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Abstract� We describe a few applications of semide�nite programming
in combinatorial optimization�
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Semide�nite programming is a special case of convex programming where the feasi
ble region is an a�ne subspace of the cone of positive semide�nite matrices� There
has been much interest in this area lately� partly because of applications in com
binatorial optimization and in control theory and also because of the development
of e�cient interiorpoint algorithms�

The use of semide�nite programming in combinatorial optimization is not new
though� Eigenvalue bounds have been proposed for combinatorial optimization
problems since the late �	�s� see for example the comprehensive survey by Mohar
and Poljak �
	�� These eigenvalue bounds can often be recast as semide�nite
programs ���� This reformulation is useful since it allows to exploit properties of
convex programming such as duality and polynomialtime solvability� and it avoids
the pitfalls of eigenvalue optimization such as nondi�erentiability� An explicit
use of semide�nite programming in combinatorial optimization appeared in the
seminal work of Lov�asz ���� on the socalled theta function� and this lead Gr�otschel�
Lov�asz and Schrijver ��� ��� to develop the only known �and noncombinatorial�
polynomialtime algorithm to solve the maximum stable set problem for perfect
graphs�

In this paper� we describe a few applications of semide�nite programming in
combinatorial optimization� Because of space limitations� we restrict our attention
to the Lov�asz theta function� the maximum cut problem ���� and the automatic
generation of valid inequalities �a la Lov�aszSchrijver ���� ���� This survey is much
inspired by another �longer� survey written by the author ���� However� new results
on the power and limitations of the Lov�aszSchrijver procedure are presented as
well as a study of the maximum cut relaxation for graphs arising from association
schemes�
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� Preliminaries

In this section� we collect several basic results about positive semide�nite matrices
and semide�nite programming�

Let Mn denote the cone of n� n matrices �over the reals�� and let Sn denote
the subcone of symmetric n� n matrices� A matrix A � Sn is said to be positive
semide�nite if its associated quadratic form xTAx is nonnegative for all x � Rn�
The positive semide�niteness of a matrix A will be denoted by A � 	� similarly�
we write A � B for A � B � 	� The cone of positive semide�nite matrices will
be denoted by PSDn� The following statements are equivalent for a symmetric
matrix A� �i� A is positive semide�nite� �ii� all eigenvalues of A are nonnegative�
and �iii� there exists a matrix B such that A � BTB� �iii� gives a representation
of A � �aij � as a Gram matrix� there exist vectors vi such that aij � vTi vj for all
i� j� Given a symmetric positive semide�nite matrix A� a matrix B satisfying �iii�
can be obtained in O�n�� time by a Cholesky decomposition�

Given A�B �Mn� the �Frobenius� inner product A �B is de�ned by A �B �
Tr�ATB� �

P
i

P
j AijBij � The quadratic form xTAx can thus also be written

as A � �xxT �� Since the extreme rays of PSDn are of the form xxT � we derive
that A � B � 	 whenever A�B � 	� We can also similarly derive Fejer�s theorem
which says that PSDn is selfpolar� i�e� PSD

�
n � fA � Sn � A � B � 	 for all

B � 	g � PSDn�
Semide�nite programs are linear programs over the cone of positive semide�

nite matrices� They can be expressed in many equivalent forms� e�g�

SDP � inf C � Y ���

subject to� Ai � Y � bi i � �� � � � �m
Y � 	�

In general a linear program over a pointed closed convex cone K is formulated
as z � inffcTx � Ax � b� x � Kg� and its dual �see �

�� is w � supfbT y �
AT y � s � c� s � K�g where K� � fa � aT b � 	 for all b � Kg� Weak duality
always holds� cTx � yT b � �AT y � s�Tx � yTAx � sTx for any primal feasible x
and dual feasible y� If we assume that A has full row rank� fx � intKg �� 	� and
f�y� s� � AT y � s � c� s � int K�g �� 	� then z � w and both the primal and dual
problems attain their optimum value� In the case of semide�nite programs� the
dual to ��� is supfPn

i�� biyi �
P

i yiAi 
 Cg�
Semide�nite programs can be solved �more precisely� approximated� in

polynomialtime within any speci�ed accuracy either by the ellipsoid algorithm
��� ��� or more e�ciently through interiorpoint algorithms� For the latter� we
refer the reader to �

� �� 
��� The above algorithms produce a strictly feasible
solution �or slightly infeasible for some versions of the ellipsoid algorithm� and� in
fact� the problem of deciding whether a semide�nite program is feasible �exactly�

is still open� However� we should point out that since

�
� x
x a

�
� 	 i� jxj � p

a�

a special case of semide�nite programming feasibility is the squareroot sum prob
lem� given a�� � � � � an and k� decide whether

Pn
i��

p
ai � k� The complexity of

this problem is still open�
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� Lov�asz	s Theta Function

Given a graph G � �V�E�� a stable �or independent� set is a subset S of vertices
such that no two vertices of S are adjacent� The maximum cardinality of a stable
set is the stability number �or independence number� of G and is denoted by ��G��
In a seminal paper ����� Lov�asz proposed an upper bound on ��G� known as the
theta function ��G�� The theta function can be expressed in many equivalent
ways� as an eigenvalue bound� as a semide�nite program� or in terms of orthogonal
representations� These formulations will be summarized in this section� We refer
the reader to the original paper ����� to Chapter � in Gr�otschel et al� ����� or to
the survey by Knuth ���� for additional details�

As an eigenvalue bound� ��G� can be derived as follows� Consider P � fA �
Sn � aij � � if �i� j� �� E �or i � j�g� If there exists a stable set of size k� the
corresponding principal submatrix of any A � P will be Jk� the all ones matrix of
size k� By a classical result on interlacing of eigenvalues for symmetric matrices
�see ������ we derive that �max�A� � �max�Jk� � k for any A � P � where �max���
denotes the largest eigenvalue� As a result� minA�P �max�A� is an upper bound
on ��G�� and this is one of the equivalent formulations of Lov�asz�s theta function�

This naturally leads to a semide�nite program� Indeed� the largest eigenvalue
of a matrix can easily be formulated as a semide�nite program� �max�A� � minft �
tI �A � 	g� In order to express ��G� as a semide�nite program� we observe that
A � P is equivalent to A � J being generated by Eij for �i� j� � E� where all
entries of Eij are zero except for �i� j� and �j� i�� Thus� we can write

��G� � min t

subject to� tI �
X

�i�j��E

xijEij � J�

By strong duality� we can also write�

��G� � max J � Y �
�

subject to� yij � 	 �i� j� � E ���

I � Y � � �i�e� T r�Y � � �� ���

Y � 	� ���

Lov�asz�s �rst de�nition of ��G� was in terms of orthonormal representa
tions� An orthonormal representation of G is a system v�� � � � � vn of unit vec
tors in Rn such that vi and vj are orthogonal �i�e� v

T
i vj � 	� whenever i

and j are not adjacent� The value of the orthonormal representation is z �
minc�jjcjj��maxi�V

�
�cTui��

� This is easily seen to be an upper bound on ��G� �since

jjcjj� � P
i�S�c

Tui�
� � jSj�z for any stable set S�� Taking the minimum value

over all orthonormal representations of G� one derives another expression for ��G��
This result can be restated in a slightly di�erent form� If x denotes the incidence
vector of a stable set then we have thatX

i

�cT vi�
�xi � �� ���
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In other words� the orthonormal representation constraints ��� are valid inequal
ities for STAB�G�� the convex hull of incidence vectors of stable sets of G�
Gr�otschel et al� ��	� show that if we let TH�G� � fx � x satis�es ��� and x � 	g�
then ��G� � maxfPi xi � x � TH�G�g� Yet more formulations of � are known�

��� Perfect Graphs

A graph G is called perfect if� for every induced subgraph G�� its chromatic number
is equal to the size of the largest clique in G�� Even though perfect graphs have
been the focus of intense study� there are still important questions which are
still open� The strong perfect graph conjecture of Berge claims that a graph is
perfect if and only if it does not contain an odd cycle of length at least �ve or its
complement� It is not even known if the recognition problem of deciding whether
a graph is perfect is in P or NPcomplete� However� the theta function gives some
important characterizations �but not a �good� or NP�coNP characterization� of
perfect graphs�

Theorem � 
Gr�otschel et al� ���� The following are equivalent�

� G is perfect�

� TH�G� � fx � 	 �Pi�C xi � � for all cliques Cg
� TH�G� is polyhedral�

Moreover� even though recognizing perfect graphs is still open� one can �nd the
largest stable set in a perfect graph in polynomial time by computing the theta
function using semide�nite programming �Gr�otschel et al� ��� ����� similarly one
can solve the weighted problem� or �nd the chromatic number or the largest clique�
Observe that if we apply this algorithm to a graph which is not necessarily perfect�
we would either �nd the largest stable set or have a proof that the graph is not
perfect�

Although ��G� � ��G� for perfect graphs� ��G� can provide a fairly poor
upper bound on ��G� for general graphs� Feige ��� has shown the existence of
graphs for which ��G����G� � ��n���� for any � 	 	� See ��� for further details
and additional references on the quality of ��G��

� The Maximum Cut Problem

Given a graph G � �V�E�� the cut 
�S� induced by vertex set S consists of the set
of edges with exactly one endpoint in S� In the NPhard maximum cut problem
�MAX CUT�� we would like to �nd a cut of maximum total weight in a weighted
undirected graph� The weight of 
�S� is w�
�S�� �

P
e���S� we� In this section�

we describe an approach of the author and Williamson ��� based on semide�nite
programming�

The maximum cut problem can be formulated as an integer quadratic pro
gram� If we let yi � � if i � S and yi � �� otherwise� the value of the cut
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�S� can be expressed as
P

�i�j��E wij
�
� �� � yiyj�� Suppose we consider the ma

trix Y � �yiyj �� This is a positive semide�nite rank one matrix with all diagonal
elements equal to �� Relaxing the rank one condition� we derive a semide�nite
program giving an upper bound SDP on OPT �

SDP � max
�




X
�i�j��E

wij��� yij� ���

subject to� yii � � i � V

Y � �yij � � 	�

It is convenient to write the objective function in terms of the �weighted� Laplacien
matrix L�G� � �lij � of G� lij � �wij for all i �� j and lii �

P
j wij � For any matrix

Y � we have L�G� � Y �
P

�i�j��E wij�yii � yjj � 
yij� �in particular� if Y � yyT

then we obtain the classical equality yTL�G�y �
P

�i�j��E wij�yi � yj�
��� As a

result� the objective function can also be expressed as �
�L�G� � Y �

The dual of this semide�nite program is SDP � �
� minf

P
j dj � diag�d� �

L�G�g� This can also be rewritten as

SDP �
�

�
n min
u�
P

i
ui�	

�max�L� diag�u��� ���

This eigenvalue bound was proposed and analyzed by Delorme and Poljak ��� ���
In their study� they conjectured that the worstcase ratio OPT�SDP is �
��
��
�
p
��  	������ for nonnegative weights and achieved by the �cycle� By exploiting

���� Goemans and Williamson ��� derived a randomized algorithm that produces
a cut whose expected value is at least 	������SDP � implying that OPT�SDP �
	������ for nonnegative weights� We describe their random hyperplane technique
and their elementary analysis below�

Consider any feasible solution Y to ���� Since Y admits a Gram represen
tation� there exist unit vectors vi � Rd �for some d � n� for i � V such that
yij � vTi vj � Let r be a vector uniformly generated from the unit sphere in R

d� and
consider the cut induced by the hyperplane fx � rTx � 	g normal to r� i�e� the cut

�S� where S � fi � V � rT vi � 	g� By elementary arguments� the probability
that vi and vj are separated is precisely ���� where � � arccos�v

T
i vj� is the angle

between vi and vj � Thus� the expected weight of the cut is exactly given by�

E�w�
�S��� �
X

�i�j��E

wij
arccos�vTi vj�

�
� ���

Comparing this expression term by term to the objective function of ��� and
using the fact that arccos�x��� � � �

� �� � x� where � � 	������ � � �� we derive
that E�w�
�S��� � � �

�L�G� � Y � Hence if we apply the random hyperplane tech
nique to a feasible solution Y of value � �� � ��SDP �which can be obtained in
polynomial time�� we obtain a random cut of expected value greater or equal to
��� � ��SDP � 	������SDP � 	������OPT � Mahajan and Ramesh ���� have
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shown that this technique can be derandomized� therefore giving a deterministic
	������approximation algorithm for MAX CUT�

The worstcase value for OPT�SDP is thus somewhere between 	������ and
	������� and even though this gap is small� it would be very interesting to prove
Delorme and Poljak�s conjecture that the worstcase is given by the �cycle� This
would however require a new technique� Indeed� Karlo� ���� has shown that the
analysis of the random hyperplane technique is tight� namely there exists a family
of graphs for which the expected weightE�w�
�S�� of the cut produced is arbitrarily
close to �SDP �

No better approximation algorithm is currently known for MAX CUT� On the
negative side though� H astad ��
� has shown that it is NPhard to approximate
MAX CUT within ����� � � � 	������ � � � for any � 	 	� Furthermore� H astad
shows that if we replace the objective function by �

�

P
�i�j��E�

wij�� � yiyj� �
�
�

P
�i�j��E�

wij�� � yiyj�� then the resulting problem is NPhard to approximate

within ����
� � � 	������ � � �� while the random hyperplane technique still gives
the same guarantee of �  	�������

The analysis of the random hyperplane technique can be generalized fol
lowing an idea of Nesterov �
�� for more general Boolean quadratic programs�
First observe that ��� can be rewritten as E�w�
�S��� � �

��L�G� � arcsin�Y ��
where arcsin�Y � � �arcsin�yij��� Suppose now that we restrict our attention to
weight functions for which L�G� � K for a certain cone K� Then a bound of �
would follow if we can show that L�G� � � �� arcsin�Y �� � L�G� � ��Y � or L�G� ��
�
� arcsin�Y �� �Y

� � 	� This corresponds to showing that � �� arcsin�Y �� �Y
� �

K�� where K� is the polar cone to K� For several interesting cones K �e�g� the
cone of positive semide�nite matrices�� this analysis can be performed�

We now describe a situation in which the semide�nite programming relaxation
simpli�es considerably� This is similar to the wellknown LP bound in coding
introduced by Delsarte ��� which corresponds to the theta function for graphs
arising from association schemes� The results brie!y sketched below were obtained
jointly with F� Rendl�

Consider graphs whose adjacency matrix can be written as
P

i�M Ai where
M � f�� � � � � lg and A	� A�� � � � � Al are n� n 	� � symmetric matrices forming an
association scheme �see �
���

�� A	 � I �


�
Pl

i�	 Ai � J �

�� there exist pkij �	 � i� j� k � l� such that AiAj � AjAi �
Pn

k�	 p
k
ijAk�

When l � 
� the graph with incidence matrix A� �or A�� is known as a strongly
regular graph�

We list below properties of association schemes� for details see for example �
��
Since the Ai�s commute� they can be diagonalized simultaneously and thus they
share a set of eigenvectors� Furthermore� the �BoseMesner� algebra A generated
by the Ai�s has a unique basis of minimal idempotents �i�e� E

� � E� E	� � � � � El�
These matrices Ei�s are positive semide�nite �since their eigenvalues are all 	 or �
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by idempotence�� and have constant diagonal equal to i�n where i is the rank
of Ei�

For association schemes� we can show that the optimum correcting vector in
��� is u � 	� giving SDP � n

��max�L�G��� and that the optimum primal solution
Y is equal to nEp�p where p is the index corresponding to the eigenspace of the
largest eigenvalue of L�G�� To see this optimality� one simply needs to realize that
Z � �max�L�G��I �L�G� can be expressed as

P
i��p ciEi and� as a result� satis�es

complementary slackness with nEp�p� ZEp � 	� Furthermore� if we were to add
valid inequalities of the form Ci � Y � bi with Ci � A to the primal semide�nite
program then the primal and dual SDPs can be seen to reduce to a dual pair of
linear programs�

�
� max

X
j

�L�G� �Ej�xj � �
� min ns�

X
i

bizi

s�t�
X
j

jxj � n s�t� js�
X
i

�Ci �Ej�zi � L �Ej �j
X
j

�Ci �Ej�xj � bi �i zi � 	 �i

xj � 	 �j
The primal semide�nite solution is then

P
j xjEj and the dual constraints imply

that sI �
P

i ziCi � L�G�� As an illustration� the triangle inequalities can be
aggregated in order to be of the required form� and thus the semide�nite program
with triangle inequalities can be solved as a linear program for association schemes�

� Deriving Valid Inequalities

Lov�asz and Schrijver ���� ��� have proposed a technique for automatically gener
ating stronger and stronger formulations for integer programs� We brie!y describe
their approach here and discuss its power and its limitations�

Let P � fx � Rn � Ax � b� 	 � x � �g� and let P	 � conv�P � f	� �gn�
denote the convex hull of 	� � solutions� Suppose we multiply a valid inequalityP

i cixi � d � 	 for P by either � � xj � 	 or by xj � 	� We obtain a quadratic
inequality that we can linearize by replacing xixj by a new variable yij � Since
we are interested only in 	� solutions� we can impose that x�i � xi for all i�
Replacing xi by yii� we therefore obtain a linear ��matrix�� inequality on the
entries of Y � Let M�P � denote the set of all symmetric matrices satisfying all
the matrix inequalities that can be derived in this way� and let N�P � � fx � Y �
M�P �� x � Diag�Y �g� where Diag�Y � denotes the diagonal of Y � thus N�P � is a
projection of M�P �� By construction� we have that P	 � N�P � � P � They also
consider a much stronger operator involving semide�nite constraints� Observe
that� for any 	� solution x� the matrix Y de�ned above as xxT must satisfy
Y �Diag�Y �Diag�Y �T � 	� This is again an �intractable� quadratic inequality but
it can be relaxed to Y �Diag�Y �Diag�Y �T � 	� Viewing Y �Diag�Y �Diag�Y �T

as a Schur complement� this is equivalent to�
� Diag�Y �T

Diag�Y � Y

�
� 	� ��	�
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As a result� de�ning M
�P � as fY � M�P � satisfying ��	�g and N
�P � � fx �
Y � M
�P �� x � Diag�Y �g� we have that N	�P � � N
�P � � N�P � � P and
optimizing a linear objective function over N
�P � can be done via semide�nite
programming�

Lov�asz and Schrijver study the operator Nk��� �resp� Nk

���� obtained by

repeating N��� �resp� N
���� k times� and show that for any P � Rn we have
Nn

�P � � Nn�P � � N	� Lov�asz and Schrijver show that the equivalence between

�weak� optimization and �weak� separation ��� ��� implies that one can optimize
�up to arbitrary precision� in polynomial time over Nk


 for any �xed value of k�
They introduce the N index �resp� N
index� of a valid inequality for P	 starting
from P as the least k such that this inequality is valid for Nk�P � �resp� Nk


�P ���
The N
index of an inequality can be much smaller than its N index� The

following theorem gives an upper bound on the N
index� The case k � � appears
in ����� while the general case is unpublished by the author� Given a set Q � Rn�
let Q�I � � fx � Q � xi � �� i � Ig�
Theorem � Let aTx � a	 be a valid inequality for P with a � 	� Let S � fi �
ai 	 	g� Assume that aTx � a	 is valid for P �J � whenever �i� J � S� jJ j � k and
whenever �ii� J � S� jJ j � k � � and

P
j�J aj � a	� Then aTx � a	 is valid for

Nk

�P ��

The condition a � 	 can be satis�ed through complementation� This theorem
essentially says that if one can derive validity of an inequality by �xing any set of
k variables to �� then we can derive it by k repeated applications of N
� condition
�ii� simply takes care of those sets of k variables that do not satisfy the inequality�

As an illustration� consider the stable set polytope where we can take as initial
relaxation the fractional stable set polytope

FRAC�G� � fx � xi � xj � � if �i� j� � E� xi � 	 for all i � V g�
Lov�asz and Schrijver ���� show that the N index of a clique constraint on k vertices
�
P

i�S xi � �� is k � 
 while its N
index is just �� as can be seen from Theorem

� Odd hole� odd antihole� odd wheel� and orthonormal representation constraints
also have N
index equal to �� implying the polynomial time solvability of the
maximum stable set problem in any graph for which these inequalities are su�cient
�including perfect graphs� tperfect graphs� etc���

However� there are also situations where the N
 operator is not very strong�
Consider the matching polytope �the convex hull of incidence vectors of matchings�
which can also be viewed as the stable set polytope of the line graph� and its
Edmonds constraints�

P
i�S xi � �jSj � ���
 for jSj odd� Stephen and Tun"cel

�
�� show that their N
index �starting from the relaxation with only the degree
constraints� is exactly �jSj � ���
� and thus #�pn� iterations of N
 are needed
to get the matching polytope where n is its dimension� Although n iterations are
always su�cient for N or N
� here is a situation in which not signi�cantly fewer
iterations are su�cient� Let

P �

�
x � Rn �

X
i�S

xi � n



for all S � jSj � n



� �

	
�
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Thus

P	 �

�
x � Rn � 	 � xi � � for i � �� � � � � n� and

nX
i��

xi � n




	
�

Let zk and zk
 denote maxf �
n

Pn
i�� xig over x � Nk�P � and Nk


�P �� respectively�
Goemans and Tun"cel �unpublished� have obtained recurrences for zk and zk
 and
derived several properties� their most important results are summarized below�

Theorem � �� For k � n
� � z

k � zk
 	 n���r
n��
��r � In particular zn���� 	 	���

	� For k � n
� �

p
n� �

� � we have zk � zk
�

Together with Theorem 
� �i� implies that the N
index of
Pn

i�� xi � n�
 is
exactly n�
� while one can show that its N index is n� 
� Furthermore� �ii� says
that semide�nite constraints do not help for n�
� o�n� iterations�
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