
Adaptivity and Approximation for Stochastic Packing Problems∗

Brian C. Dean† Michel X. Goemans‡ Jan Vondrák§

Abstract

We study stochastic variants of Packing Integer Programs
(PIP) — the problems of finding a maximum-value 0/1
vector x satisfying Ax ≤ b, with A and b nonnegative.
Many combinatorial problems belong to this broad class,
including the knapsack problem, maximum clique, stable
set, matching, hypergraph matching (a.k.a. set packing), b-
matching, and others. PIP can also be seen as a “multi-
dimensional” knapsack problem where we wish to pack a
maximum-value collection of items with vector-valued sizes.
In our stochastic setting, the vector-valued size of each item
is known to us apriori only as a probability distribution,
and the size of an item is instantiated once we commit to
including the item in our solution.

Following the framework of [3], we consider both adap-
tive and non-adaptive policies for solving such problems,
adaptive policies having the flexibility of being able to make
decisions based on the instantiated sizes of items already in-
cluded in the solution. We investigate the adaptivity gap for
these problems: the maximum ratio between the expected
values achieved by optimal adaptive and non-adaptive poli-
cies. We show tight bounds on the adaptivity gap for set
packing and b-matching, and we also show how to find effi-
ciently non-adaptive policies approximating the adaptive op-
timum. For instance, we can approximate the adaptive op-
timum for stochastic set packing to within O(d1/2), which is
not only optimal with respect to the adaptivity gap, but it is
also the best known approximation factor in the determinis-
tic case. It is known that there is no polynomial-time d1/2−ε-
approximation for set packing, unless NP = ZPP . Simi-
larly, for b-matching, we obtain algorithmically a tight bound
on the adaptivity gap of O(λ) where λ satisfies

P

λbj+1 = 1.
For general Stochastic Packing, we prove that a simple

greedy algorithm provides an O(d)-approximation to the
adaptive optimum. For A ∈ [0, 1]d×n, we provide an O(λ)-
approximation where

P

1/λbj = 1. (For b = (B, B, . . . , B),
we get λ = d1/B.) We also improve the hardness results
for deterministic PIP: in the general case, we prove that a
polynomial-time d1−ε-approximation algorithm would imply
NP = ZPP . In the special case when A ∈ [0, 1]d×n and
b = (B,B, . . . , B), we show that a d1/B−ε-approximation

∗Research supported in part by NSF contracts ITR-0121495

and CCR-0098018.
†M.I.T., CSAIL, Cambridge, MA 02139. bdean@mit.edu
‡M.I.T., Dept. of Math. and CSAIL, Cambridge, MA 02139.

goemans@math.mit.edu
§M.I.T., Dept. of Math., Cambridge, MA 02139.

vondrak@math.mit.edu

would imply NP = ZPP . Finally, we prove that it
is PSPACE-hard to find the optimal adaptive policy for
Stochastic Packing in any fixed dimension d ≥ 2.

1 Stochastic Packing

We consider a multidimensional generalization of the
Stochastic Knapsack problem [3] where instead of a
scalar size, each item has a “vector size” in R

d, and
a feasible solution is a set of items such that the total
size is bounded by a given capacity in each component.
This problem can be also seen as the stochastic version
of a Packing Integer Program (PIP), defined in [10]. A
Packing Integer Program is a combinatorial problem in
a very general form involving the computation of a so-
lution x ∈ {0, 1}d satisfying packing constraints of the
form Ax ≤ b where A is nonnegative. This encapsu-
lates many combinatorial problems such as hypergraph
matching (a.k.a. set packing), b-matching, disjoint paths
in graphs, maximum clique and stable set. In general,
Packing Integer Programs are NP-hard to solve or even
to approximate well. We mention the known hardness
results in Section 1.1.

Our stochastic generalization follows the philosophy
of [3] where items have independent random sizes which
are determined and revealed to our algorithm only after
an item is chosen to be included in the solution. Before
the algorithm decides to insert an item, it only has
some information about the probability distribution of
its size. In the PIP problem, the “size” of an item is
a column of the matrix A, which we now consider to
be a random vector independent of other columns of A.
Once an item is chosen, the size vector is fixed, and the
item cannot be removed from the solution anymore. An
algorithm whose decisions depend on the observed size
vectors is called adaptive; an algorithm which chooses
an entire sequence of items in advance is non-adaptive.

Definition 1.1. (PIP) Given a matrix A ∈ R
d×n
+ and

vectors ~b ∈ R
d
+, ~v ∈ R

n
+, a Packing Integer Program

(PIP) is the problem of maximizing ~v · ~x subject to

A~x ≤ ~b and ~x ∈ {0, 1}d.

Definition 1.2. (Stochastic Packing) Stochastic
Packing (SP) is a stochastic variant of a PIP where
A is a random matrix whose columns are independent

random vectors, denoted ~S(1), . . . ~S(n). A feasible

solution is a set of items F such that
∑

i∈F
~S(i) ≤ ~b.

The value of ~S(i) is instantiated and fixed once we
include item i in F . Once this decision is made,
the item cannot be removed. Whenever the condition
∑

i∈F
~S(i) ≤ ~b is violated, no further items can be

inserted, and no value is received for the overflowing
item.

We consider 4 classes of Stochastic Packing prob-
lems: (1) General Stochastic Packing where no restric-
tions are placed on item sizes or capacity; by scaling,
we can assume that ~b = (1, 1, . . . , 1). (2) Restricted

Stochastic Packing where ~S(i) have values in [0, 1]d and
~b ∈ R

d, bj ≥ 1. (3) Stochastic Set Packing where ~S(i)

have values in {0, 1}d and ~b = (1, 1, . . . , 1). (4) Stochas-

tic b-matching where ~S(i) have values in {0, 1}d and
~b ∈ Z

d, bj ≥ 1.

Definition 1.3. An adaptive policy for a Stochastic
Packing problem is a function P : 2[n] × R

d
+ → [n].

The interpretation of P is that given a configuration
(A,~b) where A represents the items still available and ~b

the remaining capacity, P(A,~b) determines which item
should be chosen next among the items in A.

A non-adaptive policy is a fixed ordering of items to
be inserted.

For an instance of Stochastic Packing, let ADAPT
denote the maximum possible expected value achieved by
an adaptive policy, and NONADAPT the maximum
possible expected value achieved by a non-adaptive pol-
icy.

Given a Stochastic Packing problem, we can ask
several questions. The first one is, what is the optimum
adaptive policy? Can we find or characterize the
optimum adaptive policy? Next, we can ask, what
is the benefit of adaptivity and evaluate the adaptivity
gap – the ratio between the expected values of optimal
adaptive and non-adaptive policies? Note that such
a question is independent of any complexity-theoretic
assumptions; it refers merely to the existence of policies,
which may not be computable efficiently. We can also
try to find algorithmically a good non-adaptive policy,
which approximates the optimal adaptive policy within
some factor. In the single-dimensional case, we proved
that the adaptivity gap is bounded by a constant factor,
and the non-adaptive solution can be achieved by a
simple greedy algorithm [3].

1.1 Known results. Stochastic Packing in this form
has not been considered before. We build on the
previous work on Packing Integer Programs, which was
initiated by Raghavan and Thompson [10], [9]. They

proposed an LP approach combined with randomized
rounding, which yields an O(d)-approximation for the
general case [10]. For the case of Set Packing, their
methods yield an O(

√
d)-approximation. For general

~b parametrized by B = min bi, there is an O(d1/B)-
approximation for A ∈ [0, 1]d×n and an O(d1/(B+1))-
approximation for A ∈ {0, 1}d×n. The greedy algorithm
gives a

√
d-approximation for Set Packing [5].

This is complemented by the hardness results of
Chekuri and Khanna [1] who show that a d1/(B+1)−ε-

approximation for the b-matching problem with ~b =
(B, B, . . . , B) would imply NP = ZPP (using H̊astad’s
result on the inapproximability of Max Clique [6]). For
A ∈ [0, 1]d×n and real B ≥ 1, they get hardness
of d1/(bBc+1)−ε-approximation; this still leaves a gap
between O(d1/B) and d1/(B+1)−ε for B integer, in
particular a gap between d1/2−ε and O(d) in the general
case.

The analysis of the randomized rounding tech-
nique has been refined by Srinivasan [11] who presents
stronger bounds; however, the approximation factors
are not improved in general (and this is essentially im-
possible due to [1]).

1.2 Our results. We prove bounds on the adaptivity
gap and we also present algorithms to find a good non-
adaptive solution. Our results are summarized in the
table below. In the table, GP = General Packing,
SP = Set Packing, RP = Restricted Packing, BM =
b-matching and previously known results are within
square brackets.

Determ. Inapprox- Adaptivity Stochastic
approx. imability gap approx.

GP [O(d)] d1−ε Ω(
√

d) O(d)

RP [O
(

d
1
B

)

] d
1
B
−ε Ω

(

d
1

B+1

)

O
(

d
1
B

)

SP [O
(√

d
)

] [d1/2−ε] Θ(
√

d) O(
√

d)

BM [O
(

d
1

B+1

)

] [d
1

B+1
−ε] Θ

(

d
1

B+1

)

O
(

d
1

B+1

)

It turns out that the adaptivity gap for Stochas-
tic Set Packing can be Ω(

√
d), and in the case of b-

matching it can be Ω(λ) where λ ≥ 1 is the solution

of
∑

j 1/λbj+1 = 1. For ~b = (B, B, . . . , B), we get

λ = d1/(B+1). (It is quite conspicuous how these bounds
match the inapproximability of the deterministic prob-
lems, which is seemingly an unrelated notion!) These
instances are described in Section 2.

On the positive side, we prove in Section 4 that a
natural extension of the greedy algorithm of [3] finds a
non-adaptive solution of expected value ADAPT/O(d)
for the general case. For Stochastic Set Packing we can
achieve non-adaptively expected value ADAPT/O(

√
d)

by an LP approach with randomized rounding. The LP
which is described in Section 3 provides a non-trivial up-
per bound on the expected value achieved by any adap-
tive strategy, and our randomized rounding strategy is
described in Section 5. More generally, for stochastic b-
matching we can achieve non-adaptively ADAPT/O(λ)
where

∑

j 1/λbj+1 = 1. For Restriced Stochastic Pack-

ing we get ADAPT/O(λ) where
∑

j 1/λbj = 1 (Sec-

tion 7). Note that for ~b = (B, B, . . . , B), we get
λ = d1/(B+1) for Stochastic b-matching and λ = d1/B

for Restricted Stochastic Packing, i.e. the best approx-
imation factors known in the deterministic case.

In Section 8, we improve the hardness results for de-
terministic PIP: We prove that a polynomial-time d1−ε-
approximation algorithm would imply NP = ZPP , so
our greedy algorithm is essentially optimal even in the
deterministic case. We also improve the hardness re-
sult to d1/B−ε in the case when A ∈ [0, 1]d×n,~b =
(B, B, . . . , B), B ≥ 2 integer.

All our approximation factors match the best re-
sults known in the deterministic case and the hardness
results imply that these are essentially optimal. For
Set Packing and b-matching, we also match our lower
bounds on the adaptivity gap. It is quite surprising
that we can approximate the optimal adaptive policy to
within O(λ) efficiently, while this can be the actual gap
between the adaptive and non-adaptive policies; and un-
less NP = ZPP , we cannot approximate even the best
non-adaptive solution better than this!

Our results only assume that we know the expected
size of each item (or more precisely the truncated mean
size, see Definition 3.1, and the probability that an item
alone fits) rather than the entire probability distribu-
tion. With such limited information, our results are
also tight in the following sense. For Stochastic Packing
and Stochastic Set Packing, there exist instances with
the same mean item sizes for which the optimum adap-
tive values differ by a factor Θ(d) or Θ(

√
d), resp. These

instances are described in Section 6.

2 The benefit of adaptivity

We present examples which demonstrate that for
Stochastic Packing, adaptivity can bring a substantial
advantage (as opposed to Stochastic Knapsack where
the benefit of adaptivity is only a constant factor [3]).
Our examples are simple instances of Set Packing and
b-matching (A ∈ {0, 1}d×n).

Lemma 2.1. There are instances of Stochastic Set
Packing, such that

ADAPT ≥
√

d

2
NONADAPT.

Proof. Define items of type i = 1, 2, . . . , d where items
of type i have size vector ~S(i) = Be(p) ~ei, i.e. a random
Bernoulli variable Be(p) in the i-th component, and 0
in the remaining components (p > 0 to be chosen later).
We have an unlimited supply of items of each type.
All items have unit value and we assume unit capacity
~b = (1, 1, . . . 1).

An adaptive policy can insert items of each type
until a size of 1 is attained in the respective component;
the expected number of items of each type inserted is
1/p. Therefore ADAPT ≥ d/p.

On the other hand, consider a set of items F . We
estimate the probability that F is a feasible solution.
For every component i, let ki denote the number of
items of type i in F . We have:

Pr[Si(F) ≤ 1] = (1 − p)ki + kip(1 − p)ki−1

= (1 + p(ki − 1))(1 − p)ki−1

≤ (1 + p)ki−1(1 − p)ki−1

= (1 − p2)ki−1

and

Pr[||~S(F)||∞ ≤ 1] ≤
d
∏

i=1

(1 − p2)ki−1

≤ e−p2
Pd

i=1
(ki−1) = e−p2(|F |−d).

Thus the probability that a set of items fits decreases
exponentially with its size. For any non-adaptive policy,
the probability that the first k items in the sequence are
inserted successfully is at most e−p2(k−d), and we can
estimate the expected value achieved.

NONADAPT =

∞
∑

k=1

Pr[k items fit]

≤ d +
∞
∑

k=d+1

e−p2(k−d) = d +
1

ep2 − 1
≤ d +

1

p2
.

We choose p = d−1/2 for which we get ADAPT ≥ d3/2

and NONADAPT ≤ 2d.

We generalize this example to an arbitrary integer
capacity vector ~b.

Lemma 2.2. There are instances of Stochastic b-
matching such that

ADAPT ≥ λ

4
NONADAPT

where λ ≥ 1 is the solution of
∑d

i=1 1/λbi+1 = 1.

Proof. Let p ≤ 1 satisfy
∑d

i=1 pbi+1 = 1. Consider the
same set of items that we used in the previous proof,

only the values are modified as vi = pbi+1/(bi +1). The
same adaptive strategy will now insert items of each
type, until it accumulates size bi in the i-th component.
The expected number of items of type i inserted will be
bi/p, and therefore

ADAPT ≥
d
∑

i=1

vi
bi

p
=

1

p

d
∑

i=1

bip
bi+1

bi + 1
≥ 1

2p
.

Consider a set of items F . We divide the items of
each type into blocks of size bi +1 (for type i). Suppose
that the number of blocks of type i is ki. We estimate
the probability that F is a feasible solution; we use the
fact that each block alone has a probability of overflow
pbi+1, and these events are independent:

Pr[Si(F) ≤ bi] ≤ (1 − pbi+1)ki ≤ e−kip
bi+1

,

Pr[~S(F) ≤ ~b] ≤ e−
P

kip
bi+1

.

Now we express this probability as a function of the
value of F . We defined the blocks in such a way that
a block of type i gets value pbi+1, and

∑

kip
bi+1 is

the value of all the blocks. There might be items of
value less than pbi+1 of type i, which are not assigned
to any block. All these together can have value at
most 1 (by the definition of p). So the probability
that the non-adaptive policy fits a set of value at least
w is Ψ(w) ≤ min{e1−w, 1}. Now we can estimate the
expected value achieved by any non-adaptive policy:

NONADAPT =

∫ ∞

0

Ψ(w)dw ≤ 1 +

∫ ∞

1

e1−wdw = 2.

It follows that the adaptivity gap is at least 1/4p = λ/4

where λ satisfies
∑d

i=1 1/λbi+1 = 1.

As a special case, for ~b = (B, B, . . . , B), the lemma
holds with λ = d1/(B+1), which is the adaptivity gap for
stochastic b-matching that we claimed. In Section 5, we
prove that for Set Packing and b-matching, these bounds
are not only tight, but they can be actually achieved by
a polynomial-time non-adaptive policy.

On the other hand, the best lower bound we have on
the adaptivity gap in the general case is Ω(

√
d) (from Set

Packing), and we do not know whether this is the largest
possible gap. Our best upper bound is O(d), as implied
by the greedy approximation algorithm (Section 4).

3 Bounding an adaptive policy

In this section, we introduce a linear program which
allows us to upper bound the expected value of any
adaptive policy. This is based on the same tools that we
used in [3] for the 1-dimensional case. This LP together
with randomized rounding will be used in Section 5 to
design good non-adaptive policies.

Definition 3.1. For an item with random size vector
~S, we define the truncated mean size ~µ by components
as

µj = E[min{Sj , 1}].
For a set of items A, we write ~µ(A) =

∑

i∈A ~µ(i).

The following lemma can be proved using the same
martingale argument that we used in [3]. Here, we show
an alternative elementary proof.

Lemma 3.1. For any adaptive policy, let A denote the
(random) set of items that the policy attempts to insert.

Then for each component j, E[µj(A)] ≤ bj + 1 where ~b
is the capacity vector.

Proof. Consider component j. Denote by M(c) the
maximum expected µj(A) for a set A that an adaptive
policy can possibly try to insert within capacity c in the
j-th component. (For now, all other components can
be ignored.) We prove, by induction on the number of
available items, that M(c) ≤ c + 1.

Suppose that an optimal adaptive policy, given
remaining capacity c, inserts item i. Denote by fit(i, c)
the characteristic function of the event that item i fits
(Sj(i) ≤ c) and by s(i) its truncated size (s(i) =
min{Sj(i), 1}). We have

M(c) ≤ µj(i) + E[fit(i, c)M(c− s(i))]

= E[s(i) + fit(i, c)M(c− s(i))]

and using the induction hypothesis,

M(c) ≤ E[s(i) + fit(i, c)(c − s(i) + 1)]

= E[fit(i, c)(c + 1) + (1 − fit(i, c))s(i)] ≤ c + 1,

completing the proof.

We can bound the value achieved by any adaptive
policy using a linear program. Even though an adaptive
policy can make decisions based on the observed sizes of
items, the total probability that an item i is inserted by
the policy is determined beforehand — if we think of a
policy in terms of a decision tree, this total probability
is obtained by averaging over all the branches of the
decision tree where item i is inserted, weighted by
the probabilities of executing those branches (which
are determined by the policy and distributions of item
sizes). We do not actually need to write out this
probability explicitly in terms of the policy. Just denote
by xi the total probability that the policy tries to insert
item i.

Definition 3.2. We define the “effective value” of
each item i as wi = vi Pr[item i alone fits].

Conditioned on item i being inserted, the expected
value for it is at most wi. Therefore, the expected value
achieved by the policy is at most

∑

i xiwi. The expected
size inserted is E[~µ(A)] =

∑

i xi~µ(i). We know that for
any adaptive policy this is bounded by bj +1 in the j-th
component, so we can write the following LP:

V = max

{

∑

i

xiwi :

∑

i xiµj(i) ≤ bj + 1 ∀j
0 ≤ xi ≤ 1 ∀i

}

.

In this extended abstract, we will be using this LP only
for our special cases in which an item always fits when
placed alone, i.e. wi = vi.

Note the similarity between this LP and the usual
linear relaxation of the deterministic packing problem.
The only difference is that we have bj + 1 instead of
bj on the right-hand side, and yet this LP bounds the
performance of any adaptive policy — as we have seen
in Section 2, a much more powerful paradigm in general.
We will put this linear program to use in Section 5. We
summarize:

Lemma 3.2. ADAPT ≤ V .

4 The greedy algorithm

A straightforward generalization of the greedy algo-
rithm from [3] gives an O(d)-approximation algorithm
for General Stochastic Packing. Let’s go briefly over the
main points of the analysis.

Remember that, in the general case, we can assume
by scaling that~b = (1, 1, . . . , 1). Then a natural measure
of multidimensional size is the l1 norm of the mean size
vector:

||~µ(A)||1 =

d
∑

j=1

µj(A).

The reason to use the l1 norm here is that it bounds
the probability that a set of items overflows. Also, the
l1 norm is easy to work with, because it’s linear and
additive for collections of items.

Lemma 4.1. Pr[||~S(A)||∞ ≤ 1] ≥ 1 − ||~µ(A)||1.

Proof. For each component, Markov’s inequality gives
us Pr[Sj(A) ≥ 1] = Pr[min{Sj(A), 1} ≥ 1] ≤
E[min{Sj(A), 1}] ≤ µj(A), and by the union bound

Pr[||~S(A)||∞ ≥ 1] ≤∑d
j=1 µj(A) = ||~µ(A)||1.

We set a threshold σ ∈ (0, 1) and we define heavy
items to be those with ||~µ(i)||1 > σ and light items those
with ||~µ(i)||1 ≤ σ.

The greedy algorithm.

Take the more profitable of the following:

• A single item, achieving

m1 = max
i

vi Pr[||~S(i)||∞ ≤ 1].

• A sequence of light items, in the order of decreasing
vi/||~µ(i)||1. This achieves expected value at least

mG =
n∗

∑

k=1

vk(1 − Mk)

where Mk =
∑k

i=1 ||~µ(i)||1, and n∗ = max{k :
Mk < 1}.

We employ the following two lemmas from [3], in
which we only replace µ by ||~µ||1 (which works thanks
to Lemma 4.1). As in [3], we set σ = 1/3.

Lemma 4.2. For σ = 1/3, the expected value an adap-
tive policy gets for heavy items is

E[v(H)] ≤ E[|H ′|] m1 ≤ 3E[||~µ(H ′)||1] m1

where H ′ is the set of heavy items the policy attempts
to insert.

Lemma 4.3. For σ = 1/3, the expected value an adap-
tive policy gets for light items is

E[v(L)] ≤ (1 + 3E[||~µ(L)||1]) mG.

We observe that for the random set A′ that an
adaptive policy tries to insert, Lemma 3.1 implies

E[||~µ(A′)||1] =

d
∑

j=1

E[µj(A
′)] ≤ 2d.

Therefore E[||~µ(H ′)||1] + E[||~µ(L)||1] ≤ 2d and we get
the following.

Theorem 4.1. The greedy algorithm for Stochastic
Packing achieves expected value at least GREEDY =
max{m1, mG}, and

ADAPT ≤ (1 + 6d) GREEDY.

This also proves that the adaptivity gap for Stochas-
tic Packing is at most O(d). It remains an open question
whether the gap can actually be Θ(d). Our best lower
bound is Ω(

√
d), see Section 2.

5 Stochastic Set Packing and b-matching

As a special case, consider the Stochastic Set Packing
problem. We have seen that in this case the adaptivity
gap can be as large as Θ(

√
d). We prove that this

is indeed tight. Moreover, we present an algorithmic

approach to find an O(
√

d)-approximate non-adaptive
policy.

Our solution will be a fixed collection of items —
that is, we insert all these items, and we collect a
nonzero profit only if all the respective sets turn out to
be disjoint. The first step is to replace the l1 norm by a
stronger measure of size, which allows one to estimate
better the probability that a collection of items is a
feasible solution.

Definition 5.1. For a set of items A,

µ̂(A) =
∑

{i,j}∈(A

2)

~µ(i) · ~µ(j).

Lemma 5.1. For a set of items A with size vectors in
{0, 1}d,

Pr[||~S(A)||∞ ≤ 1] ≥ 1 − µ̂(A).

Proof. A set of items can overflow in coordinate l only
if at least two items attain size 1 in that coordinate. For
a pair of items {i, j}, the probability of this happening
is µl(i)µl(j). By the union bound:

Pr[Sl(A) > 1] ≤
∑

{i,j}∈(A
2)

µl(i)µl(j),

P r[||~S(A)||∞ > 1] ≤
∑

{i,j}∈(A
2)

~µ(i) · ~µ(j) = µ̂(A).

Now we use the LP formulation introduced in
Section 3. Since we can solve the LP in polynomial
time, we can assume that we have a solution ~x such that
||
∑

xi~µ(i)||∞ ≤ 2, and V =
∑

xiwi =
∑

xivi bounds
the expected value of any adaptive policy (Lemma 3.2).
We can also assume that the value of any item is at most
β√
d
V for some fixed β > 0, otherwise the most valuable

item alone is a
√

d
β -approximation of the optimum.

We sample a random set of items F , item i indepen-
dently with probability qi = α√

d
xi. Constants α, β will

be chosen later. We estimate the expected value that
we get for the set obtained in this way. Note that there
are “two levels of expectation” here: one related to our
sampling, and another to the resulting set being used
as a solution of a stochastic problem. The expectation
denoted by E[] in the following computation is the one
related to our sampling. Using Lemma 5.1, we can lower
bound the expected value obtained by inserting set F
by v(F)(1 − µ̂(F)). The expectation of this value with
respect to our random sampling is:

E[v(F)(1 − µ̂(F))]

= E







∑

i∈F

vi −
∑

i∈F

vi

∑

{j,k}∈(F
2)

~µ(j) · ~µ(k)







= E

[

∑

i∈F

vi

]

−E







∑

{j,k}∈(F
2)

(vj + vk)~µ(j) · ~µ(k)







−E







∑

{j,k}∈(F
2)

∑

i∈F\{j,k}
vi~µ(j) · ~µ(k)







≥
∑

i

qivi −
∑

j,k

qjqkvj~µ(j) · ~µ(k)

−1

2

∑

i,j,k

qiqjqkvi~µ(j) · ~µ(k)

≥ α√
d
V − α2β

d3/2
V





∑

j

xj~µ(j)



 ·
(

∑

k

xk~µ(k)

)

− α3

2d3/2
V





∑

j

xj~µ(j)



 ·
(

∑

k

xk~µ(k)

)

≥ α√
d
(1 − 4αβ − 2α2)V ,

where we used vj ≤ β√
d
V and ||∑xj~µ(j)||∞ ≤ 2.

We choose α and β to satisfy α(1− 4αβ− 2α2) = β
and then maximize this value, which yields α2 = (−5 +√

33)/8 and β2 = (11
√

33 − 59)/128. Then
√

d/β <
5.6

√
d is our approximation factor. Using the method

of conditional expectations (on E[v(F)(1−µ̂(F))] which
can be computed exactly), we can also find the set F in
a deterministic fashion. We summarize:

Theorem 5.1. For Stochastic Set Packing, there is a
polynomial-time algorithm which finds a set of items
yielding expected value at least ADAPT/5.6

√
d. There-

fore ADAPT ≤ 5.6
√

d NONADAPT.

This closes the adaptivity gap for the Stochastic Set
Packing problem up to a constant factor, since we know
from Section 2 that it could be as large as 1

2

√
d.

Next, we sketch how this algorithm generalizes to b-
matching, with an arbitrary integer vector ~b. A natural
generalization of µ̂(A) and Lemma 5.1 is the following.

Definition 5.2. For a set of items A,

µ̂~b(A) =

d
∑

l=1

∑

B∈(A
bl+1)

∏

i∈B

µl(i).

Lemma 5.2. For a set of items A with size vectors in
{0, 1}d,

Pr[~S(A) ≤ ~b] ≥ 1 − µ̂~b(A).

Proof. Similarly to Lemma 5.1, a set of items can
overflow in coordinate l, only if bl +1 items attain size 1

in their j-th component. This happens with probability
∏

i∈B µl(i) and we apply the union bound.

Using this measure of size, we apply a procedure
similar to our solution of Stochastic Set Packing. We
solve

V = max

{

∑

i

xivi :

∑

i xiµl(i) ≤ bl + 1 ∀l
0 ≤ xi ≤ 1 ∀i

}

which is an upper bound on the optimum by Lemma 3.2.
We assume that the value of each item is at most β

λV
and we sample F , each item i with probability qi = α

λ xi

where
∑

j 1/λbj+1 = 1; α, β > 0 to be chosen later. We
estimate the expected value of F :

E[v(F)(1 − µ~b(F))]

= E

[

∑

i∈F

vi

]

−
d
∑

l=1

E







∑

B∈(F
bl+1)

∑

i∈B

vi

∏

j∈B

µl(j)







−
d
∑

l=1

E







∑

B∈(F
bl+1)

∑

i∈F\B

vi

∏

j∈B

µl(j)







≥
∑

i

qivi −
β

λ
V

d
∑

l=1

(bl + 1)
∑

|B|=bl+1

∏

j∈B

qjµl(j)

−
d
∑

l=1

∑

i

qivi

∑

|B|=bl+1

∏

j∈B

qjµl(j)

≥ α

λ
V − β

λ
V

d
∑

l=1

1

bl!

(

∑

i

qiµl(i)

)bl+1

−α

λ
V

d
∑

l=1

1

(bl + 1)!

(

∑

i

qiµl(i)

)bl+1

≥ α

λ
V − β

λ
V

d
∑

l=1

1

bl!

(α

λ
(bl + 1)

)bl+1

−α

λ
V

d
∑

l=1

1

(bl + 1)!

(α

λ
(bl + 1)

)bl+1

.

We use Stirling’s formula, (bl + 1)! >
(

bl+1
e

)bl+1
, and

bl! > (bl+1)!

2bl+1 >
(

bl+1
2e

)bl+1
. Also, we assume 2eα < 1.

E[v(F)(1 − µ~b(F))]

≥ α

λ
V − β

λ
V

d
∑

l=1

(

2eα

λ

)bl+1

− α

λ
V

d
∑

l=1

(eα

λ

)bl+1

≥ α

λ
V − 2eαβ

λ
V

d
∑

l=1

1

λbl+1
− eα2

λ
V

d
∑

l=1

1

λbl+1

=
α

λ
V(1 − 2eβ − eα).

We choose optimally 2eα = −1 +
√

3 and 2eβ =
2−

√
3 which gives an approximation factor of 2eλ/(2−√

3) < 21λ. We can derandomize the algorithm using
conditional expectations provided that all the bl’s are
constant. In that case, we can evaluate E[v(F)(1 −
µ~b(F))] by summing a polynomial number of terms.

Theorem 5.2. For Stochastic b-matching with con-
stant capacity ~b, there is a polynomial-time algorithm
which finds a set of items yielding expected value at
least ADAPT/21λ where λ ≥ 1 is the solution of
∑

j 1/λbj+1 = 1. Therefore

ADAPT ≤ 21λ NONADAPT.

This closes the adaptivity gap for b-matching up
to a constant factor, since we know that it could be
as large as λ/4. In case ~b = (B, B, . . . , B), we get
λ = d1/(B+1). This means that our approximation
factors for Stochastic Set Packing and b-matching are
near-optimal even in the deterministic case where we
have hardness of d1/(B+1)−ε-approximation for any fixed
ε > 0.

6 Limitations when knowing only the mean

sizes

Our algorithms only use knowledge of the truncated
mean sizes of items. Here we show that this knowledge
does not allow to determine the expected value of an
optimal adaptive strategy to within a factor better than
Θ(d) in the general case and Θ(

√
d) in the Set Packing

case.
Consider two instances of General Stochastic Pack-

ing with d items. Item i in the first instance has (deter-
ministic) size 1/(2d) in all components j 6= i and size 1
or 0 with probability 1/2 in component i. In the second
instance, item i has deterministic size equal to the ex-
pected size of item i in the first instance. In the second
instance all d items fit, while in the first the expected
number of items that we can fit is O(1).

In the Set Packing case, consider two different
instances with an infinite supply (or large supply) of
the same item. In the first instance, an item has size
(1, 1, · · · , 1) with probability 1/d and size (0, 0, · · · , 0)
otherwise. In the second instance, an item has size ei

for i = 1, · · · , d with probability 1/d. The expected
size of an item is (1/d, 1/d, · · · , 1/d) in both instances.
In the first instance, any policy will fit 2d − 1 items
in expectation while in the second instance it will get
Θ(

√
d) items by the birthday paradox, for a ratio of

Θ(
√

d).

7 Restricted Stochastic Packing

As the last variant of Stochastic Packing, we consider
instances where the item sizes are vectors restricted to
~S(i) ∈ [0, 1]d and the capacity vector is a given vector
~b ∈ R

d
+ with bj ≥ 1 for all j. Similarly to b-matching,

we prove an approximation factor as a function of the
capacity~b, and we find that our approach is particularly
successful in case of capacity very large compared to
item sizes.

Theorem 7.1. S For Restricted Stochastic Packing
with item sizes ~S(i) ∈ [0, 1]d and capacity ~b, there is
a polynomial-time algorithm which finds a set of items
yielding expected value at least ADAPT/120λ where

λ ≥ 1 is the solution of
∑d

i=1 1/λbi = 1. I.e.,

ADAPT ≤ 120λ NONADAPT.

Proof. Consider the LP bounding the performance of
any adaptive policy:

V = max

{

∑

i

xivi :

∑

i xiµj(i) ≤ bj + 1 ∀j
0 ≤ xi ≤ 1 ∀i

}

.

Assume that vi ≤ β
λV for each item i, for some constant

β > 0 to be chosen later, otherwise one item alone is a
good approximate solution. We find an optimal solution
~x and define

qi =
α

λ
xi,

α > 0 again to be chosen later.
Our randomized non-adaptive policy inserts item i

with probability qi. Let’s estimate the probability that
this random set of items F fits, with respect to both
(independent) levels of randomization - our randomized
policy and the random item sizes. For each j,

E[Sj(F)] =
∑

i

qiµj(i) ≤
α

λ
(bj + 1).

Since this is a sum of [0, 1] independent random vari-
ables, we apply the Chernoff bound (for random vari-
ables with support in [0, 1] as in [7], but we use the
form given in Theorem 4.1 of [8] for the binomial case)
to estimate the probability of overflow (use µ ≤ α(bj +
1)/λ, 1 + δ = bj/µ):

Pr[Sj(F) > bj] <

(

eδ

(1 + δ)1+δ

)µ

<

(

e

1 + δ

)(1+δ)µ

≤
(

eµ

bj

)bj

≤
(

2eα

λ

)bj

and using the union bound,

Pr[∃j; Sj(F) > bj] < 2eα

d
∑

j=1

1

λbj
= 2eα.

Now we estimate the probability that the value of F
is too low. We assume that vi ≤ β

λV and by scaling

we obtain values v′
i = λ

βV vi ∈ [0, 1]. We sample each
of them with probability qi which yields a random sum
W with expectation E[W] =

∑

i qiv
′
i = α/β. Again by

Chernoff bound (extension of Theorem 4.2 of [8]),

Pr

[

W <
1

2
E[W]

]

< e−E[W]/8 = e−α/8β .

We choose α = 1/10 and β = 1/100 which yields
Pr[∃j; Sj(F) > bj] < 2eα < 0.544 and Pr[v(F) <

1
20λV] < e−α/8β < 0.287, which means that with
probability at least 0.169, we get a feasible solution
of value 1

20λV . The expected value achieved by our
randomized policy is at least 1

120λV .
Finally, note that any randomized non-adaptive

policy can be seen as a convex linear combination of
deterministic non-adaptive policies. Therefore, there
is also a deterministic non-adaptive policy achieving
NONADAPT ≥ 1

120λ ADAPT. A fixed set F achieving
expected value at least ADAPT/120λ can be found
using the method of pessimistic estimators applied to
the Chernoff bounds, see [9].

8 Inapproximability of PIP

Here we improve the known results on the hardness of
approximation for PIP. In the general case, it was only
known [1] that a d1/2−ε-approximation, for any fixed
ε > 0, would imply NP = ZPP (using a reduction
from Max Clique). We improve this result to d1−ε.

Theorem 8.1. There is no polynomial-time d1−ε-
approximation algorithm for PIP for any ε > 0, unless
NP = ZPP .

Proof. We use H̊astad’s result on the inapproximability
of Max Clique [6], or more conveniently maximum stable
set. For a graph G, we define a PIP instance: Let
A ∈ R

d×n
+ be a matrix where d = n = |V (G)|, Aii = 1

for every i, Aij = 1/n for {i, j} ∈ E(G) and Aij = 0

otherwise. Let ~b = ~v = (1, 1, . . . 1). It is easy to

see that A~x ≤ ~b for x ∈ {0, 1}n if and only if ~x
is the characteristic vector of a stable set. Therefore
approximating the optimum of this PIP to within d1−ε

for any ε > 0 would imply an n1−ε-approximation
algorithm for maximum stable set, which would imply
NP = ZPP .

This proves that our greedy algorithm (Section 4)
is essential optimal even in the deterministic case. Next
we turn to the case of “small items”, in particular
A ∈ [0, 1]d×n and ~b = (B, B, . . . , B), B ≥ 2 integer. In
this case, we have an O(d1/B)-approximation algorithm

(Section 7) and the known hardness result [1] was that
a d1/(B+1)−ε-approximation would imply NP = ZPP .
We strengthen this result to d1/B−ε.

Theorem 8.2. There is no polynomial-time d1/B−ε-
approximation algorithm for PIP with A ∈ [0, 1]d×n and
~b = (B, B, . . . , B), B ∈ Z+, B ≥ 2, unless NP = ZPP .

Proof. For a given graph G = (V, E), denote by d
the number of B-cliques (d < nB). Define a d × n
matrix A (i.e., indexed by the B-cliques and vertices
of G) where A(Q, v) = 1 if vertex v belongs to clique
Q, A(Q, v) = 1/n if vertex v is connected by an edge
to clique Q, and A(Q, v) = 0 otherwise. Denote the
optimum of this PIP with all values vi = 1 by V . Let
ε > 0 be arbitrarily small, and assume that we can
approximate V to within a factor of d1/B−ε.

Suppose that ~x is the characteristic vector of a
stable set S, |S| = α(G). Then A~x ≤ ~b because in
any clique, there is at most one member of S and the
remaining vertices contribute at most 1/n each. Thus
the optimum of the PIP is V ≥∑v xv = α(G).

If A~x ≤ ~b for some ~x ∈ {0, 1}d, then the subgraph
induced by S = {v : xv = 1} cannot have a clique
larger than B: suppose R ⊆ S is a clique of size B + 1,
and Q ⊂ R is a sub-clique of size B. Then (A~x)(Q)
(the component of A~x indexed by Q) must exceed B,
since it collects 1 from each vertex in Q plus at least
1/n from the remaining vertex in R \ Q. Finally, we
invoke a lemma from [1] which states that a subgraph
on |S| =

∑

v xv vertices without cliques larger than
B must have a stable set of size α(G) ≥ |S|1/B , i.e.
V ≤ (α(G))B .

We assume that we can find W such that
V/d1/B−ε ≤ W ≤ V . Taking a = W1/B , we show that
a must therefore be a n1−ε-approximation to α(G). We
know that a ≤ V1/B ≤ α(G). On the other hand,

a ≥
(V

d1/B−ε

)1/B

≥ α(G)1/B

n1/B−ε
≥ α(G)

n1−ε

where we have used V ≥ α(G), d < nB , and finally
α(G) ≤ n. This proves that a is an n1−ε-approximation
to α(G), which would imply NP = ZPP .

9 PSPACE-hardness of Stochastic Packing

Consider the problem of finding the optimal adap-
tive policy. In [3], we showed how adaptive policies
for Stochastic Knapsack are related to Arthur-Merlin
games. This yields PSPACE-hardness results for cer-
tain questions; namely, whether it is possible to fill the
knapsack exactly to its capacity with a certain proba-
bility, or what is the adaptive optimum for a Stochastic
Knapsack instance with randomness in both size and

value of each item. However, we were not able to prove
that it is PSPACE-hard to find the adaptive optimum
with deterministic item values.

In contrast to the inapproximability results of Sec-
tion 8, here we do not regard dimension d as part of
the input. Let us remark that for deterministic PIP, it
is NP-hard to find the optimum but there is a PTAS
for any fixed d ≥ 1 [4]. For Stochastic Packing, this is
impossible due to the adaptivity gap and limitation of
knowing only the mean item sizes. However, consider a
scenario where the probability distributions are discrete
and completely known. Then we can consider finding
the optimum adaptive policy exactly. Here we prove
that this is PSPACE-hard even for Stochastic Packing
with only two random size components and determinis-
tic values.

For the PSPACE-hardness reduction, we refer to
the following PSPACE-hard problem (see [2], Fact 4.1).

Problem: MAX-PROB SSAT

Input: Boolean 3-cnf formula Φ : {0, 1}2k → {0, 1}
with variables x1, y1, . . . , xk, yk.

P (Φ) = Mx1Ay1Mx2Ay2 . . .MxkAykΦ(x1, y1, . . . xk, yk)

where Mx f(x) = max{f(0), f(1)}
and Ay g(y) = (g(0) + g(1))/2.

Output: YES, if P (Φ) = 1; NO, if P (Φ) ≤ 1/2.

Theorem 9.1. For Stochastic Packing in a fixed di-
mension d ≥ 2, let p̂(V) be the maximum probability
that an adaptive policy inserts successfully a set of items
of total value at least V . Then for any fixed ε > 0, it
is PSPACE-hard to distinguish whether p̂(V) = 1 or
p̂(V) ≤ 3/4.

Proof. We can assume that d = 2. We define a
Stochastic Packing instance corresponding to a 3-cnf
formula Φ(x1, y1, . . . , xk, yk) of m clauses. The 2-
dimensional sizes will have the same format in each
component, [V ARS | CLAUSES], where V ARS have
k digits and CLAUSES have m digits. All digits are in
base 10 to avoid any overflow. It will be convenient to
consider the individual digits as “2-dimensional”, with a
pair of components indexed by 0 and 1. In addition, we
define deterministic item values with the same format
[V ARS | CLAUSES].

For each i ∈ {1, . . . , d}, xi ∈ {0, 1} and fi ∈
{0, 1}, we define a “variable item” Ii(xi, fi) which has
4 possible random sizes indexed by two random bits
yi, ri ∈ {0, 1}:

~s(Ii(xi, fi), yi, ri) = [V ARS(i, fi, ri)|CLAUSES(i, xi, yi)].

V ARS(i, fi, ri) have two (three for i = 1 and one for
i = k) nonzero digits: the i-th most significant digit has
a 1 in the fi-component (in both components for i = 1,
independently of f1), and the (i+1)-th most significant
digit has a 1 in the ri-component, except for i = k. Note
that the policy can choose in which component to place
the fi contribution (for i > 1), while the placement of
the ri contribution is random.

In CLAUSES(i, xi, yi), we get a nonzero value in
the digits corresponding to clauses in which xi or yi

appears. Variable xi contributes 1 to the digit in the
1-component if the respective clause is satisfied by the
value of xi, or in the 0-component if the clause is not
satisfied. Similarly, yi contributes to the clauses where
it appears. If both xi and yi appear in the same clause,
the contributions add up. The values of items Ii(xi, fi)
are defined as

val(Ii(xi, fi)) = [V AR(i) | 0]

where V AR(i) contains a 1 in the i-th digit and zeros
otherwise. Then we define fill-in items Fji (i = 0, 1)
whose size only contains a 1 in the i-component for the
j-th clause digit. For each j, we have 3 items of type
Fj0 and 2 items of type Fj1. Their values are

val(Fji) = [0 | CLAUSE(j)]

which means a 1 marking the j-th clause. The capacity
of the knapsack is

C = [11111111 | 33333333333333]

in each dimension and the target value is also

V = [11111111 | 33333333333333].

Assume that P (Φ) = 1. We can then define
an adaptive policy which inserts one item Ii for each
i = 1, 2, . . . , k (in this order), choosing fi+1 = 1− ri for
each i < k. Based on the satisfying strategy for formula
Φ, the policy satisfies each clause and then adds fill-
in items to achieve value 1 in each digit of V ARS and
value 3 in each digit of CLAUSES.

On the other hand, assume P (Φ) ≤ 1/2. Any
adaptive policy inserting exactly 1 item Ii for each i and
abiding by the standard ordering of items can achieve
the target value only if all clauses are properly satisfied
(because otherwise it would need 3 items of type Fj1 for
some clause), and that happens with probability at most
1/2. However, we have to be careful about “cheating
policies”. Here, “cheating” means either inserting Ii

after Ii+1 or not inserting exactly 1 copy of each Ii.
Consider a cheating policy and the first i for which this
happens. In case Ii is not inserted at all, the policy

cannot achieve the target value for V ARS. In case more
than 1 copy of Ii is inserted or Ii is inserted after Ii+1,
there is 1/2 probability of overflow in the V ARS block
of capacity. This is because the contribution of Ii to the
(i+1)-th digit of V ARS hits a random component, while
one of the two components would have been filled by
Ii+1 or another copy of Ii already. Either way, this leads
to a failure with probability at least 1/2, conditioned on
the event of cheating. In the worst case, the probability
of success of a cheating policy can be 3/4.

Theorem 9.2. For a 2-dimensinal stochastic knapsack
instance, it is PSPACE-hard to maximize the expected
value achieved by an adaptive policy.

Proof. We use the reduction from the previous proof.
The maximum value that any policy can achieve is
V = [11111111 | 33333333333333]. In case of a YES
instance, an optimal policy achieves V with probability
1, whereas in case of a NO instance, it can succeed with
probability at most 3/4. Therefore the expected value
obtained in this case is at most V − 1/4.

References

[1] C. Chekuri and S. Khanna: On multidimensional
packing problems, SIAM J. Computing 33:837–851,
2004.

[2] A. Condon, J. Feigenbaum, C. Lund and P. Shor:
Random debaters and the hardness of approximating
stochastic functions, SIAM J. Comp. 26:369–400, 1997.

[3] B. Dean, M. X. Goemans and J. Vondrák: Approxi-
mating the stochastic knapsack: the benefit of adap-
tivity. To appear in FOCS, 2004.

[4] A.M. Frieze and M.R.B. Clarke: Approximation al-
gorithms for the m-dimensional 0-1 knapsack prob-
lem: worst-case and probabilistic analyses. European
J. Oper. Res. 15:100–109, 1984.

[5] M. Halldórsson: Approximations of weighted indepen-
dent set and hereditary subset problems. J. Graph Al-
gorithms and Applications 4 (1):1–16, 2000.

[6] J.H̊astad: Clique is hard to approximate to within
n1−ε. In FOCS:627–636, 1996.

[7] W. Hoeffding: Probability inequalities for sums of
bounded random variables. Amer. Stat. Assoc. J.
58:13–30, 1963.

[8] R. Motwani and P. Raghavan: Randomized Algo-
rithms, Cambridge University Press 1995.

[9] P. Raghavan: Probabilistic construction of determin-
istic algorithms: approximating packing integer pro-
grams. J. Comp. and System Sci. 37:130–143, 1988.

[10] P. Raghavan and C. D. Thompson: Randomized
rounding: a technique for provably good algorithms
and algorithmic proofs. Combinatorica 7:365–374,
1987.

[11] A. Srinivasan. Improved approximations of packing
and covering problems. In STOC:268–276, 1995.

