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Abstract

We consider the problem of finding a sparse set of edges containing the minimum spanning
tree (MST) of a random subgraph of G with high probability. The two random models that we
consider are subgraphs induced by a random subset of vertices, each vertex included indepen-
dently with probability p, and subgraphs generated as a random subset of edges, each edge with
probability p.

Let n denote the number of vertices, choose p ∈ (0, 1) possibly depending on n and let
b = 1/(1 − p). We show that in both random models, for any weighted graph G, there is a set
of edges Q of cardinality O(n log

b
n) which contains the minimum spanning tree of a random

subgraph of G with high probability. This result is asymptotically optimal. As a consequence,
we also give a bound of O(kn) on the size of the union of all minimum spanning trees of G
with some k vertices (or edges) removed. More generally, we show a bound of O(n log

b
n) on

the size of a covering set in a matroid of rank n, which contains the minimum-weight basis of
a random subset with high probability. Also, we give a randomized algorithm which calls an
MST subroutine only a polylogarithmic number of times, and finds the covering set with high
probability.

1 Introduction

In a variety of optimization settings, one has to repeatedly solve instances of the same problem in
which only part of the input is changing. It is important in such cases to perform a precomputation
that involves only the static part of the input and possibly assumptions on the dynamic part, and
which allows to speed-up the repeated solution of instances. The precomputation could possibly be
computationally intensive.

In telecommunication networks for example, the topology may be considered fixed but the de-
mands of a given customer (in a network provisioning problem) may vary over time. The goal is
to exploit the topology without knowing the demands. The same situation happens in performing
multicast in telecommunication networks; we need to solve a minimum spanning tree or Steiner tree
problem to connect a group of users, but the topology or graph does not change when connecting
different groups of users. Or, in flight reservation systems, departure and arrival locations and times
change for each request but schedules do not (availability and prices do change as well but on a
less frequent basis). Yet another example is for delivery companies; they have to solve daily vehicle
routing problems in which the road network does not change but the locations of customers to serve
do.
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Examples of such repetitive optimization problems with both static and dynamic inputs are
countless and in many cases it is unclear whether one can take advantage of the advance knowledge
of the static part of the input. One situation which has been much studied (especially from a prac-
tical point of view) is the s-t shortest path problem in large-scale navigation systems or Geographic
Information Systems. In that setting, it is too slow to compute the shortest path from scratch when-
ever a query comes in. Various preprocessing steps have been proposed, often creating a hierarchical
view of the network, see for example [7]. Here, we have a modest (but nevertheless challenging) goal,
to study another simple combinatorial optimization problem: the minimum spanning tree (MST),
for instances repeatedly drawn either randomly or deterministically from a fixed given graph.

The MST-covering problem. Assume we are given an edge-weighted graph G = (V, E) with
n vertices and m edges and we would like to (repeatedly) find the minimum-weight spanning tree
of either a vertex-induced subgraph H = G[W ], W ⊆ V (the vertex case) or a subgraph H =
(V, F ), F ⊆ E (the edge case). In general, we need to consider the minimum spanning forest, i.e.
the minimum spanning tree on each component, since the subgraph might not be connected. We
denote this by MST (W ) or MST (F ).

Our primary focus is a random setting where each vertex appears in W independently with
probability p (in the vertex case; we denote W = V (p)); secondly, a setting where each edge appears
in F independently with probability p (in the edge case; we denote F = E(p)). The question we ask
is whether there exists a sparse set of edges Q which contains the minimum spanning forest of the
random subgraph with high probability. This is what we refer to as the MST-covering problem.

We also address a deterministic setting where we assume that W is obtained from V by removing
a fixed number of vertices, or F is obtained from E by removing a fixed number of edges (by a
malicious adversary). Then we seek a sparse set of edges Q containing the minimum spanning
forests of all such subgraphs.

In the above models, if the minimum spanning tree is not unique, we ask that Q contains some
minimum spanning tree. Alternatively, we can break ties by an arbitrary fixed ordering of edges,
and require that Q contains the unique minimum spanning tree. This is a stronger requirement
and in the following, we will indeed assume that the minimum spanning trees are unique (e.g. by
assuming that the edge weights are distinct).

Example. Consider a complete graph G on vertices V = {1, 2, . . . , n} where the weight of edge
(i, j), i < j is w(i, j) = 2i (see Figure 1). Assume that W ⊆ V is sampled uniformly, each vertex
with probability 1/2. It is easy to see that MST (W ) is a star of edges centered at the smallest i
in W and connecting i to the remaining vertices in W . The probability that (i, j) ∈ MST (W ) (for
i < j) is 1/2i+1 since {i, j} must be in W and no vertex smaller than i can be in W . Note that when
we order the edges (i, j) lexicographically, their probabilities of appearance in MST(W) decrease
exponentially, by a factor of 2 after each block of roughly n edges. An example of an MST-covering
set here is

Q = {(i, j) ∈ E : i < 3 log2 n},
since any edge in E \ Q appears in MST (W ) with probability at most 1/n3.

In general, we show a similar behavior. For an arbitrary weight function, if we order the edges by
their non-increasing probability of appearance in the MST, these probabilities drop exponentially.
As a result, we are able to take O(n log n) edges with the largest probability of appearance in
MST (W ), and the probability that MST (W ) contains one of the remaining edges is polynomially
small.

2



����

������

������ ������

	�	
�


������

����������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
������������������������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

 � � � � � � � � � � � � 
 � � � � � � � � � � � � 
 � � � � � � � � � � � � 
 � � � � � � � � � � � � 
 � � � � � � � � � � � � 
 � � � � � � � � � � � � 
 � � � � � � � � � � � � 
 � � � � � � � � � � � � 
 � � � � � � � � � � � � 
 � � � � � � � � � � � � 
 � � � � � � � � � � � � 

!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!

"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"

#�#�#�#
#�#�#�#
#�#�#�#
#�#�#�#
#�#�#�#
#�#�#�#
#�#�#�#
#�#�#�#
#�#�#�#
#�#�#�#
#�#�#�#
#�#�#�#
#�#�#�#
#�#�#�#
#�#�#�#
#�#�#�#
#�#�#�#
#�#�#�#

$�$�$�$
$�$�$�$
$�$�$�$
$�$�$�$
$�$�$�$
$�$�$�$
$�$�$�$
$�$�$�$
$�$�$�$
$�$�$�$
$�$�$�$
$�$�$�$
$�$�$�$
$�$�$�$
$�$�$�$
$�$�$�$
$�$�$�$
$�$�$�$

%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%

&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&

'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'

(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(

)�)�)�)�)
)�)�)�)�)
)�)�)�)�)
)�)�)�)�)
)�)�)�)�)
)�)�)�)�)
)�)�)�)�)
)�)�)�)�)

*�*�*�*�*
*�*�*�*�*
*�*�*�*�*
*�*�*�*�*
*�*�*�*�*
*�*�*�*�*
*�*�*�*�*
*�*�*�*�*

+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+
+�+�+�+�+�+�+�+�+

,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,
,�,�,�,�,�,�,�,�,

-�-�-�-�-
-�-�-�-�-
-�-�-�-�-
-�-�-�-�-
-�-�-�-�-
-�-�-�-�-
-�-�-�-�-
-�-�-�-�-
-�-�-�-�-
-�-�-�-�-
-�-�-�-�-
-�-�-�-�-
-�-�-�-�-
-�-�-�-�-
-�-�-�-�-
-�-�-�-�-
-�-�-�-�-
-�-�-�-�-

.�.�.�.�.
.�.�.�.�.
.�.�.�.�.
.�.�.�.�.
.�.�.�.�.
.�.�.�.�.
.�.�.�.�.
.�.�.�.�.
.�.�.�.�.
.�.�.�.�.
.�.�.�.�.
.�.�.�.�.
.�.�.�.�.
.�.�.�.�.
.�.�.�.�.
.�.�.�.�.
.�.�.�.�.
.�.�.�.�.

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1�1�1�1�1
1�1�1�1�1
1�1�1�1�1
1�1�1�1�1
1�1�1�1�1
1�1�1�1�1
1�1�1�1�1
1�1�1�1�1
1�1�1�1�1
1�1�1�1�1
1�1�1�1�1
1�1�1�1�1
1�1�1�1�1
1�1�1�1�1
1�1�1�1�1
1�1�1�1�1
1�1�1�1�1
1�1�1�1�1
1�1�1�1�1
1�1�1�1�1
1�1�1�1�1
1�1�1�1�1
1�1�1�1�1
1�1�1�1�1
1�1�1�1�1
1�1�1�1�1

2�2�2�2�2
2�2�2�2�2
2�2�2�2�2
2�2�2�2�2
2�2�2�2�2
2�2�2�2�2
2�2�2�2�2
2�2�2�2�2
2�2�2�2�2
2�2�2�2�2
2�2�2�2�2
2�2�2�2�2
2�2�2�2�2
2�2�2�2�2
2�2�2�2�2
2�2�2�2�2
2�2�2�2�2
2�2�2�2�2
2�2�2�2�2
2�2�2�2�2
2�2�2�2�2
2�2�2�2�2
2�2�2�2�2
2�2�2�2�2
2�2�2�2�2
2�2�2�2�2

3�3�3�3�3
3�3�3�3�3
3�3�3�3�3
3�3�3�3�3
3�3�3�3�3
3�3�3�3�3
3�3�3�3�3
3�3�3�3�3
3�3�3�3�3
3�3�3�3�3
3�3�3�3�3
3�3�3�3�3
3�3�3�3�3
3�3�3�3�3
3�3�3�3�3
3�3�3�3�3
3�3�3�3�3
3�3�3�3�3

4�4�4�4�4
4�4�4�4�4
4�4�4�4�4
4�4�4�4�4
4�4�4�4�4
4�4�4�4�4
4�4�4�4�4
4�4�4�4�4
4�4�4�4�4
4�4�4�4�4
4�4�4�4�4
4�4�4�4�4
4�4�4�4�4
4�4�4�4�4
4�4�4�4�4
4�4�4�4�4
4�4�4�4�4
4�4�4�4�4

5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5

6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6

7�7�7�7�7
7�7�7�7�7
7�7�7�7�7
7�7�7�7�7
7�7�7�7�7
7�7�7�7�7
7�7�7�7�7
7�7�7�7�7

8�8�8�8�8
8�8�8�8�8
8�8�8�8�8
8�8�8�8�8
8�8�8�8�8
8�8�8�8�8
8�8�8�8�8
8�8�8�8�8

9�9�9�9�9�9�9�9�9
9�9�9�9�9�9�9�9�9
9�9�9�9�9�9�9�9�9
9�9�9�9�9�9�9�9�9
9�9�9�9�9�9�9�9�9
9�9�9�9�9�9�9�9�9
9�9�9�9�9�9�9�9�9
9�9�9�9�9�9�9�9�9

:�:�:�:�:�:�:�:�:
:�:�:�:�:�:�:�:�:
:�:�:�:�:�:�:�:�:
:�:�:�:�:�:�:�:�:
:�:�:�:�:�:�:�:�:
:�:�:�:�:�:�:�:�:
:�:�:�:�:�:�:�:�:
:�:�:�:�:�:�:�:�:;�;�;�;�;<�<�<�<�<

1

2

3 4

5

6

78

Figure 1: A complete graph K8 with lexicographically ordered edges. The edge weights are marked
by thickness.

Also, our example demonstrates that we need to include Ω(n log n) edges in Q if Pr[MST (W ) \
Q 6= ∅] should be polynomially small. More generally, this is true for any weighted graph - just
consider the event that a vertex is isolated in Q[W ]. Unless Q contains at least log2 n edges incident
with every vertex, some vertex gets isolated in Q[W ] with probability at least 1/n. Then Q cannot
be a good MST-covering set. We will make a more precise argument in Section 7 but this example
indicates that |Q| = O(n log n) is the correct bound to aim for.

Overview of results. Consider the random setting where either vertices or edges are sampled
with probability p (possibly a function of n). Let b = 1/(1 − p). We prove that, for any weighted
graph, there exists a sparse set Q of e(c + 1)n logb n + O(n) edges which contains MST (W ) (or
MST (F )) with probability at least 1 − 1/nc. On the other hand, for p ≥ 1

nγ with γ < 1, we show
the existence of weighted graphs for which one needs Ω(n logb n) edges even to achieve a constant
probability of covering the MST of a random subgraph. So O(n logb n) is the best size of an MST-
covering set that we can achieve. For low probability of failure, in particular p = 1−1/nγ , we obtain
a covering set of linear size O(n).

We believe that our proof technique is quite interesting in its own right. We define σp(u, v)
to be the probability that (u, v) ∈ MST (W ), conditioned on u, v ∈ W . (Note that 1 − σp(u, v)
represents the u-v reliability in the subgraph with all edges lighter than (u, v).) We observe that
σp(u, v) is the probability of a down-monotone event which is crucial for our analysis. We show a
boosting lemma which states that for any down-monotone event, as p decreases, σp increases very
rapidly. More precisely, we show that σp = (1 − p)f(p) where f(p) is a non-decreasing function (see
Lemma 3). From the boosting lemma, we deduce that not many edges (u, v) can have a “large” value
of σp(u, v), otherwise the expected number of edges in the minimum spanning forest of a suitably
chosen random subgraph would be larger than possible. This means that we can include all the
edges with sufficiently large σp(u, v) in our set Q, which implies the MST-covering property and Q
is still not too large.

Our boosting lemma bears some similarity to a result of Bollobás and Thomason [3]; however,
they use a different random model, in which a random subset of a fixed cardinality is sampled. They
use the Kruskal-Katona theorem (and its simplification due to Lovász) to derive their lemma, while
our lemma has an elementary probabilistic proof. We could use the Bollobás-Thomason lemma in
some of our proofs as well (for instance, it would seem quite natural to apply it to prove Corollary
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7, which is concerned with the minimum spanning trees after removing a fixed number of vertices),
but this would produce an additional factor of log n which we are able to shave off with our boosting
lemma.

In order to find Q, we could try to calculate σp(u, v) for each edge; however, as 1 − σp(u, v)
corresponds to the u-v reliability in an arbitrary graph, this is #P-hard [10]. It is even unknown
how to efficiently approximate the u-v reliability. However, in our case, we only need to check
if σp(u, v) is (polynomially) large enough and this can be done by random sampling. This leads
to a randomized algorithm for computing Q that makes a polynomial number of calls to an MST
subroutine. We can reduce the number of MST calls to polylogarithmic by using the boosting lemma,
and choosing the edges which appear sufficiently often. With high probability, we find a covering
set of asymptotically optimal size O(n logb n), by invoking an MST procedure O(logb n logn) times.
If we are interested in deterministic algorithms only, we are only able to construct in polynomial

time a covering set Q of cardinality O(n3/2 ln n) in the vertex case and O(n e3
√

ln n) in the edge case.
These latter constructions are not described in this paper. The reader can refer to [11] for more
information.

Going back to our original motivation, since we are able to construct a set Q of size O(n logb n)
covering almost all MSTs, we can therefore with high probability find the MST of any random
subgraph by focusing on this precomputed set of O(n logb n) edges, hence leading to an algorithm
whose running time is near-linear in n instead of m. This is almost a quadratic speed-up if the
original graph is dense.

In the deterministic setting where the subgraph is obtained by deleting at most k − 1 vertices
(or edges), we show that there exists a set Qk of cardinality at most ekn which contains the MST
of all these subgraphs, see Corollary 7. In the edge case, we prove that the cardinality of Qk can be
actually bounded by kn −

(

k+1
2

)

, which is tight and the proof is by elementary induction. For the
vertex case, however, we can only obtain a linear bound by probabilistic reasoning.

Our results only use the fact that the event e ∈ MST (H) for a random subgraph H , conditioned
on e ∈ E(H), is down-monotone. This holds for any matroid; thus all our results extend to matroids,
see Section 6.

Literature discussion. Not assuming that all the input data is known in advance or assuming it
changes over time is a typical paradigm in the areas of optimization and algorithms. For example,
in stochastic programming, part of the input is stochastic and one has to make decisions in the
first stage without knowing the realization of the stochastic components; further decision are made
when the complete input is revealed. Although the minimum spanning tree problem (as a proto-
typical combinatorial optimization problem) has been considered in a wide variety of settings with
incomplete or changing data, it has not been under the particular viewpoint considered here.

In dynamic graph algorithms, one assumes that the graph is dynamically changing and one needs
to update the solution of the problem after each input update. For a minimum spanning tree problem
in which edges can be inserted or deleted, the best known dynamic algorithm has amortized cost
O(log4 n) per operation [6]. This is not efficient here though, since our instances are changing too
drastically.

In practice, graph optimization problems are often solved on a sparse subgraph, and edges which
are not included are then priced to see if they could potentially improve the solution found, see for
example [1] for the matching problem. Our results can therefore be viewed as a theoretical basis for
this practice in the case of the MST, and give precise bounds on the sparsity required.
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2 The boosting lemma

We start by analyzing the event that a fixed edge appears in the minimum spanning tree of a random
induced subgraph. We would like to show that the probability of this event cannot be too high for
too many edges. We prove this statement by a random sampling argument. It turns out that the
only property of MST that we use is the observation that for any given edge, being contained in the
minimum-weight spanning forest of a random subgraph is a down-monotone event. The following
lemma is an easy consequence of the fact that an edge is in the minimum spanning tree unless its
endpoints are connected by a path containing only edges of smaller weight.

Lemma 1. For an edge (u, v) ∈ E, let X = V \ {u, v} and let F denote the family of vertex sets
A ⊆ X for which (u, v) is in the minimum spanning forest of the induced subgraph G[A ∪ {u, v}].
Then F is a down-monotone family:

A ∈ F , B ⊆ A =⇒ B ∈ F .

For a random A ⊆ X , we say that A ∈ F is a down-monotone event. We prove a general
inequality for down-monotone events. We call this inequality the boosting lemma, since it states how
the probability of a down-monotone event is boosted, when we decrease the sampling probability.
We first give a general version in which the sampling probability of each element could be different
(asymmetric version), and then we specialize it to the case in which every element is sampled with
the same probability (Lemma 3).

Lemma 2 (The Boosting Lemma, asymmetric version). Let X be a finite set and F ⊆ 2X a down-
monotone family of subsets of X. Let ~p ∈ [0, 1]n and sample a random subset X(~p) by choosing
element i independently with probability pi. Define

σp = Pr[X(~p) ∈ F ].

Let γ ∈ (0, 1) and similarly define σq = Pr[X(~q) ∈ F ] where element i is sampled with probability
qi = 1 − (1 − pi)

γ . Then
σq ≥ (σp)

γ .

Proof. We proceed by induction on |X |. For X = ∅ the statement is trivial (σp = σq = 0 or
σp = σq = 1). Otherwise, let a ∈ X , Y = X \ {a} and define

• F0 = {A ⊆ Y : A ∈ F}

• F1 = {A ⊆ Y : A ∪ {a} ∈ F}

By down-monotonicity, we have F1 ⊆ F0. Next, we express σq by the law of conditional probabilities:

σq = Pr[X(~q) ∈ F ] = qa Pr[Y (~q) ∈ F1] + (1 − qa) Pr[Y (~q) ∈ F0]

where Y (~q) denotes a subset of Y sampled with the respective probabilities qi; Y (~q) = X(~q) \ {a}.
We denote ωp = Pr[Y (~p) ∈ F1] and τp = Pr[Y (~p) ∈ F0]. By induction, we can apply the boosting
lemma to the down-monotone events F0,F1 ⊆ 2Y : ωq ≥ ωγ

p , τq ≥ τγ
p . We get

σq = qaωq + (1 − qa)τq ≥ (1 − (1 − pa)γ)ωγ
p + (1 − pa)γτγ

p .

Note that ωp ≤ τp because F1 ⊆ F0. It remains to prove the following:

(1 − (1 − p)γ)ωγ + (1 − p)γτγ ≥ (pω + (1 − p)τ)γ (1)
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for any p ∈ [0, 1], γ ∈ (0, 1), 0 ≤ ω ≤ τ . Then we can conclude that

σq ≥ (paωp + (1 − pa)τp)
γ = σγ

p

using the law of conditional probabilities for σp = Pr[X(~p) ∈ F ].

We verify Equation (1) by analyzing the difference of the two sides: φ(τ) = (1 − (1 − p)γ)ωγ +
(1 − p)γτγ − (pω + (1 − p)τ)γ . We show that φ(t) ≥ 0 for t ≥ ω. For t = ω, we have φ(t) = 0. By
differentiation,

φ′(t) = γ(1 − p)γtγ−1 − γ(1 − p)(pω + (1 − p)t)γ−1

= γ(1 − p)γtγ−1

(

1 −
(

(1 − p)t

pω + (1 − p)t

)1−γ
)

≥ 0.

Therefore φ(t) ≥ 0 for any t ≥ ω which completes the proof.

Note. The boosting lemma is tight for F = 2A, A ⊂ X in which case σp =
∏

i∈X\A(1 − pi) and

σq = (σp)
γ . This form of the lemma is the most general we have found; more restricted versions

are easier to prove. For probabilities pi, qi satisfying (1 − pi) = (1 − qi)
k, k ∈ Z, we give now a

simple probabilistic proof using repeated sampling. Sample independently subsets Yj = X(~q), j =
1, 2, . . . , k, and set Y = Y1 ∪Y2 ∪ . . .∪Yk. Element i has probability (1− qi)

k = (1− pi) that it does
not appear in any Yj , therefore Y is effectively sampled with probabilities pi. Then we get, from
the monotonicity of F : σp = Pr[Y ∈ F ] ≤ Pr[∀j; Yj ∈ F ] = σk

q . This is actually sufficient for the
asymptotic results on covering MSTs of random subgraphs. See [5] for details.

In the remainder of this paper, we use a symmetric version of the boosting lemma where the
sampling probabilities pi are uniform.

Lemma 3 (The Boosting Lemma, symmetric version). Let X be a finite set and F a down-monotone
family of subsets of X. For p ∈ (0, 1), define

σp = Pr[X(p) ∈ F ]

where X(p) is a random subset of X, each element sampled independently with probability p. Then

σp = (1 − p)f(p)

where f(p) is a non-decreasing function for p ∈ (0, 1).

Proof. Consider p, q ∈ (0, 1) where q < p. Write σp = (1−p)x and (1−q) = (1−p)γ where γ ∈ (0, 1).
Then Lemma 2, with pi = p and qi = q, implies:

σq ≥ (σp)
γ = (1 − p)γx = (1 − q)x.

Connection with the Kruskal-Katona theorem. Consider another special case, where
σp = (1− p)k for some k ∈ Z. Denote by Fj the number of sets of size j in F . The Kruskal-Katona

theorem [2] says that Fi ≥
(

n−k
i

)

implies Fj ≥
(

n−k
j

)

for i ≥ j, and this (together with σp = (1−p)k)
can be shown to imply that

l
∑

j=0

Fjp
j(1 − p)n−j ≥

l
∑

j=0

(

n − k

j

)

pj(1 − p)n−j
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for any l ≤ n − k. An affine combination of these inequalities then implies a similar statement for
any q ≤ p. Therefore,

σq =

n
∑

j=0

Fjq
j(1 − q)n−j ≥

n−k
∑

j=0

(

n − k

j

)

qj(1 − q)n−j = (1 − q)k

which proves the symmetric boosting lemma in this case. It is not clear if this argument applies to
σp = (1 − p)k for non-integer k.

In [3], Bollobás and Thomason prove a lemma about down-monotone events which applies to
random subsets of fixed size: If Pr is the probability that a random subset of size r is in F , then for
any s ≤ r,

P r
s ≥ P s

r .

Considering that the two random models are roughly equivalent (instead of sampling with probability
p, take a random subset of size pn), this lemma has a very similar flavor to ours. However, putting
the two random models side by side, the Bollobás-Thomason lemma is weaker; for example, compare
p = 1 − 1/n, q = 1/2 and r = n − 1, s = n/2. Our boosting lemma implies σq ≥ (σp)

1/ log n. The
Bollobás-Thomason lemma says only Ps ≥ √

Pr. For our purposes, the boosting lemma applies in a
cleaner way and we gain a factor of log n compared to using the Bollobás-Thomason lemma.

3 Covering MSTs of random vertex-induced subgraphs

Now we prove the bound on the size of covering sets for the case of randomly sampled vertices. As
noted before, for any edge (u, v) ∈ E, the event that (u, v) ∈ MST (W ), conditioned on u, v ∈ W , is
down-monotone. Let’s denote

σp(u, v) = PrW [(u, v) ∈ MST (W ) | u, v ∈ W ]

where W = V (p) contains each vertex independently with probability p.

Lemma 4. For a weighted graph G on n vertices, 0 < p < 1, and any k ≥ 1/p, let

Q
(p)
k = {(u, v) ∈ E : σp(u, v) ≥ (1 − p)k−1}.

Then
|Q(p)

k | < ekn.

Proof. Sample a random subset S = V (q), with probability q = 1/k ≤ p. For every edge (u, v) ∈
Q

(p)
k , we have σp(u, v) ≥ (1 − p)k−1, and therefore by the boosting lemma, σq(u, v) ≥ (1 − q)k−1

implying

Pr[(u, v) ∈ MST (S)] = q2σq(u, v) ≥ q2(1 − q)k−1 =
1

k2

(

1 − 1

k

)k−1

>
1

ek2
,

and

E[|MST (S)|] ≥
∑

(u,v)∈Q
(p)
k

Pr[(u, v) ∈ MST (S)] >
|Q(p)

k |
ek2

.

On the other hand, the size of the minimum spanning forest on S is at most the size of S, and so

E[|MST (S)|] ≤ E[|S|] =
n

k
.

Combining these two inequalities, we get |Q(p)
k | < ekn.
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This lemma shows that the exponential decrease observed in the example in Section 1 always
occurs. In particular, choosing k = i

en shows that the ith largest σp value is less than (1 − p)
i

en
−1.

The constant factor e in the above lemma can be improved; we give here an improved version in
the case of integral k.

Lemma 5. For a weighted graph G on n vertices, 0 < p < 1, and an integer k ≥ 1/p, let

Q
(p)
k = {(u, v) ∈ E : σp(u, v) ≥ (1 − p)k−1}.

Then
|Q(p)

k | <
(

1 +
e

2

)

kn.

Proof. For every l, we have that σp(u, v) ≥ (1 − p)l−1 for (u, v) ∈ Q
(p)
l and hence by the boosting

lemma, σq(u, v) ≥ (1 − q)l−1 for q = 1
k ≤ p. By considering more carefully the argument bounding

|Q(p)
k | in the proof of the previous lemma, we get that, for S = V (q):

qn ≥ E[|MST (S)|] ≥
∞
∑

l=1

∑

(u,v)∈Q
(p)
l

\Q
(p)
l−1

Pr[(u, v) ∈ MST (S)]

≥
∞
∑

l=1

|Q(p)
l \ Q

(p)
l−1|q2(1 − q)l−1 =

∞
∑

l=1

|Q(p)
l |q3(1 − q)l−1,

implying

n ≥
∞
∑

l=1

|Q(p)
l |q2(1 − q)l−1. (2)

Our previous argument replaced all the terms for l < k by zero, which leads to the factor e. We

can however improve this by using a better lower bound on |Q(p)
l | for l < k. Let us assume that G is

a complete graph; this is without loss of generality as this can only increase |Q(p)
k |. But Q

(p)
l must

be l-vertex-connected; otherwise there would be an edge (u, v) ∈ E \ Q
(p)
l without l vertex-disjoint

paths in Q
(p)
l between u and v, which would imply σp(u, v) ≥ (1 − p)l−1. Therefore, for any l, we

have that |Q(p)
l | ≥ ln/2. Using this lower bound in (2), we get:

n ≥
k−1
∑

l=1

ln

2
q2(1 − q)l−1 + |Q(p)

k |
∞
∑

l=k

q2(1 − q)l−1

=
n

2

k−1
∑

l=1

k−1
∑

j=l

q2(1 − q)j−1 + |Q(p)
k |q(1 − q)k−1

=
n

2

k−1
∑

l=1

q((1 − q)l−1 − (1 − q)k−1) + |Q(p)
k |q(1 − q)k−1

=
n

2

(

1 − (1 − q)k−1(1 + q(k − 1))
)

+ |Q(p)
k |q(1 − q)k−1.

Using the fact that q = 1
k , we get:

|Q(p)
k | ≤ n

2q(1 − q)k−1
+

n

2q
(1 + q(k − 1)) ≤ ekn

2
+ kn =

(

1 +
e

2

)

kn.
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We are now ready to prove our MST-covering result.

Theorem 6. Let G be a weighted graph on n vertices, 0 < p < 1, and c > 0. Let b = 1/(1 − p).
Then there exists a set Q ⊆ E of size

|Q| ≤
(

1 +
e

2

)

(c + 1)n logb n + O(n)

such that for a random W = V (p),

PrW [MST (W ) ⊆ Q] > 1 − 1

nc
.

Proof. Assume that n > e2 (otherwise Q can be chosen to contain all edges). Order the edges
in E by decreasing values of σp(u, v). Partition the sequence into blocks B1, B2, . . . ⊂ E of size
d(1 + e/2)ne. Lemma 5 implies that for any (u, v) ∈ Bk+1, k ≥ 1/p,

Pr[(u, v) ∈ MST (W )] = p2 σp(u, v) < p2(1 − p)k−1.

Define Q to contain the first h = d(c + 1) logb ne + 2 blocks, Q =
⋃h

k=1 Bk. We have h ≥ 1/p (for
p ≥ 1/2 it’s obvious that h ≥ 2 ≥ 1/p, and for p < 1/2, h > logb n > ln n

2p > 1/p for n > e2). So we
can apply the above bound to blocks starting from h + 1:

Pr[MST (W ) \ Q 6= ∅] ≤
∑

(u,v)∈E\Q

Pr[(u, v) ∈ MST (W )]

≤
∞
∑

k=h+1

d(1 + e/2)nep2(1 − p)k−2 = d(1 + e/2)nep(1− p)h−1 <
d(1 + e/2)nep(1− p)

nc+1
<

1

nc
.

4 Covering MSTs of subgraphs of fixed size

Directly from Lemma 5, we also get the following interesting implication for the deterministic version
of the problem, where at most k − 1 vertices can be removed arbitrarily.

Corollary 7. For any weighted graph G on n vertices, and k ∈ Z+, there exists a set Qk ⊆ E of
size

|Qk| <
(

1 +
e

2

)

kn

which contains MST (W ) for any |W | > n − k.

Proof. Let Qk =
⋃

|W |>n−k MST (W ). For k = 1 the lemma is trivial as Q1 is the minimum

spanning forest of G and thus |Q1| ≤ n− 1. For k ≥ 2, choose p = 1/2 and consider Q
(p)
k as defined

in Lemma 5, which states that |Q(p)
k | < (1+ e/2)kn. For any edge (u, v) which appears in MST (W )

for |W | > n − k, σp(u, v) ≥ (1 − p)k−1, since the vertices in V \ W are removed with probability at

least (1 − p)k−1; therefore Qk ⊆ Q
(p)
k .

Observe that the set Qk can be found in polynomial time. For every edge (u, v), its membership
in Qk can be tested by computing the vertex connectivity between vertices u, v in the subgraph
Guv of edges lighter than (u, v). By Menger’s theorem, (u, v) ∈ Qk if and only if there are no k
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vertex-disjoint u-v paths in Guv . This, however, does not seem to imply a bound on the size of Qk

easily. The only way we can prove our bound is through probabilistic reasoning.

It is not difficult to see that |Q1| ≤ n − 1 and |Q2| ≤ 2n − 3. It is also possible to define edge
weights so that Qk must contain (n − 1) + (n − 2) + · · · + (n − k) = kn −

(

k+1
2

)

edges (see Section
7 for an example). We conjecture this to be the actual tight upper bound. Similarly, we conjecture

that kn −
(

k+1
2

)

is the best possible bound on |Q(p)
k | in Lemma 5 (and this would be achieved for

the graph described in Section 7).

The same question in the edge case is easier to answer. The number of edges in all MSTs
obtained after removing at most k − 1 edges can be upper bounded by k(n − 1), by finding the
minimum spanning tree and removing it from the graph repeatedly k times. (Which also works for
multigraphs, and more generally matroids.) For simple graphs, we can prove a bound of kn−

(

k+1
2

)

which is tight (see the weighted graphs constructed in Section 7).

Lemma 8. For any (simple) weighted graph on n vertices, m edges and integer 1 ≤ k ≤ n, there
exists a set Qk ⊆ E of size

|Qk| ≤
k
∑

i=1

(n − i) = kn −
(

k + 1

2

)

which contains the minimum spanning forest MST (F ) for any |F | > m − k.

Proof. Let Qk =
⋃

|F |>m−k MST (F ). For given k, we proceed by induction on n ≥ k. For n = k, it

is trivial that |Qk| ≤
(

n
2

)

= n2 −
(

n+1
2

)

. So assume n > k.

Consider the heaviest edge e∗ ∈ Qk. Since e∗ ∈ MST (F ) for some |F | > m − k, there is a cut
δ(V1) = {(u, v) ∈ E : u ∈ V1, v /∈ V1} such that e∗ is the lightest edge in δ(V1) ∩ F . Consequently
Qk ∩ δ(V1) ⊆ (E \ F ) ∪ {e∗}, which means that at most k edges of Qk are in the cut δ(V1). Let
V2 = V \V1 and apply the inductive hypothesis on G1 = G[V1] and G2 = G[V2], and their respective
MST-covering sets Qk,1, Qk,2. We use the following characterization of Qk: (u, v) ∈ Qk ⇔ there are
no k edge-disjoint u-v paths in the subgraph of edges lighter than (u, v) (again by Menger’s theorem,
for edge connectivity). Since the edge connectivity in G is at least as strong as the edge connectivity
in G1 or G2, it follows that Qk[V1] ⊆ Qk,1, Qk[V2] ⊆ Qk,2 and we get

|Qk| ≤ |Qk,1| + |Qk,2| + k.

Let n1 = |V1|, n2 = |V2|; n = n1 + n2 > k. We distinguish two cases:

• If one of n1, n2 is at least k, assume it is n1. By the inductive hypothesis, |Qk,1| ≤
∑k

i=1 (n1 − i),
and |Qk,2| ≤ k(n2 − 1) (for any n2, smaller or larger than k), so

|Qk| ≤
k
∑

i=1

(n1 − i) + k(n2 − 1) + k =

k
∑

i=1

(n − i).

• If both n1, n2 < k, then we estimate simply |Qk,1| ≤
(

n1

2

)

< k(n1−1)
2 , |Qk,2| ≤

(

n2

2

)

< k(n2−1)
2 .

We get

|Qk| <
k(n1 − 1)

2
+

k(n2 − 1)

2
+ k =

kn

2
≤

k
∑

i=1

(n − i).

10



5 Algorithmic construction of covering sets

It is natural to ask whether the MST-covering sets can be found efficiently. In the deterministic
case, we have shown that this is quite straightforward. However, in the probabilistic case, it is not

possible to test whether (u, v) ∈ Q
(p)
k directly. This would amount to calculating the u-v-reliability

in the graph of edges lighter than (u, v), which is a #P-complete problem [10].

However, we can find a covering set Q using an efficient randomized algorithm, which takes
advantage of the boosting lemma as well. It is a Monte Carlo algorithm, in the sense that it finds a
correct solution with high probability, but the correctness of the solution cannot be verified easily.

The algorithm: Given G = (V, E), w : E → R, 0 < p < 1, c > 0.

• Let b = 1/(1− p) and k = d(c + 2) logb ne + 1.

• Repeat the following for i = 1, . . . , r = d32ek2 ln ne:
– Sample Si ⊆ V , each vertex independently with probability q = 1/k.

– Find Ti = MST (Si).

• For each edge, include it in Q if it appears in at least 16 lnn different Ti’s.

The running time of the algorithm is determined by the number of calls to an MST procedure,
which is O(log2

b n ln n). Since a minimum spanning forest can be found in time O(mα(m, n)) deter-
ministically [4] or O(m) randomized [8], for constant b = 1/(1−p) we get a running time near-linear
in m.

Theorem 9. This algorithm finds with high probability a set Q ⊆ E such that

|Q| ≤ 2e(c + 2)n logb n + O(n)

and for a random W = V (p),

PrW [MST (W ) ⊆ Q] > 1 − 1

nc
.

Proof. Let k = d(c + 2) logb ne+ 1, r = d32ek2 ln ne and Q
(p)
k = {(u, v) ∈ E : σp(u, v) ≥ (1− p)k−1}.

We will argue that (1) Q
(p)
k ⊆ Q with probability > 1 − 1

n2 , (2) Q
(p)
k is a good covering set, and (3)

|Q| ≤ 2ekn + O(n) with probability > 1 − 1
n4 .

Let Si = V (q), q = 1/k, and Ti = MST (Si). As in the proof of Theorem 6, k ≥ 1/p (for n large

enough), therefore q ≤ p and by the boosting lemma, for any (u, v) ∈ Q
(p)
k ,

Pr[(u, v) ∈ Ti] ≥ q2(1 − q)k−1 ≥ 1

ek2
.

Denoting by t(u, v) the number of Ti’s containing edge (u, v), we get E[t(u, v)] ≥ r/(ek2) ≥ 32 lnn.

By Chernoff bound (see [9, Theorem 4.2]; Pr[X < (1 − δ)µ] < e−µδ2/2), with µ ≥ 32 lnn, δ = 1/2:

Pr[t(u, v) < 16 lnn] < e−4 ln n = 1/n4, and thus Pr[∃(u, v) ∈ Q
(p)
k ; t(u, v) < 16 lnn] < 1/n2.

Therefore with high probability, all edges in Q
(p)
k are included in Q. On the other hand, Q

(p)
k

contains MST (W ) with high probability (with respect to a random W = V (p)):

Pr[MST (W ) \ Q
(p)
k 6= ∅] ≤

∑

(u,v)∈E\Q
(p)
k

Pr[(u, v) ∈ MST (W )] < n2p2(1 − p)k−1 <
1

nc
.

11



Now we estimate the size of Q. For k ≥ n/(4e), the condition |Q| ≤ 2ekn + O(n) is satisifed
trivially. So assume k < n/(4e). Since we are sampling Si = V (q), we have E[|Si|] = qn, and
E [
∑r

i=1 |Ti|] ≤ E [
∑r

i=1 |Si|] ≤ rqn. We can use the Chernoff bound again ([9, Theorem 4.1];

Pr[X > (1 + δ)µ] < e−µδ2/3), with µ ≤ rqn and δ = 10 lnn/(rq):

Pr

[

r
∑

i=1

|Si| > (rq + 10 lnn)n

]

< e−100n ln2 n/(3rq) < e−n ln n/ek <
1

n4
.

In Q, we include only edges which appear in at least 16 lnn different Ti’s, and |Ti| ≤ |Si|, so the
number of such edges is, with high probability,

|Q| ≤
∑ |Si|
16 lnn

≤ (rq + 10 lnn)n

16 lnn
= 2ekn + O(n).

6 Covering minimum-weight bases in matroids

Next, we consider the variant of the problem where the subgraph is generated by taking a random
subset of edges E(p). We approach this problem more generally, in the context of matroids. The
matroid in this case would be the graphic matroid defined by all forests on the ground set E. In
general, consider a weighted matroid (E,M, w), where w : E → R. Let m denote the size of
the ground set E and n the rank of M, i.e. the size of a largest independent set. If the weights
are distinct, then any subset F ⊆ E has a unique minimum-weight basis MB(F ), which in the
case of graphs corresponds to the minimum-weight spanning forest. These bases satisfy exactly the
monotonicity property that we used previously.

Lemma 10. For an element e ∈ E, let X = E \ {e} and let F denote the family of sets A ⊆ X
for which e is in the minimum-weight basis of the matroid induced by A ∪ {e}. Then F is a down-
monotone family:

A ∈ F , B ⊆ A =⇒ B ∈ F .

Proof. If e ∈ MB(A∪{e}), it means that there is no circuit in A∪{e} in which e is the largest-weight
element. However, then there is no such circuit in B∪{e} either, and therefore e ∈ MB(B∪{e}).

Thus, we can apply the same machinery to matroids. Define

σp(e) = PrF [e ∈ MB(F ) | e ∈ F ]

where F = E(p) is a random subset of elements, sampled with probability p. We get statements
analogous to the vertex case. It is interesting to notice that the bounds given in these statements
depend only on the rank of the matroid, irrespective of the size of the ground set.

Lemma 11. For a weighted matroid (E,M, w), of rank n, 0 < p < 1 and k ≥ 1/p, let

Q
(p)
k = {e ∈ E : σp(e) ≥ (1 − p)k−1}.

Then
|Q(p)

k | < ekn.

12



Proof. The proof is similar to the proof of Lemma 4. Sample a random subset S = E(q), each

element with probability q = 1/k ≤ p. For any e ∈ Q
(p)
k , σp(e) ≥ (1 − p)k, therefore the boosting

lemma implies that

Pr[e ∈ MB(S)] ≥ q σq(e) ≥ q(1 − q)k−1 =
1

k

(

1 − 1

k

)k−1

>
1

ek
.

Summing over all e ∈ Q
(p)
k , we get

E[|MB(S)|] ≥
∑

e∈Q
(p)
k

Pr[e ∈ MB(S)] >
|Q(p)

k |
ek

.

On the other hand, any independent set in M has size at most n, therefore E[|MB(S)|] ≤ n which

implies |Q(p)
k | < ekn.

In the case of matroids, we don’t get the equivalent to Lemma 5 as the improvement there was
based on connectivity properties.

Theorem 12. For any weighted matroid (E,M, w) of rank n, 0 < p < 1, c > 0, and b = 1/(1− p),
there exists a set Q ⊆ E of size

|Q| ≤ e(c + 1)n logb n + O(n/p)

such that for a random F = E(p),

PrF [MB(F ) ⊆ Q] > 1 − 1

nc
.

Proof. Order the elements of E by decreasing values of σp(e). Partition the sequence into blocks
B1, B2, . . . ⊂ E of size dene. Lemma 11 implies that for any e ∈ Bk+1, k ≥ 1/p:

Pr[e ∈ MB(F )] = p σp(e) < p(1 − p)k−1.

Take the first h = d(c + 1) logb n + 2/pe + 1 blocks: Q =
⋃h

k=1 Bk. Then, since h ≥ 1/p:

Pr[MB(F ) \ Q 6= ∅] ≤
∑

e∈E\Q

Pr[e ∈ MB(F )] ≤
∞
∑

k=h+1

denep(1− p)k−2

= dene(1 − p)h−1 ≤ dene(1 − p)2/p

nc+1
<

1

nc
.

The forests in a graph on n + 1 vertices form a matroid of rank n, and minimum-weight bases
correspond to minimum spanning forests. Therefore this solves the edge version of the MST-covering
problem as well:

Corollary 13. For any weighted graph G on n + 1 vertices, 0 < p < 1, c > 0 and b = 1/(1 − p),
there exists a set Q ⊆ E(G) of size

|Q| ≤ e(c + 1)n logb n + O(n/p)

such that for a random F = E(p),

PrF [MST (F ) ⊆ Q] > 1 − 1

nc
.

13



Also, we have a randomized algorithm finding the covering set for any weighted matroid (E,M, w);
the algorithm makes O(logb n ln m) calls to a minimum-weight basis procedure.

• Let b = 1/(1− p) and k = d(c + 2) logb ne + 1.

• Repeat the following for i = 1, . . . , r = d16ek ln me:

– Sample Si ⊆ E, each element independently with probability q = 1/k.

– Find Ti = MB(Si).

• For each edge, include it in Q if it appears in at least 8 lnm different Ti’s.

Theorem 14. This algorithm finds with high probability a set Q ⊆ E such that

|Q| ≤ 2e(c + 2)n logb n + O(n)

and for a random F = E(p),

PrF [MB(F ) ⊆ Q] > 1 − 1

nc
.

Proof. Let k = d(c + 2) logb ne + 1, r = d16ek ln me and Q
(p)
k = {e ∈ E : σp(e) ≥ (1 − p)k−1}. We

claim that (1) Q
(p)
k ⊆ Q with high probability, (2) Q

(p)
k is a good covering set and (3) Q is not too

large. As in the proof of Theorem 6, k ≥ 1/p for n large enough, therefore for any e ∈ Q
(p)
k , for

Si = E(q) and Ti = MB(Si), the boosting lemma implies

Pr[e ∈ Ti] = q σq(e) >
1

ek
.

Letting t(e) denote the number of Ti’s containing element e, we obtain E[t(e)] ≥ r/(ek) ≥ 16 lnm.

By the Chernoff bound, Pr[t(e) < 8 lnm] < e−2 ln m = 1/m2, implying that Pr[∃e ∈ Q
(p)
k ; te <

8 lnm] < 1/m. Therefore with high probability, all edges in Q
(p)
k are included in Q.

On the other hand, Q
(p)
k contains MB(F ) with high probability. Consider the elements in E \Q.

We order them in a sequence of decreasing values of σp(e), and again divide them into blocks
B1, B2, . . . as before. Since we have included all edges with σp(e) ≥ (1 − p)k−1 in Q, in the first k
blocks the values of σp(e) cannot be larger than (1− p)k−1. Then, the l-th block can have values of
σp(e) at most (1 − p)l−2 (by Lemma 11). Thus

Pr[MB(F ) \ Q 6= ∅] ≤ p

(

k(1 − p)k−1 +

∞
∑

l=k+1

(1 − p)l−2

)

dene ≤ (kp + 1)dene
nc+2

=
O(ln n)

nc+1
<

1

nc
.

Finally, we estimate the size of Q. We have
∑r

i=1 |Ti| ≤ rn. Every element e ∈ Q appears in
8 lnm different Ti’s, therefore

|Q| ≤
∑ |Ti|
8 lnm

≤ 2ekn + O(n).
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7 Lower bounds

For both variants of the problem, we have a closely matching lower bound on the size of Q, even
if we only want to achieve a constant probability of covering the MST. We get a lower bound of
Ω(n logb(n/ lnn)) for p > ln n/n in the edge case and Ω(n logb(pn/5)) for p > 5/n in the vertex case.
Both bounds reduce to Ω(n logb n), for a wide range of p, namely the lower bound of Ω(n logb n)
holds for p ≥ 1/nγ, γ < 1.

The constructions for the vertex and edge variants are different; first let’s describe the edge
variant which is simpler.

Lemma 15. For any n > ee2

and ln n
n ≤ p < 1, b = 1/(1 − p), there is a weighted graph G on n

vertices, such that if Pr[MST (E(p)) ⊆ Q] ≥ 1
e then |Q| > ln−

(

l+1
2

)

where l = blogb(n/ lnn)c.

Proof. Consider the complete graph Kn with edge weights ordered lexicographically. For i < j, let

wij = ni + j

(see Figure 1 in Section 1). Let F = E(p) be a random subset of edges. For each edge (j, k), j < k,
consider an event Ajk , which occurs when

(j, k) ∈ F & ∀i < j; (i, k) /∈ F.

Due to the ordering of edge weights, Ajk implies that (j, k) ∈ MST (F ), since it is the lightest edge
in F , incident with vertex k. Also, for given k, Ajk can occur only for one value of j. For a set Q
of given size, we estimate the probability that Ajk occurs for some (j, k) ∈ E \ Q.

Let Jk = {j : j < k, (j, k) ∈ E \Q}. Since the events Ajk for different elements of Jk are disjoint,

Pr[
⋃

j∈Jk

Ajk ] =
∑

j∈Jk

p(1 − p)j−1.

The events
⋃

j∈Jk
Ajk for different k’s are mutually independent, since the sets of edges involved for

different Jk’s are disjoint. Therefore:

Pr[MST (F ) ⊆ Q] ≤ Pr[
⋂

(j,k)∈E\Q

Ajk ] =
∏

k

Pr[
⋂

j∈Jk

Ajk ]

=
∏

k

(1 −
∑

j∈Jk

p(1 − p)j−1) ≤ exp



−
∑

(j,k)∈E\Q

p(1 − p)j−1



 .

For a given size of Q, the last expression is maximized when Q contains edges (j, k) with minimum
possible values of j. Assume that Q contains all the edges (j, k) for j = 1, 2, . . . l. Then |Q| =
∑l

j=1 (n − j) = ln −
(

l+1
2

)

and

∑

(j,k)∈E\Q

p(1 − p)j−1 =

n−1
∑

j=l+1

(n − j)p(1 − p)j−1.

Let’s denote this sum by S(l). As can be verified by backward induction on l,

S(l) =

(

n − l − 1

p

)

(1 − p)l +
1

p
(1 − p)n.
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Figure 2: The lower bound example for random sampling of vertices. Edge weights are marked by
thickness.

We have that for any Q of size at most ln −
(

l+1
2

)

, Pr[MST (F ) ⊆ Q] ≤ e−S(l).

Let’s choose l = blogb(n/ ln n)c. Then, for p ≥ ln n
n ,

S(l) ≥
(

n − logb

( n

ln n

)

− 1

p

)

ln n

n
≥
(

n − ln n − ln ln n + 1

p

)

ln n

n
≥ ln ln n − 1.

Therefore, for any set Q of size at most ln−
(

l+1
2

)

, Pr[MST (W ) ⊆ Q] ≤ e−S(l) < 1/e for n > ee2

.

Note. For p ≥ 1/nγ, γ < 1, we have l = (1− o(1)) logb n << n and therefore any Q achieving at
least a constant probability of MST-covering must have size |Q| > (1 − o(1))n logb n.

We now describe our lower bound in the vertex case.

Lemma 16. For any n > 5, and p ≥ 5/n, there exists a weighted graph G on n vertices, such that
if Pr[MST (V (p)) ⊆ Q] ≥ 1

e then |Q| > ln −
(

l+1
2

)

where l = blogb(np/5)c.

Proof. Let G be the complete graph Kn. Consider the vertices placed on a line uniformly and define
edge weights by distances between pairs of vertices, breaking ties arbitrarily, for example:

wij = n|j − i| + i.

Let W = V (p) be a random subset of vertices. For each edge (j, k), j < k, consider an event Ajk as
a boolean function of W :

Ajk(W ) ⇐⇒ j ∈ W, k ∈ W & ∀i; j < i < k ⇒ i /∈ W.

This event is equivalent to (j, k) ∈ MST (W ), since (j, k) must be in G[W ] and no path connecting
j, k via a vertex in between can be in G[W ]. However, we have to be more careful here, because
these events are not necessarily independent, which might ruin our bound on the probability of their
union. Therefore, we have to impose an additional condition which we deal with later. Assume that
C is a set of edges satisfying

(*) There is no pair of edges (i, j), (j, k) ∈ C such that i < j < k.

Then we claim that the events Ajk for (j, k) ∈ C are never positively correlated. More specifically,
if (u0, v0), (u1, v1), . . . (uk, vk) ∈ C, ui < vi, then

Pr[Au1v1 ∩ Au2v2 ∩ . . . Aukvk
| Au0v0 ] ≤ Pr[Au1v1 ∩ Au2v2 ∩ . . . Aukvk

]. (3)

We prove this in the following way: For any W ⊆ V , define W ′ = W ∪ {u0, v0} \ {i : u0 < i <
v0}. Then Au0v0(W

′) is true by definition. In fact, if W = V (p) is a random subset, W ′ is a

16



random subset sampled in the same way as W , but conditioned on Au0v0 . Now consider the other
edges, (u1, v1), . . . (uk, vk). Let’s call an edge (ui, vi) “interfering” with (u0, v0), if its interval [ui, vi]
intersects [u0, v0]. Property (∗) implies that the intervals [u0, v0], [ui, vi] cannot share exactly one
point, so either one of ui, vi is an internal point of [u0, v0], or one of u0, v0 is an internal point of
[ui, vi]. Either way, Auivi

(W ′) cannot be true, because then ui and vi ought to be in W ′ and all
vertices inside [ui, vi] ought not to be in W ′ which is impossible. Therefore, Auivi

(W ′) is always
false for (ui, vi) interfering with (u0, v0). On the other hand, if an edge (ui, vi) is not interfering
with (u0, v0), then Auivi

(W ′) if and only if Auivi
(W ), because W ′ does not differ from W on the

vertices outside of [u0, v0].

Thus we have demonstrated that in any case, Auivi
(W ) ⇒ Auivi

(W ′), and W ′ corresponds to
random sampling conditioned on Au0v0 , which implies

Pr[Au1v1 ∩ Au2v2 ∩ . . . Aukvk
| Au0v0 ] ≥ Pr[Au1v1 ∩ Au2v2 ∩ . . . Aukvk

].

This is equivalent to Eq. 3. As a consequence, we get

Pr[
⋂

e∈C

Ae] ≤
∏

e∈C

Pr[Ae].

For a set C satisfying (∗), we can now estimate the probability that none of these edges appear in
MST (W ):

Pr[C ∩ MST (W ) = ∅] = Pr[
⋂

(j,k)∈C

Ajk ] ≤
∏

(j,k)∈C

Pr[Ajk ]

=
∏

(j,k)∈C

(1 − p2(1 − p)|k−j|−1) < exp



−
∑

(j,k)∈C

p2(1 − p)|k−j|−1



 .

Suppose that Q has size at most
∑l

j=1 (n − j) = ln −
(

l+1
2

)

. The optimal way to minimize
∑

(j,k)∈E\Q p2(1 − p)|k−j|−1 is to choose Q to contain all the edges of length at most l. Then we
have

∑

(j,k)∈E\Q

p2(1 − p)|k−j|−1 =

n−1
∑

j=l+1

(n − j)p2(1 − p)j−1 = p S(l)

where S(l) is defined in the previous proof, S(l) = (n − l − 1
p )(1 − p)l + 1

p (1 − p)n. We choose

l = blogb(np/5)c and then:

p S(l) ≥ (p(n − l) − 1)(1 − p)l ≥ (p(n − logb(np/5))− 1)
5

np
≥ 5

(

1 − ln(np/5) + 1

np

)

≥ 4

for np ≥ 5. Thus we have
∑

(j,k)∈E\Q p2(1 − p)|k−j|−1 ≥ 4 for any Q of size at most ln −
(

l+1
2

)

.

Now we apply the probabilistic method to choose a suitable subset of E \Q. We sample a uniformly
random subset of vertices S. Let C = {(j, k) ∈ E \Q : j < k, j ∈ S, k /∈ S}. For each edge in E \Q,
there is probability 1/4 that it appears in C. Therefore

E[
∑

(j,k)∈C

p2(1 − p)|k−j|−1] ≥ 1

4

∑

(j,k)∈E\Q

p2(1 − p)|k−j|−1 ≥ 1

and there exists a set C which achieves at least this expectation. Due to the construction of C, it
satisfies condition (*), and we can conclude that

Pr[MST (W ) ⊆ Q] ≤ Pr[C ∩ MST (W ) = ∅] < e−1.

This is a contradiction, and so Q must be larger than ln −
(

l+1
2

)

.
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Note. This bound becomes void as p approaches 5/n. On the other hand, for p = c/n, c > 5
fixed, we get |Q| = Ω(n2). For p = 1/nγ, γ < 1, we get |Q| > (1− γ − o(1))n logb n. For p constant,
we get |Q| > (1 − o(1))n logb n. This confirms the optimality of our results up to a constant factor,
for a wide range of sampling probabilities p.
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[5] M.X. Goemans and J. Vondrák: Covering the minimum spanning trees of random subgraphs,
The ACM-SIAM Symposium on Discrete Algorithms 2004, 927–934.

[6] J. Holm, K. De Lichtenberg and M. Thorup: Poly-logarithmic deterministic fully-dynamic
algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity, J. ACM 48(4)
(2001), 723–760.

[7] N. Jing, Y.W. Huang and E.A.Rundensteiner: Hierarchical encoded path views for path query
processing: An optimal model and its performance evaluation, IEEE T. on Knowledge and
Data Engineering 10(3) (1998), 409–432.

[8] D.R. Karger, P.N. Klein and R.E. Tarjan: A randomized linear-time algorithm to find minimum
spanning trees, J. ACM 42(2) (1995), 321–328.

[9] R. Motwani and P. Raghavan: Randomized algorithms, Cambridge University Press 1995.

[10] L. Valiant: The complexity of enumeration and reliability problems, SIAM J. on Computing 8
(1979), 410–421.
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