�P � By construction�
we have that P
  N�P   P �

Lov�asz and Schrijver study the operator Nk�� obtained by repeating N��
k times� and show that for any P  R

n we have Nn�P  � P
� They also
prove numerous results on the stable set polytope STAB�G� They introduce
the N �index of a valid inequality for STAB�G as the least k such that this
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inequality is valid for Nk�FRAC�G� where FRAC�G � fx � xi � xj �
� if �i� j � E� xi � � for all i � V g� To give a brief sample of their results�
they show that the N �index of a clique constraint on k vertices is k � �� the
N �index of an odd hole constraint is �� and the N �index of an odd antihole
constraint on �k � � vertices is k�

They also consider a much stronger �and not so well understood operator
involving semide�nite constraints� Observe that� for any ��� solution x� the
matrix Y de�ned above as xxT must satisfy Y � diag�Y diag�Y T � �� This
is again an �intractable quadratic inequality but it can be relaxed to Y �
diag�Y diag�Y T � �� Viewing Y � diag�Y diag�Y T as a Schur complement
�see e�g� ���	� this is equivalent to

�
�	 � diag�Y T

diag�Y  Y



�� � �� ���

As a result� de�ning M��P  as fY � M�P  satisfying ���g and N��P  �
fx � Y � M��P � x � diag�Y g� we have that P
  N��P   N�P  
P and optimizing a linear objective function over N��P  can be done via
semide�nite programming� As for N��� we can de�neNk

��P  and theN��index
of a valid inequality for P
� Lov�asz and Schrijver show that the equivalence
between �weak optimization and �weak separation ������	 implies that one
can optimize �up to arbitrary precision in polynomial time over Nk

� for any
�xed value of k given a separation oracle for P � For the stable set polytope�
they show that all clique� odd hole� odd antihole� odd wheel� and orthonormal
representation constraints have N��index equal to �� implying the polynomial�
time solvability of the maximum stable set problem in any graph for which
these inequalities are su�cient �including perfect graphs� t�perfect graphs�
etc��

Since N� is at least as strong as N � we know that Nn
��P  � P
� however� it is

not known if substantially fewer repetitions of N� would be su�cient to obtain
P
� To the best of our knowledge� no explicit valid inequality has been proved
to have unbounded N��index for any problem �even though they should exist�
unless P�NP� Consider for example the following �simple looking polytope
considered by Laurent et al� �� 	�

P � fx � Rn � xi � xj � xk � � for all i� j� k� � � x � �g�

Correspondingly� P
 � f� � x � � �
Pn

i�� xi � �g� Using similar arguments
as in ���	� one can show that

Pn
i�� xi � � has an N �index no less than n � ��

but its N��index is unknown� Could it be bounded& Or logarithmic in n& A
logarithmic bound would follow if one could show that it has bounded N��

��



index if we start from P � fx � Rn �
P

i�S xi � � for all jSj � n��� � � x �
�g�

Another very interesting open problem is related to the matching polytope
�the convex hull of incidence vectors of matchings� which can also be viewed as
the stable set polytope of the line graph� Consider the Edmonds constraints�P

i�S xi � �jSj � ��� for jSj odd� Their N �index is unbounded �as a function
of jSj as was shown by Lov�asz and Schrijver ���	 �and an indirect consequence
of a result of Yannakakis ���	� However� their N��index is unknown and could
possibly be bounded�

� The Maximum Cut Problem

Given a graph G � �V�E� the cut ��S induced by vertex set S consists of
the set of edges with exactly one endpoint in S� In the NP�hard maximum cut
problem �MAX CUT� we would like to �nd a cut of maximum total weight
in a weighted undirected graph� The weight of ��S is w���S �

P
e���S�we�

Throughout this section� we assume that the weights are nonnegative� For a
comprehensive survey of the MAX CUT problem� the reader is referred to
Poljak and Tuza �� 	�

As with the stable set problem� semide�nite programming seems to provide a
�semide�nite advantage over linear programming for MAX CUT� A classical
linear programming relaxation of the problem �involving cycle constraints� and
based on the fact that any cycle intersects a cut in an even number of edges
can be arbitrarily close to twice the optimum value ���	� However� semide�nite
programming leads to a much better bound in the worst�case� as was shown
by the author and Williamson ���	� In this section� we discuss this approach�

The maximumcut problem can be formulated as an integer quadratic program�
If we let yi � � if i � S and yi � �� otherwise� the value of the cut ��S can be
expressed as

P
�i�j��E wij

�
����yiyj� Thus� in the spirit of the previous section�

suppose we consider the matrix Y � �yiyj	� This is a positive semide�nite
rank one matrix with all diagonal elements equal to �� Relaxing the rank one
condition� we derive a semide�nite program giving an upper bound SDP on
OPT �

SDP � max �
�

X
�i�j��E

wij�� � yij ���

subject to�

yii � � i � V

Y � �yij	 � ��

��



It is convenient to write the objective function in terms of the �weighted
Laplacian matrix L�G � �lij	 of G� lij � �wij for all i �� j and lii �

P
j wij�

For any matrix Y � we have L�G�Y �
P

�i�j��E wij�yii�yjj��yij �in particular�
if Y � yyT then we obtain the classical equality yTL�Gy �

P
�i�j��E wij�yi �

yj
�� As a result� the objective function can also be expressed as �


L�G � Y �

The dual of this semide�nite program is SDP � �

minfPj dj � Diag�d �

L�Gg� where Diag�d is the diagonal matrix having d as diagonal and all
other entries zero� Manipulating this expression ���	� this can also be rewritten
as

SDP � �

n min
u�
P

i
ui�


�max�L�Diag�u� ���

This eigenvalue bound was proposed and analyzed by Delorme and Poljak
������	� In their study� they conjectured that the worst�case ratio OPT�SDP is
��������

p
� � ������� and achieved by the ��cycle� Even though the values

of the semide�nite program ��� and the corresponding eigenvalue bound ���
are the same� it appears that ��� provides more information �similar to the
fact that a maximum%ow provides more information than a minimumcut� By
exploiting ���� Goemans and Williamson ���	 derived a randomized algorithm
that produces a cut whose expected value is at least ��� ���SDP � implying
that OPT�SDP � ��� ���� We describe their random hyperplane technique

and their elementary analysis below�

Consider any feasible solution Y to ���� Since Y admits a Gram representation
�see preliminaries� there exist vectors vi � Rd �for some d � n for i � V such
that yij � vTi vj� The fact that yii � � implies that the vi�s have unit norm� Let
r be a vector uniformly generated from the unit sphere in Rd� and consider
the cut induced by the hyperplane fx � rTx � �g normal to r� i�e� the cut
��S where S � fi � V � rTvi � �g� The motivation behind the uniform
choice for r is that the set of matrices B such that BTB � Y is closed under
orthogonal transformations �or informally rotations� Furthermore� observe
that if the matrix Y is of rank one �and thus corresponding to a cut� this
random hyperplane technique would recover the cut with probability ��

By elementary arguments� one can show that the probability that vi and vj
are separated is precisely �
� where  � arccos�vTi vj is the angle between vi
and vj� By linearity of expectation� the expected weight of the cut is exactly
given by�

E�w���S	 �
X

�i�j��E

wij
arccos�vTi vj



� ���

Comparing this expression term by term to the objective function of ��� and

��



using the fact that arccos�x�
 � ��
�
��� x where � � ��� ��� � � �� we derive

that E�w���S	 � ��

L�G � Y � Hence if we apply the random hyperplane

technique to a feasible solution Y of value � �� � �SDP �which can be ob�
tained in polynomial time� we obtain a random cut of expected value greater
or equal to ��� � �SDP � ��� ���SDP � ��� ���OPT � Mahajan and
Ramesh �� 	 have shown that this technique can be derandomized� therefore
giving a deterministic ��� ����approximation algorithm for MAX CUT�

The worst�case value for OPT�SDP is thus somewhere between ��� ��� and
�������� and even though this gap is small� it would be very interesting to
prove Delorme and Poljak�s conjecture that the worst�case is given by the ��
cycle� This would� however� require a new technique� Indeed� Karlo� ���	 has
shown that the analysis of the random hyperplane technique is tight� namely
there exists a family of graphs for which the expected weight E�w���S	 of the
cut produced is arbitrarily close to �SDP �

Instead of comparing ��� and ��� term by term� Nesterov ���	 recently pro�
posed a di�erent analysis proving that E�w���S	 � �

�
��L�G � Y � Even

though the resulting bound of ��
 � ������� � � � is weaker than ��� ����
the analysis only assumes that L�G � � and not the stronger requirement
that the weights are nonnegative� Furthermore� it has wider applicability
than the term�by�term analysis �see ���	� Letting arcsin�Y  � �arcsin�yij	�
we can write �

�
E�w���S	 � �

�

P
�i�j��E wij arccos�vTi vj � �



P
�i�j��E wij�
 �

� arcsin�vTi vj � �
L�G � arcsin�Y � Therefore� to derive Nesterov�s result�

we need to prove that L�G � �arcsin�Y  � Y  � �� Assuming that L�G � �
�which holds if the weights are nonnegative� this result follows from a claim
that arcsin�Y  � Y �

In order to show that arcsin�Y  � Y � we need the following classical de�nitions
and results� Given two matrices A�B �Mn� the Hadamard product �or Schur
product of A and B� denoted by A �B� is the entry�wise multiplication of A
and B� that is the matrix C � �cij	 such that cij � aijbij� The Schur product
theorem says that if A�B � � then A �B � �� In particular� this implies that
�akij	 � � provided that A � �aij	 � �� Furthermore� if f�z � c
�c�z�c�z��� � �
is an analytic function with nonnegative coe�cients and convergence radius
R 	 � then �f�aij	 � � provided that A � �aij	 � � and jaijj � R� We now
derive that arcsin�Y  � Y from f�x � arcsin�x� x � �

���
x� � ���

����
x� � � � ��

No better approximation algorithm is currently known for MAX CUT� On the
negative side though� H"astad ���	 has shown that it is NP�hard to approximate
MAX CUT within ���� �� � ������ � � � for any � 	 �� Furthermore� H"astad
shows that if we replace the objective function by �

�

P
�i�j��E�

wij�� � yiyj �
�
�

P
�i�j��E�

wij���yiyj� then the resulting problem is NP�hard to approximate
within ����� � � � ������� � � �� while the random hyperplane technique still
gives the same guarantee of � � ��� ����

��



Several authors have proposed to strengthen ��� by adding triangle inequali�

ties� requiring that� for any i� j� k � V � �yij�yik�yjk � �� whenever we have
an even number of minus signs� One of the motivating factor is that these �rel�
atively simple looking� but still hard to analyze inequalities are su�cient to
describe the cut polytope for the ��cycle �or any planar graph ��	 provided we
consider all triplets �i� j� k� If we denote the resulting upper bound by SDP ��
no better bound than ��� ��� is known for the worst�case ratio OPT�SDP �

in general �see Rendl ���	 for special cases� The ratio OPT�SDP � is known
to be equal to ���� for the complete graph K�� and instances with a slightly
worse gap �� ���  were obtained by Andress and Cheriyan �private commu�
nication� However� in light of H"astad�s result and the polynomial solvability
of semide�nite programs� worse instances should exist �unless P�NP�

We have implemented the approximation algorithm and have performed lim�
ited computational testing� The results will be published after more extensive
computational tests� We would like nevertheless to give a preview of some
features of the implementation� First we have noticed that the fact that the
algorithm is randomized is a plus� by generating several hyperplanes� one
typically gets cuts of weight signi�cantly higher than the expected value� the�
oretically speaking� it is however di�cult to get an a priori estimate of the
variance of the weight of the cut �which can be zero even if the dimension is
not one� as for an odd cycle� Furthermore� the vectors fvig typically lie in a
very low�dimensional space �see �������	 and ���	 for theoretical explanations�
and as a result� one can often enumerate all possible hyperplane cuts� Finally�
and more importantly� the dual semide�nite program can be exploited very
nicely in a branch�and�bound scheme� and this often allows to prove optimal�
ity of the cut produced for instances with up to ��� vertices� The dual can be
reinterpreted as follows�

SDP � �
 min

�
�
�����
�����
X
i

ui

�����
�����
�

� uTi uj � wij for all �i� j � E

��
� �

and the vectors ui can be obtained by a Cholesky decomposition� The fact that
this expression is an upper bound on OPT is obvious� given a cut ��S� its
weight is equal to

P
i�S

P
j ��S wij � �

P
i�S ui

T �
P

j ��S uj �
�
�b� xT �b� x �

�

�jjbjj� � jjxjj� � �


jjbjj�� where b �

P
i�V ui and x �

P
i�S ui �

P
j ��S uj�

Observe that we used a trivial bound on jjxjj� �
P

k x
�
k � �� If we can prove

that� no matter how V is partitioned into S and V �S� jxkj is at least �k� then
we can re�ne our upper bound to SDP �Pk �

�
k� In particular� if coordinate k

of ui is zero for all but one vector then we can trivially let �k � jxkj� This may
seem trivial� but it leads to a powerful branch�and�bound scheme� First� since
the ui�s are obtained by a Cholesky decomposition� we can assume that only
the �rst i components of ui are nonzero� In our branch�and�bound procedure�
any node at level n� l corresponds to an assignment � � fl��� l��� � � � � ng �

��



f�� �g where � �v indicates if v is constrained to be in S or in V �S� Therefore�
for cuts corresponding to this node� we can let �k � jzkj for k 	 l and �k � �
otherwise� where z �

P
i�l���i��� ui �

P
i�l���i��
 ui� The main advantage of

this procedure is that the computation of these improved upper bounds is
negligible �once we have solved the semide�nite program at the root node�
we can therefore explore a very large number of nodes �easily a billion� This
branch�and�bound code often allows to prove optimality of the best hyperplane
cut generated� especially for problems with up to ��� vertices� in these cases�
the branch�and�bound procedure typically takes less time than the solution
of the initial semide�nite program� Details and extensive computational tests
will be given in a forthcoming experimental paper�

The results described in this section have been extended and generalized
to other combinatorial optimization problems� the maximum dicut problem
and the maximum ��satis�ability problem ������	� the problem of coloring ��
colorable graphs ���	� the maximum k�cut and maximum bisection problems
���	� and the betweenness problem ���	�

� Embeddings of Finite Metric Spaces

We would like to conclude with some open problems related to the power of
semide�nite programming for the sparsest cut problem� This is a fascinating
area but� unfortunately� we will be able to explore only the tip of the iceberg�

We �rst collect some results on �nite metric spaces� references for most results
mentioned here can be found in the new book of Deza and Laurent ���	� A
��nite �semi�metric d � V � V � R on V satis�es d�i� i � � for all i � V �
dij � dji for all i� j � V � and dij � djk � dik for all i� j� k � V � d is said
to be lp�embeddable if there exists xi � Rk �i � V  for some k such that
d�i� j � jjxi � xjjjp� similarly� d is lp�embeddable with distortion c if there
exists xi � Rd such that d�i� j � jjxi � xjjjp � c d�i� j� Any ��nite metric
d is l��embeddable� and deciding if d is l��embeddable is NP�hard� Any l��
embeddable metric is in fact l��embeddable �a random projection onto a line
similar to the random hyperplane technique can be seen to imply this result�
It is also known that d is l��embeddable i� P � �pij	 � �d��i � d��j � d�ij	 � �
�this is independent of the choice of � � V � and thus the l��embeddability can
be tested in polynomial time� Moreover� �nding the �square of the smallest
distortion for an l��embedding of d is therefore a semide�nite program ���	�
minft � d�ij � xij � td�ij for all i� j� �x�i � x�j � xij	 � �g� Bourgain ���	 has
shown that any �nite metric on n points can be embedded with distortion
O�log n into l� �and thus also l�� it would be nice to prove this result from
semide�nite programming duality� An interesting open problem in this area is
whether any l��embeddable metric on n points can be embedded into l� with

��



distortion O�
p
log n �and this would be tight because of the d�dimensional

hypercube�

Let K � fX � �xij	 � S

n � �x�i� x�j �xij	 � �g� where S


n denotes symmetric
n � n matrices with zero elements on the diagonal� Thus d is l��embeddable
if �d�ij	 � K� If D � �dij	 � K and d is a metric then d is called a negative type

metric� the requirement that d is a metric now translates into the fact that
the angle between any three points of the l��embedding of the metric

p
d is

either acute or right� Any l��embeddable metric can be seen to be of negative
type� Finding the best negative type metric subject to linear constraints can
therefore be solved in polynomial time through semide�nite programming�
�As an exercise� the reader can reinterpret the bounds on the maximum cut
problem in terms of negative type metrics� One can show that K is a pointed
closed convex cone� and its polar can be expressed nicely as�

K� � fY � S

n � L�Y  � �g ���

where L�Y  is the Laplacian of Y �

In the sparsest cut problem� we would like to �nd a cut minimizing w���S��
jSjjV�Sj

in a �nonnegatively weighted undirected graph G � �V�E� Since the cone
generated by incidence vectors of cuts �also called cut metrics is precisely the
l��embeddable metrics� the problem reduces to

min
d�l�

f X
�i�j��E

wijdij �
X
i

X
j

dij � �g�

If we relax the requirement that d is l��embeddable to simply being a metric�
we obtain a linear programming relaxation �whose dual is a multicommodity
%ow problem of the sparsest cut problem� Leighton and Rao ���	 show that
this relaxation is always within O�log n of the optimum sparsest cut� and
recently Linial et al� ���	 �see also ��	 used Bourgain�s result ���	 to generalize
this result� Moreover� the logarithmic ratio is tight as is shown by constant
degree expander graphs�

If instead we relax the l��embeddability of d to membership in K �and not
even impose that d is a metric� we obtain the following linear program over
the cone K�

z � minf X
�i�j��E

wijdij �
X
i

X
j

dij � �� d � Kg�

By duality over cones �see preliminaries and ���� this is equivalent to

z � maxf� � L�G � �L�J � I � �g�

� 



Using the facts that L�J � I � nI � J and that the vector of all ��s is an
eigenvector of both L�G and J � this dual can be shown to be equivalent to
a well�known eigenvalue bound �������	� z � �

n
���L�G� See these references

for relations between z and the value of the sparsest cut�

Finally� we could impose that d is a negative type metric� therefore getting a
lower bound on the sparsest cut which is stronger than both the LP relaxation
and the eigenvalue bound� Using duality and ���� we can express this bound
in many di�erent ways� and we leave this as an exercise for the reader� The
most interesting question though is the worst�case ratio between the sparsest
cut and this lower bound� If one could show that negative type metrics can be
embedded into l� with O�

p
log n distortion �or possibly even into l� within a

constant� this would give a worst�case ratio that isO�
p
log n �resp� constant�

This is a very intriguing question�
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