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We discuss the use of semidefinite programming for combinato-
rial optimization problems. The main topics covered include (i)
the Lovasz theta function and its applications to stable sets, per-
fect graphs, and coding theory, (ii) the automatic generation of
strong valid inequalities, (iii) the maximum cut problem and re-
lated problems, and (iv) the embedding of finite metric spaces and
its relationship to the sparsest cut problem.

1 Introduction

Recently, there has been increasing interest in the use of convex optimization
techniques and more specifically semidefinite programming in solving combina-
torial optimization problems. This started with the seminal work of Lovasz [41]
on the so-called theta function, and this led Grotschel, Lovasz and Schrijver
[22,24] to develop the only known (and non-combinatorial) polynomial-time
algorithm to solve the maximum stable set problem for perfect graphs. More
recently, the development of efficient interior-point algorithms for semidefinite
programming, the results of Lovdsz and Schrijver [44,45] on stronger formu-
lations using semidefinite programming, improved approximation algorithms
for the maximum cut and related problems, and striking hardness of approx-
imation results have spawned much focus on the power (and limitation) of
semidefinite programming for combinatorial optimization problems.

In this paper, we give a brief tour d’horizon of semidefinite programming in
combinatorial optimization. In addition to some of the classical results, we also
present a few either very recent or less well known results and observations. In
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particular, we describe the relationship between the Lovasz theta function and
the Delsarte linear programming approach in Section 3, discuss the use of the
dual for solving maximum cut instances in practice in Section 5, and elaborate
on the connection between a classical eigenvalue bound and a semidefinite
programming approach for the sparsest cut problem in Section 6. Because
of space limitations, we can barely scratch the surface, and there are many
aspects (e.g. computational) of the area that we will not cover. We refer the
reader to Alizadeh [1], Lovasz [43] and Rendl [58] for additional coverage of
the topic.

2 Preliminaries

In this section, we collect several basic results about (positive semidefinite)
matrices and semidefinite programming. Further results will be mentioned as
needed. Most of the results on matrices quoted in this paper can be found in
standard matrix theory books, such as [36] or [28].

Let M, denote the cone of n x n matrices (over the reals), and let S, denote
the subcone of symmetric n x n matrices. A matrix A € S5, is said to be
positive semidefinite if its associated quadratic form z? Az is nonnegative for
all z € R™ The positive semidefiniteness of a matrix A will be denoted by A >
0; similarly, we write A = B for A — B > 0. The cone of positive semidefinite
matrices will be denoted by PSD,. The following statements are equivalent
for a symmetric matrix A (see e.g. [36]): (i) A is positive semidefinite, (ii) all
eigenvalues of A are nonnegative, and (iii) there exists a matrix B such that
A = BTB (Cholesky decomposition). (iii) gives a representation of A = [a;;]
as a Gram matriz: there exist vectors v; such that a;; = vlv; for all 7,7. A
symmetric positive semidefinite matrix A can be expressed as LDLT in O(n?)
elementary operations (where L is lower triangular and D is diagonal), and this
leads to a Cholesky decomposition (provided square roots can be computed).

Given A, B € M,,, we consider the (Frobenius) inner product A e B defined by
AeB=Tr(A'B) =y, A;B;;. The quadratic form z¥ Az can thus also be
written as A e (xzT). Since the extreme rays of PSD, are of the form zzT, we
derive that Ae B > 0 whenever A, B = 0. We can also similarly derive Fejer’s
theorem which says that PSD,, is self-polar, i.e. PSD* :={A € 5,: AeB >0

forall B =0} = PSD,.

Semidefinite programs are linear programs over the cone of positive semidefi-
nite matrices. They can be expressed in many equivalent forms, e.g.

SDP =inf CeY (1)

subject to:



A; oY =b; r=1,---
Y = 0.

In general a linear program over a pointed closed convex cone K is formulated
as z = inf{clz : Az = b,z € K}, and its dual (see [53]) is w = sup{bTy : ATy+
s=cs€ K*} where K*:={a:a’h > 0 for all b € K}. Weak duality always
holds: ¢’z —yTh = (ATy+ s)Te —yT Az = sT2 > 0 (since € K and s € K*)
for any primal feasible & and dual feasible y. If we assume that A has full row
rank, {z € intK : Az = b} # 0, and {(y,s) : Aly+s =c,s €int K*} #£ 0,
then z = w (strong duality) and both the primal and dual problems attain
their optimum value. In the case of semidefinite programs, the dual to (1) is

sup{3 iy biyi : 2o yidi 2 C'}.

Semidefinite programs can be solved (more precisely, approximated) in poly-
nomial time within any specified accuracy either by the ellipsoid algorithm
[22,24] or more efficiently through interior-point algorithms. For the latter, we
refer the reader to [53,1,65] and to the recent article by Kojima [34] for the
latest developments. To be precise, these algorithms are polynomial only for
“well-behaved” instances (e.g., if we can give a priori estimates on the sizes of
primal and dual solutions that are polynomial in the size of the input, see [1]).
The above algorithms produce a strictly feasible solution (or slightly infeasible
for some versions of the ellipsoid algorithm) and, in fact, the problem of decid-
ing whether a semidefinite program is feasible (exactly) is still open. However,

we should point out that since b = 0 is equivalent to |z| < /a, a special
T a

case of semidefinite programming feasibility is the square-root sum problem:

given positive integers ay,---,a, and k, decide whether >°7_, \/a; < k. The

complexity of this problem in the Turing machine model is still open (but the

problem is easy in the “unit-cost algebraic RAM”, see Malajovich [48] and

Tiwari [64]).

Many of the semidefinite programs that arise in combinatorial optimization
can also be viewed as eigenvalue bounds [1]. The literature on such bounds is
vast, and we refer the reader to a comprehensive survey by Mohar and Poljak
[51]. In certain cases, the semidefinite programs can be strengthened by adding
valid inequalities. We will see several examples in the forthcoming sections.
We would also like to refer the reader to [39] for a discussion on eigenvalue
optimization in general.



3 Lovasz’s Theta Function

Given a graph G = (V, E), a stable (or independent) set is a subset S of
vertices such that no two vertices of S are adjacent. The maximum cardinality
of a stable set is the stability number (or independence number) of G and is
denoted by a(G). In a seminal paper [41], Lovasz proposed an upper bound on
a(G) known as the theta function ¥((). The theta function can be expressed
in many equivalent ways: as an eigenvalue bound, as a semidefinite program,
or in terms of orthogonal representations. In this section, we describe some of
these formulations, the quality of the resulting approximation, and connections
to perfect graphs and coding theory. For simplicity, we restrict our attention
to the unweighted case (as defined above), although most results generalize to
the weighted case. We refer the reader to the original paper [41], to Chapter 9
in Grotschel et al. [24], or to the survey by Knuth [33] for additional details.

As an eigenvalue bound, ¥(() can be derived as follows. Consider P = {A €
Snrai;=1if (i,7) ¢ F (or i = j)}. If there exists a stable set of size k, the
corresponding principal submatrix of any A € P will be Ji, the all ones matrix
of size k. By a classical result on interlacing of eigenvalues for symmetric
matrices (see [28]), we derive that Aap(A) > Apax(Jx) = k for any A € P,
where A4, (+) denotes the largest eigenvalue. As a result, mingep Ay (A) is
an upper bound on «((), and this is one of the equivalent formulations of
Lovasz’s theta function.

This naturally leads to a semidefinite program. Indeed, the largest eigenvalue
of a matrix can easily be formulated as a semidefinite program: Ap..(A) =
min{t : ¢t/ — A = 0}. This follows from the fact that the eigenvalues of t/ — A
are precisely ¢t — \; where {);} denote the eigenvalues of A. In order to express
() as a semidefinite program, we observe that A € P is equivalent to A —.J
being generated by F;; for (i,j) € E, where all entries of E;; are zero except
for (i,7) and (j,7). Thus, we can write

J(G) = mint
subject to:

t[—l— Z wijEij i J.

(7,4)eE

By strong duality, we can also write:

J(GE) = max JeY (2)
subject to:

yij =0 (1,5) € & (3)

leY =1 (t.e. Tr(Y)=1) (4)

Y = 0. (5)



Lovasz’s first definition of ¥((G) was in terms of orthonormal representa-
tions. An orthonormal representation of GG is a system vy, ---, v, of unit vec-
tors in R” such that v; and v; are orthogonal (i.e. v/v; = 0) whenever
1 and j are not adjacent. The value of the orthonormal representation is
Z = MiNg||e||=1 MaX;ey m This is easily seen to be an upper bound on
a(G) (since ||e]|? > Yies(clu;)? > |S|/z for any stable set S). Taking the
minimum value over all orthonormal representations of (i, one derives an-
other expression for J((G) as was shown by Lovész [41]. This result can be
restated in a slightly different form. If # denotes the incidence vector of a
stable set then we have that

Z(CTUZ')ZJ}Z' < 1. (6)

In other words, the orthonormal representation constraints (6) are valid in-
equalities for ST AB((), the convex hull of incidence vectors of stable sets of .
Grotschel et al. [23] show that if we let TH(G) = {x : « satisfies (6) and >
0}, then 9(G) = max{>;x; : « € TH(G)}. Yet more formulations of ¢ are
known (it seems all paths lead to 9!); we strongly urge the reader to read
Lovasz’s original article or [23,24] for additional results.

Schrijver [59] proposed a strengthening of ¥(() by adding simple inequalities.
We describe this improved upper bound on a(G) in terms of the various for-
mulations discussed above (other formulations of ¥((G) can also be similarly
improved). The validity of these formulations follow easily from the same ar-
guments as before.

Theorem 1 (Schrijver [59]) o(G) < V'(G) < I(G) where V' (G) is equal to

it (A) 2 @y > 1 for (i) & B, A = [ay] € 5,)
:maX{J.Y F Y = 0 f07“ (Zv.]) S Evyij >0 f07“ (Zv.]) Qé EvTT(Y) = 17Y = 0}
1

:minrirg/x (Tu ) culu; <0 for (i,5) & B ||ug|| =1 fori € V. ||e|| =1}

3.1 Perfect Graphs

A graph G is called perfect if, for every induced subgraph G’, its chromatic
number is equal to the size of the largest clique in G’ (see [21,42] for details).
Even though perfect graphs have been the focus of intense study, there are
some basic questions which are still open. The strong perfect graph conjecture
of Berge is that a graph is perfect if and only if it does not contain an odd
cycle of length at least five or its complement. It is not even known if the



recognition problem of deciding whether a graph is perfect is in P or is NP-
complete. However, the theta function gives some important characterizations
(but not a “good” or NPNco-NP characterization) of perfect graphs.

Theorem 2 (Grotschel et al. [23]) The following are equivalent:

— (G is perfect,
- TH(G)={2>0:>,ccxi <1 for all cliques C'}
- TH(G) is polyhedral.

Moreover, even though recognizing perfect graphs is still open, one can find
a largest stable set in a perfect graph in polynomial time by computing the
theta function using semidefinite programming (Grotschel et al. [22,24]); sim-
ilarly one can solve the weighted problem, or find the chromatic number or a
largest clique. Observe that if we apply this algorithm to a graph which is not
necessarily perfect, we would either find a largest stable set or have a proof
that the graph is not perfect.

3.2 Quality of approzimations based on 1

For perfect graphs, we have seen that ¥((G) = o(G). Unfortunately, for general
graphs, J(() can provide a fairly poor upper bound on a((), as was estab-
lished recently. In this section, we discuss the quality of the approximation

given by J(G).

In [41], Lovéasz showed that for any graph G on n vertices, we have that
I(G)I(G) > n (with equality if G is vertex-transitive; see also [59]). Thus, for
any G, max(J(G),¥(G)) > /n, while, for a random graph (each edge being
selected with probability 0.5 independently), max(a(G),a(G)) = O(logn)
with high probability. In fact, J(G) = O(y/n) for random graphs [29]. Until
quite recently, this was the largest gap known between « and /. However,
Feige [17] has shown the existence of graphs for which J(G)/a(G) > Q(n'~*)
for any € > 0. His construction uses “randomized graph products”. See also
Karger et al. [30], Szegedy [63], Alon and Kahale [4] for related results. The
fact that ¥((G) does not provide a good approximation is not too surprising
given the recent result of Hastad [25] showing that the stable set problem
is hard to approximate within n'~® for any ¢ > 0 unless NP=co-R (co-R is
the class of languages L for which there exists a polynomial-time randomized
algorithm which always accepts elements of L and rejects elements not in L
with probability at least 0.5).

Regarding the complementary problem of finding a vertex cover of minimum
cardinality, Kleinberg and Goemans [32] have shown that n — ¥((G) (where
n is the number of vertices) can be arbitrarily close to half the size of the



minimum vertex cover (i.e. n — a(()), thus not improving in the worst-case
the linear programming bound [27]. Very recently, Lagergren and Russell [35]
have also shown that the same holds for Schrijver’s n — ¥'(G).

3.3 Coding Theory

Lovasz’s theta function provides interesting results for several coding theory
problems. We first discuss the Shannon capacity, and then relate the theta
function to Delsarte’s linear programming approach [15].

The strong product G- H of G = (V, F) and H = (W, F') is the graph whose
vertex set is the cartesian product of V and W and (v,w) is adjacent to
(v, w') if v is adjacent or equal to v’ and w is adjacent or equal to w'. Given
a graph G = (V, E) in which the vertices represent symbols of an alphabet
and (a,b) € E if the symbols ¢ and b cannot be distinguished, the maximum
number of distinguishable words that can be written with k& symbols is equal
to a(G*), where G¥ = G - G---G (k times). The Shannon capacity (also
called the zero-error capacity) [60] of a graph, denoted by ©(G), is equal to
sup, a(G*)/*. This quantity appears to be hard to compute even for very small
graphs (although it is not known to be NP-hard). Lovész showed that J(G)
provides an upper bound on ©(G'). This for example implies that O(G) = a(G)
for perfect graphs, a result which follows directly from Shannon’s early work.
For most graphs (but not for all, see the discussion in McEliece [49]), ¥(()
provides the best known upper bound on ©(G). In particular, for an odd cycle
C, with n vertices, Lovasz computed ¢(C,) = n/(1 4+ 1/ cos(n/n)), and this
implies the celebrated result that ©(Cs) = /5. However, the exact value for
O(C7) is still unknown.

In order to show that J(G) > O((G), Lovasz first proved that d(G - H) =
J(G)I(H). This immediately implies that o(G*) < J(GF) = 9(G)*, which
gives the desired inequality. We should point out that Lovasz’s proof does not

generalize to Schrijver’s v/((), i.e. ¥'((G) is not guaranteed to be an upper
bound on O(G).

In certain cases when the graph (i has a great deal of symmetry (to be defined
formally below), the theta function (as well as Schrijver’s 9) reduces to a linear
programming problem. Such situations arise in coding theory, and more pre-
cisely in association schemes (see [46,11]). Consider graphs whose adjacency
matrix can be written as Y.y Di where M C {1,---.l} and Dy, Dy,---, Dy
are n X n 0 — 1 symmetric matrices such that

(1) D0:]7

(11) Zi’:o DZ = ‘]7
(iii) there exist p;jx (0 < 4,7,k <) such that D;D; = D;D; = Y7 pije Dk-



For concreteness, we consider one such example. Given a,b € {0,1}", the
Hamming distance H(a,b) between a and bis simply the number of coordinates
in which they differ. Let A(n,d) = max{|S|: H(a,b) > d for all distinct a,b €
St. A(n,d) represents the maximum number of codewords of a binary code
of length n and minimum distance d. Such a (so-called error-correcting) code
can correct any number of errors less than d/2 introduced during transmission
(see MacWilliams and Sloane [46] for background material). A(n,d) can be
viewed as the stability number of the graph G, 4 with vertex set {0,1}" and
two strings being adjacent if their Hamming distance is between 1 and d-1.
G, q arises from the Hamming association scheme, in which adjacency in D
corresponds to pairs of strings having Hamming distance exactly .

In a seminal paper, Delsarte [15] introduced a beautiful and powerful linear
programming approach to upper bound a(G) for graphs arising from associa-
tion schemes. In the case of the Hamming scheme, given any binary code S of
length n with minimum distance d, consider the vector  with 2" components
defined by x, = ﬁH(a,b) €ESxS:a—b=v (mod 2)}| for any v € {0,1}".
x is called the inner distribution of S. Observe that o = 1, and 3, , = |5].
Moreover, for any w € {0,1}", we have that

Z (_1)Uwav:|1?|( Z (—1)(a_b)Tw — L (_1)aTw(_1)bT

ve{0,1}7 a,b)eSxS |S| (a,b)eSXS

= |1§| (Z<—1>“Tw)2 >0,

a€S

by definition of x, and the fact that (—1)* only depends on the parity of k.
(For any w € {0,1}", the vector (—l)va is actually an eigenvector of G, 4
(for any d).) We can thus obtain an upper bound on a(G,, 4) by solving

max Z Ty (7)

subject to:
S (=), >0 w e {0,1}"
ve{0,1}n
xo=1,2,>0 ve{0,1}"
z, =0 0<|v| <d,

where |v| represents the weight of v (the number of 1’s in v). This is a huge
linear program in which the constraint matrix has only +1 coefficients. A more
compact equivalent relaxation can be obtained by observing that, because of
symmetry, we can assume that =, depends only on the weight of v. At the same
time, this allows to write one constraint for each possible weight for w. This
gives a linear program with n+1 variables and n+1 constraints, but with fairly
nasty coefficients (depending on so-called Krawtchouk polynomials). For an



explicit upper bound on A(n,d) based on this linear programming approach,
see [50,49]. In general, for association schemes, the linear program obtained
can be reduced to [ + 1 variables and constraints, where [ + 1 denotes the
number of matrices D;.

Somewhat surprisingly, Schrijver [59] has shown that the above upper bound
is precisely V(G 4) and that if we were to relax the nonnegativity constraints
on x, we would obtain precisely Lovasz’s theta function ¥(G, 4) (see also
McEliece [49]). We will now sketch this equivalence. The fact that the D;’s
commute imply that they share a system of eigenvectors (see e.g. [28]), i.e.
D; = VADVT where AW is a diagonal matrix with the eigenvalues of D;, and
V is independent of j. This implies that the (so-called Bose-Mesner) algebra
spanned by the D;’s consists of all matrices of the form VI'VT where I is a
linear combination of the A)’s. Furthermore, since the vector u of all 1’s is
the unique eigenvector of J (which is spanned by the D;’s) corresponding to
a nonzero eigenvalue, v must also be an eigenvector of D; and thus D; has a
constant row sum that we denote by d; (which is the largest eigenvalue of D).
Suppose that in formulation (2) of ¥}, we restrict our attention to matrices Y in

this Bose-Mesner algebra: Y = (Y'_y 2;D;)/n (where we have normalized by
n for simplicity). Observe that nTr(Y) = Zé‘:o z;Tr(D;) = xoTr(l) = nao.
Thus (4) reduces to xo = 1, while (3) reduces to #; = 0 for j € M. Since
the eigenvalues of Y™ are simply ( é‘:o :I;j)\gj))/n (t=1,---,n), (5) reduces to

Zé‘:o l’]‘)\(j) > 0 for all ¢. Finally, since J @ D; = nd;, we derive that

7

J(G) > max Z djx; (8)
J¢M
subject to:
J¢M
Lo = 1.

So far, we have only used the commutativity of the D;’s, and not the fact that
D;D; is also in the Bose-Mesner algebra (as is stipulated in the definition of
association schemes). In fact, if we do not assume this latter condition but
only assume commutativity of the D;’s, the value of this linear program may
be strictly smaller than ¢(G) (contradicting an informal claim of McEliece
[49]). For example, for any regular graph i, we can select £ and F3 to be the
adjacency matrices of ¢ and its complement (and E; and Fy commute if ¢
is regular), and the above linear program (with only one nontrivial variable)
can easily be seen to have value 1 — A4 (F2)/Apmin(E2) which can be strictly
less than a(G) (consider the (perfect) cycle Cg for example). However, if 7 is
edge-transitive (i.e. for every pair of edges of (7, there exists an automorphism
mapping one to the other), then one can easily argue that there exists an
optimum solution Y to (2) in the Bose-Mesner algebra, and hence we will



have equality in (8).

Schrijver proved that we also have equality in (8) if (¢ arises from an association
scheme. This is based on additional properties of eigenvalues of association
schemes. He similarly showed that, for association schemes, ¥'(G) is equal to
the value of the linear program (8) in which one adds the constraints a; > 0

for j ¢ M.

Finally, the size of the linear program (8) (or augmented with nonnegative
constraints) can be much reduced for association schemes. Indeed, one can
show (see e.g. [46]) that there are only [+ 1 different eigenspaces for the D,’s,
and thus there are are only [+1 distinct constraints (9). (The constraint corre-
sponding to the largest eigenvalue is actually redundant and can be removed;
the number of constraints is thus only [.) Furthermore, the resulting LP after
adding the inequalities #; > 0 for j ¢ M takes precisely the same form as
Delsarte’s LP (7) (once generalized to association schemes)! See [15,59,49] for
details.

4 Deriving Valid Inequalities

Lovasz and Schrijver [44,45] have proposed a technique for automatically gen-
erating stronger and stronger formulations for integer programs. Because of
space limitation, we can only briefly describe their approach. We also refer the
reader to Sherali and Adams [61], Balas et al. [7], Lovasz [43] for additional
results and related work.

Let P={x € R": Az > 0,0 < 2 <1}, and let Py = conv(P N{0,1}") denote
the convex hull of 0 — 1 solutions. Suppose we multiply a valid inequality
Y civi—d > 0 for P by either 1 —2; > 0 or by z; > 0. We obtain a quadratic
inequality that we can linearize by replacing x;2; by a new variable y;;. But we
haven’t used yet the fact that we are only interested in 0-1 solutions. Observing
that 2 = z; if @; € {0,1}, we can also replace x; by y;;, hence obtaining a
linear (“matrix”) inequality on the entries of Y. Let M(P) denote the set of all
symmetric matrices satisfying all the matrix inequalities that can be derived
in this way, and let N(P) ={z : Y € M(P),z = diag(Y")}, where diag(Y")
denotes the diagonal of Y; thus N(P) is a projection of M(P) and conversely
M(P) can be viewed as an extended formulation for N(P). By construction,

we have that Py, C N(P) C P.

Lovész and Schrijver study the operator N*(-) obtained by repeating N(-)
k times, and show that for any P C R"™ we have N"(P) = F,. They also
prove numerous results on the stable set polytope ST AB(G). They introduce
the N-index of a valid inequality for ST AB(() as the least k such that this

10



inequality is valid for N*(FRAC(G)), where FRAC(G) = {z : z; + z; <
Lif (¢,7) € E,x; > 0forall ¢« € V}. To give a brief sample of their results,
they show that the N-index of a clique constraint on k vertices is k — 2, the
N-index of an odd hole constraint is 1, and the N-index of an odd antihole
constraint on 2k + 1 vertices is k.

They also consider a much stronger (and not so well understood) operator
involving semidefinite constraints. Observe that, for any 0-1 solution z, the
matrix Y defined above as zx? must satisfy Y — diag(Y)diag(Y)? = 0. This
is again an (intractable) quadratic inequality but it can be relaxed to ¥ —
diag(Y)diag(Y)T = 0. Viewing Y — diag(Y )diag(Y)T as a Schur complement
(see e.g. [28]), this is equivalent to

1 diag(Y)T

diag(Y) Y = o)

As a result, defining M, (P) as {Y € M(P) satisfying (10)} and Ny(P) =
{z Y € My (P),x = diag(Y)}, we have that P, C N (P) C N(P) C
P and optimizing a linear objective function over N, (P) can be done via
semidefinite programming. As for N(-), we can define N} (P) and the Ny -index
of a valid inequality for Fy. Lovéasz and Schrijver show that the equivalence
between (weak) optimization and (weak) separation [22,24] implies that one
can optimize (up to arbitrary precision) in polynomial time over N_Ili for any
fixed value of k given a separation oracle for P. For the stable set polytope,
they show that all clique, odd hole, odd antihole, odd wheel, and orthonormal
representation constraints have N,-index equal to 1, implying the polynomial-
time solvability of the maximum stable set problem in any graph for which
these inequalities are sufficient (including perfect graphs, t-perfect graphs,
etc.).

Since N, is at least as strong as N, we know that N} (P) = Fy; however, it is
not known if substantially fewer repetitions of N, would be sufficient to obtain
Py. To the best of our knowledge, no explicit valid inequality has been proved
to have unbounded N,-index for any problem (even though they should exist,
unless P=NP). Consider for example the following (simple looking) polytope
considered by Laurent et al. [37]:

P={eeR":a;+a;+ap <2foralle,j,k0<a<1}
Correspondingly, Pp = {0 < o < 1: Y% x; < 2}. Using similar arguments
as in [45], one can show that >_7 ; x; < 2 has an N-index no less than n — 3,

but its N -index is unknown. Could it be bounded? Or logarithmic in n?7 A
logarithmic bound would follow if one could show that it has bounded N,-

11



index if we start from P = {# € R" : Y ;cqa; < 2 for all [S| =n/2,0 < a <

1.

Another very interesting open problem is related to the matching polytope
(the convex hull of incidence vectors of matchings, which can also be viewed as
the stable set polytope of the line graph). Consider the Edmonds constraints:
Sies i < (]S]=1)/2 for |S] odd. Their N-index is unbounded (as a function
of |S]) as was shown by Lovédsz and Schrijver [45] (and an indirect consequence
of a result of Yannakakis [66]). However, their N;-index is unknown and could
possibly be bounded.

5 The Maximum Cut Problem

Given a graph G = (V| F), the cut 6(5) induced by vertex set S consists of
the set of edges with exactly one endpoint in 5. In the NP-hard maximum cut
problem (MAX CUT), we would like to find a cut of maximum total weight
in a weighted undirected graph. The weight of 6(5) is w(8(5)) = Y.es(s) We-
Throughout this section, we assume that the weights are nonnegative. For a

comprehensive survey of the MAX CUT problem, the reader is referred to
Poljak and Tuza [57].

As with the stable set problem, semidefinite programming seems to provide a
(semi)definite advantage over linear programming for MAX CUT. A classical
linear programming relaxation of the problem (involving cycle constraints, and
based on the fact that any cycle intersects a cut in an even number of edges)
can be arbitrarily close to twice the optimum value [55]. However, semidefinite
programming leads to a much better bound in the worst-case, as was shown
by the author and Williamson [20]. In this section, we discuss this approach.

The maximum cut problem can be formulated as an integer quadratic program.
If welet y; = 1if i € S and y; = —1 otherwise, the value of the cut §(.5) can be
expressed as }(; jer wij%(l —v;y;). Thus, in the spirit of the previous section,
suppose we consider the matrix Y = [y,y;]. This is a positive semidefinite
rank one matrix with all diagonal elements equal to 1. Relaxing the rank one

condition, we derive a semidefinite program giving an upper bound SDP on

OPT:

SDP = max % Z wi; (1 —yi5) (11)
(¢,7)eE
subject to:
yii = 1 eV
Y = [y;;] = 0.
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It is convenient to write the objective function in terms of the (weighted)
Laplacian matrix L(G) = [l;;] of G: l;; = —wy; for all 7 # j and [;; = 32, wy;.
For any matrix Y, we have L(G)oY = 3, e wij(yiity;;j—2yi;) (in particular,
if Y = yy? then we obtain the classical equality y' L(G)y = iy Wii(yi —
y;)?). As a result, the objective function can also be expressed as $L(G) o Y.
The dual of this semidefinite program is SDP = {min{}"; d; : Diag(d) =
L(G)}, where Diag(d) is the diagonal matrix having d as diagonal and all
other entries zero. Manipulating this expression [56], this can also be rewritten
as

SDP = in min - Apaz (L + Diag(u)). (12)

uzl w; =0

This eigenvalue bound was proposed and analyzed by Delorme and Poljak
[14,13]. In their study, they conjectured that the worst-case ratio OPT/SDP is
32/(25+5v/5) ~ 0.88445 and achieved by the 5-cycle. Even though the values
of the semidefinite program (11) and the corresponding eigenvalue bound (12)
are the same, it appears that (11) provides more information (similar to the
fact that a maximum flow provides more information than a minimum cut). By
exploiting (11), Goemans and Williamson [20] derived a randomized algorithm
that produces a cut whose expected value is at least 0.87856 SDP, implying
that OPT/SDP > 0.87856. We describe their random hyperplane technique

and their elementary analysis below.

Consider any feasible solution Y to (11). Since Y admits a Gram representation
(see preliminaries), there exist vectors v; € R? (for some d < n) for i € V such
that y;; = UZ»TU]‘. The fact that y; = 1 implies that the v;’s have unit norm. Let
r be a vector uniformly generated from the unit sphere in R% and consider
the cut induced by the hyperplane {z : r’2 = 0} normal to r, i.e. the cut
§(S) where S = {1 € V : rTv; > 0}. The motivation behind the uniform
choice for r is that the set of matrices B such that BT B =Y is closed under
orthogonal transformations (or informally rotations). Furthermore, observe
that if the matrix Y is of rank one (and thus corresponding to a cut), this
random hyperplane technique would recover the cut with probability 1.

By elementary arguments, one can show that the probability that v; and v,

are separated is precisely 0/, where § = arccos(v] v;) is the angle between v;

and v;. By linearity of expectation, the expected weight of the cut is exactly
given by:
arccos(vlv;)
Elw(8(S)) = > wi—————=. (13)

(7,4)eE

Comparing this expression term by term to the objective function of (11) and
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using the fact that arccos(z)/m > a1(1 — ) where o = 0.87856 - - -, we derive
that E[w(5(5))] > afL(G) e Y. Hence if we apply the random hyperplane
technique to a feasible solution Y of value > (1 — €)SDP (which can be ob-
tained in polynomial time), we obtain a random cut of expected value greater
or equal to a(l — €)SDP > 0.87856 SDP > 0.87856 OPT. Mahajan and
Ramesh [47] have shown that this technique can be derandomized, therefore
giving a deterministic 0.87856-approximation algorithm for MAX CUT.

The worst-case value for OPT/SDP is thus somewhere between 0.87856 and
0.88446, and even though this gap is small, it would be very interesting to
prove Delorme and Poljak’s conjecture that the worst-case is given by the 5-
cycle. This would, however, require a new technique. Indeed, Karloff [31] has
shown that the analysis of the random hyperplane technique is tight, namely
there exists a family of graphs for which the expected weight F[w(4(5)] of the
cut produced is arbitrarily close to o SDP.

Instead of comparing (13) and (11) term by term, Nesterov [52] recently pro-
posed a different analysis proving that E[w(d(5))] > 2(;L(G) e V). Even
though the resulting bound of 2/7 = 0.63661--- is weaker than 0.87856,
the analysis only assumes that L(G) = 0 and not the stronger requirement
that the weights are nonnegative. Furthermore, it has wider applicability

than the term-by-term analysis (see [52]). Letting arcsin(Y') = [arcsin(y;;)],

we can write %E[w((S(S))] = %Z(i,j)eE W arccos(viij) = iz(m‘)eE wi;(m —
2arcsin(v] v;)) = +L(G) e arcsin(Y'). Therefore, to derive Nesterov’s result,

we need to prove that L(G) e (arcsin(Y) — V) > 0. Assuming that L(G) = 0
(which holds if the weights are nonnegative), this result follows from a claim
that arcsin(Y) = Y.

In order to show that arcsin(Y) = Y, we need the following classical definitions
and results. Given two matrices A, B € M,,, the Hadamard product (or Schur
product) of A and B, denoted by Ao B, is the entry-wise multiplication of A
and B, that is the matrix C' = [¢;;] such that ¢;; = a;;b;;. The Schur product
theorem says that if A, B = 0 then Ao B = 0. In particular, this implies that
[afj] = 0 provided that A = [a;;] = 0. Furthermore, if f(z) = co+c1z+c22%+- -+
is an analytic function with nonnegative coefficients and convergence radius
R > 0 then [f(a;;)] = 0 provided that A = [a;;] = 0 and |a;;| < R. We now
derive that arcsin(Y) = Y from f(x) = arcsin(z) — x = 2%3:1;3 + %:){;5 4+
No better approximation algorithm is currently known for MAX CUT. On the
negative side though, Hastad [26] has shown that it is NP-hard to approximate
MAX CUT within 16/174¢ = 0.94117 - - - for any ¢ > 0. Furthermore, Hastad
shows that if we replace the objective function by %Z(m)e,& wi; (1 —yy;) +
% > (i.j)er, Wii(1+yiy;), then the resulting problem is NP-hard to approximate
within 11/12 + ¢ = 0.91666 - - -, while the random hyperplane technique still
gives the same guarantee of o ~ 0.87856.
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Several authors have proposed to strengthen (11) by adding triangle inequali-
ties, requiring that, for any ¢, 5,k € V, y;; =y £ y;x > —1 whenever we have
an even number of minus signs. One of the motivating factor is that these (rel-
atively simple looking, but still hard to analyze) inequalities are sufficient to
describe the cut polytope for the 5-cycle (or any planar graph [8]) provided we
consider all triplets (¢, j, k). If we denote the resulting upper bound by SD P,
no better bound than 0.87856 is known for the worst-case ratio OPT/SDFP’
in general (see Rendl [58] for special cases). The ratio OPT/SDP’ is known
to be equal to 0.96 for the complete graph K, and instances with a slightly
worse gap (~ .957) were obtained by Andress and Cheriyan (private commu-
nication). However, in light of Hastad’s result and the polynomial solvability
of semidefinite programs, worse instances should exist (unless P=NP)!

We have implemented the approximation algorithm and have performed lim-
ited computational testing. The results will be published after more extensive
computational tests. We would like nevertheless to give a preview of some
features of the implementation. First we have noticed that the fact that the
algorithm is randomized is a plus; by generating several hyperplanes, one
typically gets cuts of weight significantly higher than the expected value; the-
oretically speaking, it is however difficult to get an a priori estimate of the
variance of the weight of the cut (which can be zero even if the dimension is
not one, as for an odd cycle). Furthermore, the vectors {v;} typically lie in a
very low-dimensional space (see [9,54,2] and [20] for theoretical explanations),
and as a result, one can often enumerate all possible hyperplane cuts. Finally,
and more importantly, the dual semidefinite program can be exploited very
nicely in a branch-and-bound scheme, and this often allows to prove optimal-
ity of the cut produced for instances with up to 100 vertices. The dual can be
reinterpreted as follows:

>t
;

2
SDP:imin{‘ :uiTuj:wij for all (i,j)EE},

and the vectors u; can be obtained by a Cholesky decomposition. The fact that
this expression is an upper bound on OPT is obvious: given a cut 6(95), its
weight is equal t0 Yies ¥ g5 wij = (Dies wi) (Cjeswj) = (0 + )" (b—2) =
LI = [[2]2) < HbIE where b = Sty us and @ = Sies i — Sygs u
Observe that we used a trivial bound on ||z||* = X, 2} > 0. If we can prove
that, no matter how V' is partitioned into S and V' — S |zx| is at least &g, then
we can refine our upper bound to SDP — Y, 6%. In particular, if coordinate k
of w; is zero for all but one vector then we can trivially let §x = |x¢|. This may
seem trivial, but it leads to a powerful branch-and-bound scheme. First, since
the wu;’s are obtained by a Cholesky decomposition, we can assume that only
the first 7 components of u; are nonzero. In our branch-and-bound procedure,
any node at level n — [ corresponds to an assignment 7 : {{+1,{+2,--- n} —
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{0, 1} where 7(v) indicates if v is constrained to be in S or in V — 5. Therefore,
for cuts corresponding to this node, we can let §; = |z;| for & > [ and 6, = 0
otherwise, where z = 375 i)=1 i — Zispr(iy=o wi- The main advantage of
this procedure is that the computation of these improved upper bounds is
negligible (once we have solved the semidefinite program at the root node);
we can therefore explore a very large number of nodes (easily a billion). This
branch-and-bound code often allows to prove optimality of the best hyperplane
cut generated, especially for problems with up to 100 vertices; in these cases,
the branch-and-bound procedure typically takes less time than the solution
of the initial semidefinite program. Details and extensive computational tests
will be given in a forthcoming experimental paper.

The results described in this section have been extended and generalized
to other combinatorial optimization problems: the maximum dicut problem
and the maximum 2-satisfiability problem [20,18], the problem of coloring 3-
colorable graphs [30], the maximum k-cut and maximum bisection problems
[19], and the betweenness problem [12].

6 Embeddings of Finite Metric Spaces

We would like to conclude with some open problems related to the power of
semidefinite programming for the sparsest cut problem. This is a fascinating
area but, unfortunately, we will be able to explore only the tip of the iceberg.

We first collect some results on finite metric spaces; references for most results
mentioned here can be found in the new book of Deza and Laurent [16]. A
(finite) (semi)-metricd : V x V — R on V satisfies d(i,7) = 0 for all « € V,
dij = dj; for all 1,7 € V, and d;; + d;i, > diy, for all 4,5,k € V. d is said
to be [,-embeddable if there exists z; & R* (1 € V) for some k such that
d(i,7) = ||e; — x;||p; similarly, d is [,-embeddable with distortion ¢ if there
exists z; € R? such that d(i,7) < ||z; — 7j||, < ¢d(i,7). Any (finite) metric
d is [-embeddable, and deciding if d is [;-embeddable is NP-hard. Any [5-
embeddable metric is in fact /;-embeddable (a random projection onto a line
similar to the random hyperplane technique can be seen to imply this result).
It is also known that d is l;-embeddable iff P = [p;;] = [d}; + d}, — d};] = 0
(this is independent of the choice of 1 € V'), and thus the [-embeddability can
be tested in polynomial time. Moreover, finding the (square of the) smallest
distortion for an ly;-embedding of d is therefore a semidefinite program [40]:
min{t : df; < xy; < tdf; for all 4, j, [x1; + 215 — xy5] = 0}. Bourgain [10] has
shown that any finite metric on n points can be embedded with distortion
O(log n) into Iy (and thus also ly); it would be nice to prove this result from
semidefinite programming duality. An interesting open problem in this area is
whether any [;-embeddable metric on n points can be embedded into [, with

16



distortion O(y/logn) (and this would be tight because of the d-dimensional
hypercube).

Let K = {X = [z;;] € S?: [#1; + @1; — x35] = 0}, where S? denotes symmetric
n X n matrices with zero elements on the diagonal. Thus d is [;-embeddable
if [d};] € K. 1f D = [d;;] € K and d is a metric then d is called a negative type
metric; the requirement that d is a metric now translates into the fact that
the angle between any three points of the ly-embedding of the metric v/d is
either acute or right. Any [;-embeddable metric can be seen to be of negative
type. Finding the best negative type metric subject to linear constraints can
therefore be solved in polynomial time through semidefinite programming.
(As an exercise, the reader can reinterpret the bounds on the maximum cut
problem in terms of negative type metrics.) One can show that K is a pointed
closed convex cone, and its polar can be expressed nicely as:

K*={Y € 52: L(Y) =0} (14)

where L(Y') is the Laplacian of Y.

w(3(S))
IS[IV -3
in a (nonnegatively weighted) undirected graph G = (V| E). Since the cone
generated by incidence vectors of cuts (also called cut metrics) is precisely the

In the sparsest cut problem, we would like to find a cut minimizing

[;-embeddable metrics, the problem reduces to

Idrélln{ Z wijdij . ZZdU = 1}
1 ( i

i,j)EE

If we relax the requirement that d is [;-embeddable to simply being a metric,
we obtain a linear programming relaxation (whose dual is a multicommodity
flow problem) of the sparsest cut problem. Leighton and Rao [38] show that
this relaxation is always within O(logn) of the optimum sparsest cut, and
recently Linial et al. [40] (see also [6]) used Bourgain’s result [10] to generalize
this result. Moreover, the logarithmic ratio is tight as is shown by constant
degree expander graphs.

If instead we relax the [;-embeddability of d to membership in A" (and not
even impose that d is a metric), we obtain the following linear program over
the cone K:

Z = mm{ Z wijdij : ZZdU = 1,d € I(}.
J

(i.y)€E i

By duality over cones (see preliminaries) and (14), this is equivalent to

z=max{\: L(G) = AL(J — 1) = 0}.

17



Using the facts that L(J — I) = nl — J and that the vector of all 1’s is an
eigenvector of both L(G) and .J, this dual can be shown to be equivalent to
a well-known eigenvalue bound [3,5,62]: z = LA;(L(()). See these references
for relations between z and the value of the sparsest cut.

Finally, we could impose that d is a negative type metric, therefore getting a
lower bound on the sparsest cut which is stronger than both the LP relaxation
and the eigenvalue bound. Using duality and (14), we can express this bound
in many different ways, and we leave this as an exercise for the reader. The
most interesting question though is the worst-case ratio between the sparsest
cut and this lower bound. If one could show that negative type metrics can be
embedded into [y with O(y/log n) distortion (or possibly even into /; within a
constant), this would give a worst-case ratio that is O(y/log n) (resp. constant).
This is a very intriguing question.
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