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We consider the problem of selecting a core node in a
network under two potentially competing criteria, one
being the sum of the distances to a set of terminals, the
other being the cost of connecting this core node and
the terminals with a Steiner tree. We characterize the
worst-case trade-off between approximation ratios for
the two objectives. Our results, for example, show the
existence of a core node in which both objectives are
simultaneously within 1.37 times their optimum value (if
we were to disregard the other objective). We also con-
sider the problem of minimizing a weighted sum of the
two criteria and perform a worst-case analysis of a sim-
ple and fast heuristic, which does not need to enumerate
possible core locations. This study was motivated by
multimedia applications such as videoconferences or
multiplayer games in which user-dependent information
has to be sent from the users to a core node to be
chosen (at a cost proportional to the sum of the dis-
tances from the core node), and then global information
has to be multicast back from the core node to all users
(at a cost proportional to the Steiner tree cost). © 2004
Wiley Periodicals, Inc. NETWORKS, Vol. 44(3), 179–186 2004
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1. INTRODUCTION

Many new multimedia applications on the Internet ask
for the selection of a meeting point in the network. Such
applications are, for instance, videoconferences or multi-
player games. In both cases, each user sends his personal
data to the meeting point. The role of this particular point is

to gather the information received to create a single com-
posite data flow, which is multicast back to the users. More
generally, there exists a class of multicast routing protocols,
called center-based multicast protocols, which require an
administrative center for each multicast group. In the Core
Based Tree (CBT) protocol ([2]), for instance, if a source
node wants to reach a multicast group, the data flow is first
sent to a core node and then distributed to the group via a
shared tree. Note that, in general, the source does not need
to be a member of the multicast group. However, in this
article we focus on a particular case, called All Receivers
Sources in [3], where the set of senders is (or can be
approximated as) the set of receivers. As mentioned above,
this case is relevant for several multimedia applications.

Empirical analysis has been carried out to measure the
relationship between the choice of the core location and the
performance of the routing scheme (see, i.e., [3], [4], [13]).
The performance of such a scheme is usually evaluated in
terms of delay and bandwidth consumption. For the sake of
simulation, the network is modeled as an undirected graph,
the communication delay between two nodes of the network
is approximated as the number of links on the path used and
the bandwidth consumption is evaluated as the sum of the
data flow on each link.

If the objective is to minimize the average delay between
every pair of users in the group, the optimal routing is
achieved on a shortest path tree rooted at the core. In that
case, each user-core shortest path is used in both directions,
and the optimal location of the core is such as to minimize
the sum of the shortest path lengths between the core and
every user. In Location Theory terminology, we seek the
1-median of the users. However, to minimize the bandwidth
consumption, we must distinguish two different problems.
The first one concerns the optimization of the unicast for-
ward paths between the users and the core. Because each
corresponding data flow is particular to its sender, we must
optimize each user-core path. Therefore, the total bandwidth
consumption of these paths is minimized when the core is
located at the 1-median of the users. The second problem is
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the optimization of the multicast flow from the core to all
the users. Because the core has to send the same data to all
the users, minimizing the bandwidth consumption is equiv-
alent to minimizing the number of edges of the shared tree
spanning the users and the core. In other words, we must
find a minimum Steiner tree spanning the users and the core.
For this problem, an optimal location for the core is any
node on the optimum Steiner tree spanning the users only.

In this article, we consider the problem of locating the
core node v under these two criteria, one being the sum of
the distances between v and the users or terminals (the
“median” criterion), the other being the cost of the Steiner
tree linking v to the terminals (the “Steiner tree” criterion).
Because the 1-median might not be located on an optimum
Steiner tree connecting the terminals, there is some trade-off
between the two criteria. Our main contribution is to give
bounds on this trade-off. To state our result informally, we
show that either the optimum 1-median can be connected to
one of the terminals without increasing much the cost of the
Steiner tree connecting the terminals, or there exists a ter-
minal for which the median criterion is not much more than
for the optimum 1-median. More precisely, let � be the ratio
for the median criterion between the best terminal and the
optimum 1-median, and let � be the ratio of the Steiner tree
cost for connecting the terminals and the optimum 1-median
to the Steiner tree cost for connecting just the terminals. We
can easily show that � � 2, � �

3
2

, and that these values can
be attained. More interestingly, we show that for any (�� , �� )
(1 � �� � 2 and 1 � �� �

3
2
) such that �� � 3 �

1

2���
(the

trade-off function, see Fig. 1), either � � �� or � � �� .
Restating this, if connecting the optimum 1-median to a
Steiner tree on the terminals increases its cost by a factor
greater than �� then we can select one of the terminals as the
core, and the median criterion is no more than �� times the
optimum 1-median value. We actually give a slightly better
trade-off function between � and � in Theorem 1; this is
indicated by a dotted line on Figure 1. Theorem 1, for

example, implies that either � or � is at most (1 � �3)/2
� 1.37. We would like to mention that even simply showing
that � is close to 1 whenever � is close to 2 does not appear
to be trivial.

In terms of bicriteria guarantees, our result can be inter-
preted as saying that, for any (�� , �� ) on the trade-off func-
tion, there exists a core node such that its median criterion
is within �� of the optimum 1-median and the cost of
connecting it to the terminals is at most �� times the cost of
connecting only the terminals. In fact, the above discussion
says that there exists a core node with either a (1, �� )
guarantee (if we end up selecting the 1-median), or with a
(�� , 1) guarantee (if we end up selecting one of the termi-
nals). Bicriteria results have been given for many combina-
torial optimization problems (see, e.g., [6], [10], [12]). In
particular, some problems dealing with trade-offs between
shortest paths and spanning tree costs have been studied in
[1] and [7].

The study of this trade-off function was motivated by the
problem of choosing a core location to minimize the total
bandwidth consumption in a multicast communication on a
shared tree, under the assumption that all receivers are also
sources [3]. Consider, for example, a video-conferencing
session in which every terminal sends a data flow to the core
consuming say one unit of bandwidth, and the core then
multicasts a common virtual scene of bandwidth � back to
the terminals. Typically, � is an increasing function of the
number of terminals and might not even be known in
advance. In the Minimum Bandwidth Cost Core Location
Problem, the goal is to choose a core v so as to minimize the
sum of the distances between v and the terminals plus �
times the Steiner tree cost connecting the core v and the
terminals. This problem was first studied in [8]. The authors
propose an enumeration algorithm that essentially evaluates
the objective function at every potential core location. Ob-
serve that evaluating this objective function is an NP-hard
problem. Computational results are given in [9]. By using a
dual-ascent procedure ([15]) to approximate the Steiner
trees, they show that it is usually sufficient to explore a
small fraction of the graph vertices to obtain good solutions.

If we use a �-approximation algorithm to compute a
Steiner tree in a core enumeration algorithm, we clearly
obtain a �-approximation algorithm for the core location
problem as well. The currently best known approximation
ratio for the Steiner tree problem approaches 1 �

ln 3

2
� 1.55

([11]). However, we use our trade-off results to show that
we can approximate the core location problem with a ratio
of 1 �

�2

4
(slightly worse than �) by approximating only one

instance of the minimum cost Steiner tree problem. In
particular, for � � 1.55, this gives 1.6, while for � � 2
corresponding to a minimum spanning tree heuristic for
which there exist distributed algorithms, we also obtain a
bound of 2.

The remainder of the article is organized as follows.
Section 2 gives the basic definitions. Our trade-off function
is derived in Section 3. We first prove in Section 3.1 the

FIG. 1. Trade-off functions.
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existence of a decomposition of any tree into a small num-
ber of subtrees, each of cost bounded by a fraction of the
original cost of the tree; this is stated precisely in Proposi-
tion 1. In Section 3.2, the next step is to bound the sum of
the distances from any terminal t to the other terminals by
going through the optimum Steiner tree for those terminals
within the same member of the decomposition as t is and
going through the optimum 1-median for the other termi-
nals; this is the essence of Proposition 2. We then apply our
trade-off results to the Minimum Bandwidth Cost Core
Location Problem and prove that approximating only one
Steiner tree is sufficient to obtain a good approximation
ratio. These results are presented in Section 4.

2. BASIC DEFINITIONS AND NOTATIONS

Let G � (V, E, c) be a connected, undirected graph with
edge costs c: E 3 �� and T � V be a particular nonempty
subset of vertices called terminals. Although we have con-
sidered unit costs in the introduction, we carry out our
analysis with arbitrary positive edge costs.

The cost of a subgraph H of G is the sum of the costs of
all edges in H:

c�H� � �
e�E�H�

ce.

The shortest path distance according to the edge costs ce

defines a metric on the vertex set V. The distance between
vertices i and j is denoted by d(i, j). For a subgraph H of
G, dH(i, j) denotes the distance between i and j in H.

For any v � V and S � V, we denote the sum of the
distances between v and the vertices in S by

fS�v� � �
t�S

d�v, t�.

A 1-median for S is a vertex minimizing fS. Whenever S
� T, we simply write f(v) for fT(v). Let v* denote a
1-median for the terminal set T.

For any S � V, a Steiner tree for S is a tree spanning S.
The cost of a minimum cost Steiner tree for S is denoted by
ST(S).

We define � �
f�vT�

f�v*�
, where vT � arg minv�Tf(v). In the

introduction, � was defined to be ST�T�	v*
�

ST�T�
. To make this

quantity more tractable, we observe that ST(T � {v*})
� ST(T) � d(v*, T) where d(v*, T) � minv�Td(v*, v),
and we actually define � to be 1 �

d�v*, T�

ST�T�
. Thus, � is an

upper bound on ST�T�	v*
�

ST�T�
.

3. RELATIONSHIP BETWEEN � AND �

Here we derive our main inequalities between the pa-
rameters � and �.

3.1. Basic Inequalities

We first start by deriving a series of very simple inequal-
ities that in particular show that � � 2 and � �

3
2

.

Lemma 1. If � is a tree spanning S � V then ¥t�S fS(t) �
�S�2

2
c(�).

Proof. We have

�
t�S

fS�t� � �
t,t��S

d�t, t�� � �
t,t��S

d��t, t��

� 2 �
e�E���

ne��S� � ne�ce �
�S�2

2
c���

where ne is the number of vertices of S in a connected
component of ��e. ■

Applying Lemma 1 to the optimum Steiner tree for T, we
derive the following corollary.

Corollary 1. f(vT) �
�T�
2

ST(T).

Lemma 2. � � 1 �
f�v*�

�T�ST�T�
.

Proof. This follows simply from the definition of �

� 1 � d(v*, T)/ST(T) and the fact that d(v*, T) �
1

�T�
f(v*). ■

Corollary 2. � � 1 �
1

2�
. In particular, � �

3
2

.

Proof. From Lemma 2, we have

� � 1 	
f�v*�

�T�ST�T�
� 1 	

f�vT�

��T�ST�T�
� 1 	

1

2�
,

the equality following from the definition of � and the last
inequality from Corollary 1. ■

Lemma 3. � � 2 �
2

�T� .

Proof. Let t* � arg mint�Td(v*, t). Hence, f(v*)

 �T�d(v*, t*) and

f�vT� � f�t*� � �
t�T�	t*


d�t*, t�

� �
t�T�	t*


�d�t*, v*� 	 d�v*, t��

� ��T� � 1�d�t*, v*� 	 �
t�T�	t*


d�v*, t�

� ��T� � 2�d�t*, v*� 	 f�v*� � f�v*��2 �
2

�T��.

■
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The following examples show that inequalities � � 2
and � �

3
2

are asymptotically tight. We adopt the following
convention in Figures 2 and 4: terminals are denoted by
squares and the value k inside some indicates that k termi-
nals lie at the same position. The black node represents the
1-median v* of the terminals. The value close to an edge
represents its cost.

Example 1. Consider the instance depicted in Figure 2(a)
where the terminals lie uniformly on a path of length �T� �
1 and are at distance 1 from v*. Hence, f(v*) � �T�, f(vT)
� 2�T� � 4 (where vT can be any terminal except the
leftmost and rightmost ones), ST(T) � �T� � 1 and ST(T �

{v*}) � �T�. Therefore (�, �) � �2 �
4

�T� , 1 �
1

�T��1
), which

tends to (2, 1) when �T� tends to �.

Example 2. In Figure 2(b), �T� � 2k � 1 and the k
leftmost and k rightmost terminals lie on a same node. One
can verify that f(v*) � 2k � 1 � �, f(vT) � 2k � 1 (where
vT can be any leftmost or rightmost terminal), ST(T) � 2
and ST(T � {v*}) � 3 �

2

k
� �. When k tends to � and �

tends to 0, (�, �) tends to (1, 3
2
).

Corollary 2 shows that � must tend to 1 when � tends to
3
2

. Conversely, it is shown in next section that � must tend
to 1 when � tends to 2.

3.2. Better Inequalities Using Tree Partitions

For our derivation of the trade-off function, we first need
to show the existence of partitions of any tree with a small
number of trees and each of a given bounded size. This is
stated in Proposition 1.

Definition 1. A (�, M)-partition of a weighted tree � is a
collection of M subtrees �i of � whose edge sets E(�i) form
a partition of E(�) and which satisfy c(�i) � �c(�).

Definition 2. A graph H is a subdivision of a graph G if
H is obtained after iterating the following operation on G:
Introduce a new vertex w, pick an edge e � {u, v} and
replace it by two edges f � {u, w} and g � {w, v}. For a
weighted graph G, we impose that the previous operation be
cost preserving, that is, the cost of the new edges must
satisfy cf � cg � ce.

Proposition 1. Let � be a tree. For all 0 � � � 1, there

exists a ��, 2

� � 1�-partition of a subdivision of �.

This result is tight in the sense that, for any positive
integer M, the smallest value one can take for � is indeed

2

M�1
as comes out of Proposition 1. This is shown in the

following example.

Example 3. Consider a star with M � 1 unit length
spokes, as depicted in Figure 3(a). By the pigeonhole prin-
ciple, in any (�, M)-partition of a subdivision of the star,
there exist two leaves lying in the same subtree. By
connectivity, that subtree contains the path of length 2
between the two leaves. Hence, � 


2

M�1
. Figure 3(b)

illustrates a ( 2

M�1
, M� partition.

Proof. We first prove the following claim by induction
on n, the number of leaves of �.

Claim 1. For any value C  0 and any leaf vertex v of �,
there exists a partition of a subdivision of � such that the
subtree containing v has a cost at most C

2
and all other

subtrees have a cost in (C

2
,C].

Proof of the claim. The proof is by induction. The
base case is n � 2. Then � is a path that we partition as
follows: starting from the leaf opposite to v, cut pieces of
cost C and remove them from the path until the remaining
part has a cost less than C. If this cost is at most C

2
, then the

partition is done. Otherwise, do the last cut by considering
{v} as a subtree (of cost 0). This partition fulfills the claim.

Suppose now that the claim is true for all trees with less
than n leaves, where n 
 3. Let w be the closest vertex to
v of degree at least 3. If we cut � in w, we obtain the
following connected components: the (v, w)-path and some
subtrees �i with less than n leaves. For each i, we construct
by induction a partition of �i that fulfills the condition of
the claim with w chosen as the particular leaf. Because the
subtrees of the �i containing w have cost at most C

2
, we can

FIG. 2. Tight examples for � � 2 and � �
3

2
.

FIG. 3. Tight example for Proposition 1.
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merge them into bigger trees such that they all have a cost
in (C

2
, C] except for one of them, which has a cost at most C

2
.

If needed, consider that {w} is that tree. Finally, we extend
the low cost tree on the (w, v)-path and finish the construc-
tion on this path as in the base case. ■

Now consider the partition given by the previous claim
with C � �c(�). Consider the subtree of cost at most �

2

c(�) and another subtree adjacent to it. If the sum of their
cost is less than C � �c(�), merge them. In that case all the
subtrees have cost in (C

2
, C]. Otherwise, remark that the

average of their cost is in (C

2
, C]. Let M be the number of

subtrees obtained by the previous construction. We must

have M �

2
c(�) � c(�). Because M is integer, M � 2

� �

1, as desired. ■

From any (�, M)-partition of the optimum Steiner tree,
we can derive an inequality linking � and � as shown in the
Proposition below. The idea of the proof is to bound the sum
of the distances from any terminal t to the other terminals by
going through the optimum Steiner tree for those terminals
within the same member of the (�, M)-partition as t is and
going through v* for the other terminals.

Proposition 2. If �  1 and if there exists a (�, M)-
partition of a subdivision of the optimum Steiner tree �� on
T for some � and M, then

� � 2 �
2

M
	

�

2�� � 1� M
.

Proof. If M � 1, then � 
 1 and it suffices to prove �

�
1

2���1�
, which is equivalent to Corollary 2. If � 
 4(�

� 1), it suffices to prove � � 2, which is true because of
Lemma 3.

So we can suppose w.l.o.g. that M 
 2 and � � 4(�
� 1). Let us define � � (� � 1) with 0 �  � 4.

Let (�i)i�1 . . . M be the subtrees of � in the (�, M)-
partition. These subtrees naturally induces a partition of T in
M blocks (Bi)i�1 . . . M such that Bi � V(�i). If a terminal
t � T belongs to several subtrees, we arbitrarily choose its
block.

For all i, we have

�Bi�f�vT� � �
t�Bi

f�t� � �
t�Bi

fT�Bi
�t� 	 �

t�Bi

fBi
�t�

� �
t�Bi

�
t��T�Bi

d�t, t�� 	
�Bi�2

2
c��i� by Lemma 1

� �
t�Bi

�
t��T�Bi

�d�t, v*� 	 d�v*, t��� 	
�Bi�2

2
�ST�T�

� �T�Bi�fBi
�v*� 	 �Bi�fT�Bi

�v*� 	
�Bi�2

2
�ST�T�

� ��T� � 2�Bi�� fBi
�v*� 	 �Bi�f�v*� 	

�Bi�2

2
�ST�T�.

We now consider two cases.

CASE 1. If �Bi� �
�T�
2

for all i, we use Lemma 2 and rewrite
the last inequality as:

�Bi�f�vT� � ��T� � 2�Bi�� fBi
�v*� 	 �Bi�f�v*�

	
�Bi�2

2

�

�� � 1��T� f�v*�.

A weighted sum over all i yields

f�vT� �
i�1

M �Bi�
�T� � 2�Bi�

� f�v*��1 	 �
i�1

M �Bi�
�T� � 2�Bi�

	


2�T� �
i�1

M �Bi�2

�T� � 2�Bi�� ,

where  �
�

��1
. Note that 0 �  � 4. Let us do the

following variable substitution: zi �
�T��2�Bi�

�T� or, equiva-

lently, �Bi� � �T� 1�zi

2
. Thus, the zi’s satisfy

0 � zi � 1 and �
i�1

M

zi � M � 2.

Therefore,

� �
f�vT�

f�v*�
�

1 	 �
i�1

M 1 � zi

2zi
	



8 �
i�1

M �1 � zi�
2

zi

�
i�1

M 1 � zi

2zi

� 1 	

1 	


8 ��
i�1

M 1

zi
� 2M 	 M � 2�

1

2 �
i�1

M 1

zi
�

1

2
M

� 1 	
8 	 �Z � M � 2�

4�Z � M�
where Z � �

i�1

M 1

zi

� 1 	


4
	

4 � 

2�Z � M�
.
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Because  � 4, the last term is maximized when Z is
minimum. By Cauchy-Schwarz inequality,

M2 � � �
i�1

M

zi���
i�1

M 1

zi
� � �M � 2� Z.

Hence,

� � 1 	


4
	

�4 � ��M � 2�

4M
� 2 �

2 � / 2

M
,

proving the desired bound.

CASE 2. If �Bi� 

�T�
2

for some i, then for this i, we have

�Bi�f�vT� � ��T� � 2�Bi�� fBi
�v*� 	 �Bi�f�v*� 	

�Bi�2

2
�ST�T�

� ��T� � 2�Bi���Bi��� � 1�ST�T� 	 �Bi�f�v*�

	
�Bi�2

2
�� � 1�ST�T�

using, as in the proof of Lemma 2,
fBi

�Bi�

 d(v*, T) � (�

� 1)ST(T). Hence,

f�vT� � f�v*� 	 �1 � 2
�Bi�
�T� 	



2

�Bi�
�T� � �T��� � 1�ST�T�.

Because f(vT) 
 f(v*), 1 � �2 �


2
)�Bi�

�T� 
 0. Using Lemma
2,  � 4 and M 
 2, we have

� � 2 � �2 �


2� �Bi�
�T� � 2 � �2 �



2� 1

2

� 2 �
2 � / 2

M
,

completing the proof. ■

We can now prove the following inequalities:

Theorem 1. If �  1 then, for all positive integer M,

� � 2 �
2

M
	

1

M�M 	 1��� � 1�
. (1)

In particular,

� � 3 �
1

2 � �
. (2)

The lower envelope of all inequalities (1) corresponds to
the dotted line in Figure 1, while (2) corresponds to the
continuous line in the figure.

Proof. For each positive integer M, there exists a (�,
M)-partition of the optimum Steiner tree �� with � �

2

M�1

by Proposition 1. Proposition 2 immediately yields inequal-
ity (1).

Consider two inequalities (1) with M � n and M � n
� 1, where n is a positive integer. The first inequality is
stronger than the second one if and only if:

2 �
2

n
	

1

n�n 	 1��� � 1�

� 2 �
2

n 	 1
	

1

�n 	 1��n 	 2��� � 1�
,

or equivalently � 
 1 �
1

n�2
. Therefore, each inequality (1)

is the strongest one when � � �1 �
1

M�2
, 1 �

1

M�1
], which

corresponds to � � �2 �
1

M
, 2 �

1

M�1
]. By eliminating the

parameter M, one can easily see that all points (�, �) � �2
�

1

M
, 1 �

1

M�1
) lie on the curve � � 3 �

1

2��
. Observe,

finally, that the right-hand side of inequality (1) is convex in
� and the right-hand side of inequality (2) is concave in �.
This proves the validity of inequality (2). ■

The inequalities of Theorem 1 are not likely to be tight.
The worst examples we know are the following.

Example 4. In the instance depicted in Figure 4, there are
M groups of k terminals plus another M � 1 terminals
between the groups, for a total of kM � M � 1 terminals.
When k tends to �, this can be seen to correspond to (�, �)
� �2 �

2

M
, 1 �

1

2M�2
). For example, for M � 3, this gives (�,

�) � (4
3

, 5
4
).

4. MINIMIZING THE TOTAL BANDWIDTH
CONSUMPTION

As discussed in the introduction, the Minimum Band-
width Cost Core Location Problem is the problem of finding
the best vertex v, which minimizes cost(v) � f(v)
� �ST(T � {v}). This problem, first defined in [8],
models the situation in which the terminals in T indepen-

FIG. 4. Worst known examples.
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dently send one unit of bandwidth to the core, which sends
back � units of bandwidth along a Steiner tree connecting v
and the terminals. The analysis that we provide below does
not make any assumption on �.

Leung and Yum [8] propose an enumeration algorithm
that essentially evaluates the objective function at every
potential core location. If we use a particular �-approxima-
tion algorithm to compute the Steiner tree costs in a core
enumeration algorithm, we clearly obtain a �-approximation
algorithm for the core location problem as well, indepen-
dently of the value of �. The currently best-known approx-
imation ratio for the Steiner Tree problem approaches 1 �
ln 3

2
� 1.55 ([11]). However, we prove in this section that we

can approximate the Minimum Bandwidth Cost Core Lo-
cation Problem with a ratio close to � by computing only
one �-approximation of a minimum cost Steiner tree.
Namely, we consider the following core location algorithm:

CoreLocation

input: A graph G � (V, E, c) and a set of terminals T
� V.

output: A core vertex.

1. Compute a Steiner tree ��� spanning T with a �-ap-
proximation algorithm.

2. Compute v* � arg minv�Vf(v) and cost(v*) � f(v*)
� �(c(���) � d(v*, T)).

3. Compute vT � arg mint�Tf(t) and cost(vT) � f(vT)
� �c(���).

4. If cost(v*) � cost(vT), then return v*, else return
vT.

The main advantage of the algorithm is that we need to
solve only one Steiner tree instance. Indeed, in a real setting,
finding a good Steiner tree is typically the bottleneck in
terms of computation and communication time, whereas the
evaluation of f is fast because the shortest path distances are
usually precomputed and stored in routing tables.

Proposition 3. CoreLocation is a �1 �
�2

4
)-approximation

algorithm of the Minimum Bandwidth Cost Core Location
Problem.

Proof. CoreLocation returns a node vCL with

cost�vCL� � min	 f�v*� 	 ��c����� 	 d�v*, T��, f�vT�

	 �c�����}

� min	 f�v*� 	 ���ST�T� 	 d�v*, T��, f�vT�

	 ��ST�T�)}

� min	 f�v*� 	 ��� 	 � � 1�ST�T�, �f�v*�

	 ��ST�T�}.

Clearly, a lower bound on the minimum cost is given by:

min
v�V

cost�v� 
 f�v*� 	 �ST�T�.

Therefore, if we set

 �
f�v*�

f�v*� 	 �ST�T�
,

for fixed value of � and �, the approximation ratio of
CoreLocation is upper bounded as follows:

cost�vCL�

minv�Vcost�v�

� max
0��1

min	 	 �1 � ��� 	 � � 1�, � 	 �1 � ��
.

(3)

Remark that, if � 
 �, then the second argument of the
minimum in (3) is at most � � 1 �

�2

4
. Thus, we can suppose

w.l.o.g. that � � �. Hence, the first (resp., second) argument
is a nonincreasing (resp. nondecreasing) linear function in
. Also, the first argument is at least (resp. at most) the
second one in  � 0 (resp.  � 1). This implies that the
maximum is attained when  satisfies

 	 �1 � ��� 	 � � 1� � � 	 �1 � ��

N  �
� � 1

� 	 � � 2
.

The upper bound (3) becomes

cost�vCL�

minv�Vcost�v�
�

�� 	 ��� � 1� � �

� 	 � � 2

� � 	
�� � 1��� � ��

� 	 � � 2
. (4)

Observe that the right-hand side of inequality (4) is a
nondecreasing function in � (for � 
 1) because � 
 1 and
� � �. Therefore, by Theorem 1, we can upper bound the
approximation ratio by maximizing the right-hand side of
inequality (4) along the curve � � 3 �

1

2��
. However, to

make this maximization easier, we will first derive a new
inequality:

� � 3 �
1

2 � �
� 3 �

1

1 � �� � 1�

� 3 � �1 	 �� � 1�� � 3 � �.

If we maximize the right-hand side of inequality (4) along
the line � � � � 3, the upper bound becomes:
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cost�vCL�

minv�Vcost�v�
� max

1���2

� 	 �� � 1��� � ��

� max
1���2

��2 	 � � �� � � � �1 	
�

2�
2

� � � 1 	
�2

4
,

where the maximum is attained for � � 1 �
�

2
. ■

Let us look at some particular approximation algorithms
for the Minimum Cost Steiner Tree problem. If we use a
minimum spanning tree algorithm, � � 2 (see [14]). Hence,
by Proposition 3, we obtain a 2-approximation algorithm as
well for the core location problem. So in this case it is
impossible to improve the approximation ratio of CoreLo-
cation by computing other Steiner trees. The minimum
spanning tree problem has also the main advantage to have
distributed algorithms (see [5] for instance), which are
therefore easier to implement in a real network. If we use
the best-known approximation algorithm for the Steiner tree
problem (� � 1.55), then we obtain a ratio of 1.60. Finally,
if we could always compute the optimal Steiner tree span-
ning the terminals, CoreLocation would have an approxi-
mation ratio of 1.25. Note that, by using the inequalities of
Theorem 1 instead of � � � � 3, one can actually prove
that CoreLocation is a 1.2-approximation algorithm when �
� 1 (this is attained for � � 3

2
and � � 4

3
in inequality (4)).
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