
Tight Approximation Algorithms for Maximum General Assignment
Problems

Lisa Fleischer∗ Michel X. Goemans† Vahab S. Mirrokni† Maxim Sviridenko∗

Abstract

A separable assignment problem (SAP) is defined by a set
of bins and a set of items to pack in each bin; a value,
fij , for assigning item j to bin i; and a separate packing
constraint for each bin – i.e. for bin i, a family Ii of
subsets of items that fit in bin i. The goal is to pack
items into bins to maximize the aggregate value. This class
of problems includes the maximum generalized assignment
problem (GAP)1) and a distributed caching problem (DCP)
described in this paper.

Given a β-approximation algorithm for finding the high-
est value packing of a single bin, we give

1. A polynomial-time LP-rounding based ((1 − 1
e
)β)-

approximation algorithm.

2. A simple polynomial-time local search (β
β+1 − ε)-

approximation algorithm, for any ε > 0.

Therefore, for all examples of SAP that admit an approxi-
mation scheme for the single-bin problem, we obtain an LP-
based algorithm with (1− 1

e
− ε)-approximation and a local

search algorithm with (1
2 −ε)-approximation guarantee. Fur-

thermore, for cases in which the subproblem admits a fully
polynomial approximation scheme (such as for GAP), the
LP-based algorithm analysis can be strengthened to give a
guarantee of 1 − 1

e
. The best previously known approxima-

tion algorithm for GAP is a 1
2 -approximation by Shmoys and

Tardos; and Chekuri and Khanna. Our LP algorithm is based
on rounding a new linear programming relaxation, with a
provably better integrality gap.

To complement these results, we show that SAP and
DCP cannot be approximated within a factor better than 1− 1

e

unless NP⊆ DTIME(nO(log log n)), even if there exists a
polynomial-time exact algorithm for the single-bin problem.

∗IBM T. J. Watson Research Center. Email:
{lkf,sviri}@watson.ibm.com

†MIT Department of Mathematics. Email: goemans@math.mit.edu,
mirrokni@theory.csail.mit.edu. Supported in part by NSF grants CCR-
0098018 and ITR-0121495, and ONR grant N00014-05-1-0148.

1GAP is as follows: given a set of bins and a set of items that have
a different size and value for each bin, pack a maximum-valued subset of
items into the bins.

We extend the (1 − 1
e
)-approximation algorithm to a

nonseparable assignment problem with applications in max-
imizing revenue for budget-constrained combinatorial auc-
tions and the AdWords assignment problem. We generalize
the local search algorithm to yield a 1

2 − ε approximation al-
gorithm for the k-median problem with hard capacities. Fi-
nally, we study naturally defined game-theoretic versions of
these problems, and show that they have price of anarchy of
2. We also prove the existence of cycles of best response
moves, and exponentially long best-response paths to (pure
or sink) equilibria.

1 Introduction

In this paper, we study a general class of maximizing as-
signment problems with packing constraints. In particular,
we study the separable assignment problems (SAP): we are
given a set U of n bins and a set H of m items, and a value,
fij , for assigning item j to bin i. We are also given a separate
packing constraint for each bin i; packing here refers to the
assumption that if a subset is feasible for a bin then any sub-
set of it is also feasible. The goal is to find an assignment of
items to bins with the maximum aggregate value. For each
bin, we define the single-bin subproblem as the optimization
problem over feasible sets associated with the packing con-
straint for the bin.

This general class of problems includes several more
specific problems as special cases, some well-studied, others
newer and motivating our work here. All of these problems
are NP-complete since for all of them, the knapsack problem
is a special case.

Maximum Generalized Assignment Problem (GAP):
Given a set of bins with capacity constraint and a set of items
that have a possibly different size and value for each bin,
pack a maximum-valued subset of items into the bins. This
problem has several applications in inventory planning.

Distributed Caching Problem (DCP): This problem mo-
tivated our study of SAP. There is a set of n cache locations
and m requests. Each cache location has a storage capacity
and a bandwidth limit. Each request is of a particular request
type, and a particular bandwidth. Given a set of request with
request types where each request type has a size, the service
provider decides 1) which request types to store at each cache
location, subject to storage capacity; and 2) which subset of

requests to answer subject to the request type selection and
available bandwidth at the cache. Since the storage space for
a request type in a cache location is independent of the num-
ber of requests for that type, the bandwidth required to serve
requests of the same type is the sum of bandwidth require-
ments for the individual requests. For each potential assign-
ment of request to cache, there is an associated profit which
depends on the connection cost for the request to the cache.
The goal is to maximize the profit of providing requests.

Our Results. Our results depend on an algorithm to
solve the single-bin subproblem in SAP. In an instance of
the single-bin subproblem, we are given a bin i, a set of items
with value vj for each item j, and a packing constraint for bin
i, i.e., a lower-ideal2 family, Ii of feasible subsets of items
that can be packed in bin i. A β-approximation algorithm
for β ≤ 1 for the single-bin subproblem is an algorithm that
outputs a subset of items S ∈ Ii such that for any other
subset S′ ∈ Ii of items,

∑

j∈S vj ≥ β
∑

j∈S′ vj .
Given a β-approximation algorithm for the single-bin

subproblem, we give

1. A polynomial-time LP-rounding based ((1 − 1
e
)β)-

approximation algorithm.

2. A simple, polynomial-time local search (β
β+1 − ε)-

approximation algorithm.3

For all of the specific problems mentioned above, there is
an approximation scheme for the single-bin subproblem, so
that we obtain an LP-based algorithm with (1 − 1

e
− ε)-

approximation and a local search algorithm with 1
2 − ε-

approximation guarantee. Furthermore, if the single-bin sub-
problem admits an FPTAS, a more careful analysis gives a
1 − 1

e
-approximation algorithm for SAP. To complement

these results, we show that SAP and DCP cannot be ap-
proximated within a factor better than 1 − 1

e
unless NP⊆

DTIME(nO(log log n)), even if there exists a polynomial-time
exact algorithm for the single-bin subproblem.

We extend the 1− 1
e

-approximation algorithm to a non-
separable assignment problem with applications in maximiz-
ing revenue for the budget-constrained combinatorial auc-
tions and the AdWords assignment problem. We generalize
the local search algorithm to yield a 1

2 − ε approximation al-
gorithm for the k-median problem with hard capacities. Fi-
nally, we study naturally defined game-theoretic versions of
these problems, and show that they have price of anarchy of
2. We also prove the existence of cycles of best response
moves, and exponentially long best-response paths to (pure
or sink) equilibria. Thus a natural local search algorithm

2A family I ⊆ 2H of subsets of a set H is lower-ideal, if for each two
subsets S and R such that R ⊆ S, if S ∈ I, then R ∈ I.

3For the local search algorithm, we can set ε to be exponentially small,
i.e., ε = 1

2cn for any constant c > 0.

based on selfish bin behavior does not converge in polyno-
mial time.

Due to the space constraint, some proofs are omitted
in this extended abstract. We refer to Mirrokni [20] for the
details of many missing proofs.

Previous Work. For the special case of GAP, Shmoys
and Tardos [28] present an LP-rounding 2-approximation
algorithm for the minimization problem. Chekuri and
Khanna [6] observed that a 1

2 -approximation for GAP is im-
plicit in [28]. Their method is based on an LP formulation
with the integrality gap of at least 2. (Thus the LP we in-
troduce here is provably stronger.) Chekuri and Khanna [6]
develop PTAS’s for a special case of this problem called the
multiple knapsack problem. In this problem, each item has
the same size and the same profit for all cache locations.
They also classify the APX-hard special cases of GAP.

Fisher, Nemhauser, and Wolsey [10] consider the prob-
lem of maximizing a submodular function subject to the set
being the independent set of a matroid. They describe both
a simple greedy algorithm, and a local search algorithm that
give an approximation guarantee of 1

2 . Chekuri [5] shows
that SAP can be modelled as such a problem; his reduction
is described in Section 3. Therefore, the proofs of Fisher
et al. imply that if the single bin subproblem is solved opti-
mally, their algorithms yield 1

2 approximation for SAP. In
this paper, we describe a similar local search algorithm, and
show that it also yields a good guarantee for SAP even when
the single bin subproblem is solved approximately.

Sviridenko shows that the greedy algorithm gives a
1− 1

e
-approximation for maximizing a submodular function

subject to one knapsack constraint [30], but does not con-
sider assignment type problems with sets of packing con-
straints. Indeed the simple greedy algorithm does worse than
1 − 1

e
even for the multiple knapsack problem. Using LP

techniques [1, 29], approximation algorithms with the guar-
antee of 1 − 1

e
for some maximum coverage problems are

known. These techniques are different from ours and can-
not handle SAP as the packing constraints in SAP are more
general.

Gomes, Regis, and Shmoys [16] use a set packing LP
and a rounding scheme similar to the one we use here but to
obtain a 1 − 1

e
-approximation algorithm to solve the partial

latin square extension problem. In particular, their LP does
not capture knapsack packing constraints. Independent of
our work, Nutov, Beniaminy, and Yuster [22] give a 1 − 1

e
-

approximation algorithm for a special case of GAP with
fixed profits. They use a different LP LP formulation that
does not capture the general GAP.

Baev and Rajaraman [3] study a problem of data place-
ment in networks. They formalize a minimization version of
our problem in which they need to place objects in caches to
minimize the total connection costs. They give a constant-
factor approximation for this problem, which is improved to

factor 10 by Swamy [31]. In the conclusion of [3], they sug-
gest considering the problem with bandwidth as an important
extension.

Goemans, Li, Mirrokni, and Thottan [13], formalize
a decentralized version of DCP in the context of the ser-
vice provider 3G cellular networks. In this setting, resident
subscribers are cache locations that can provide content to
clients. However, [13] only models a special case of the
problem by ignoring the bandwidth constraint and connec-
tion costs.

The Distributed Caching Problem (DCP). Here, we
formally define the distributed caching problems that are
special cases of SAP. The general distributed caching
problem that we formalize here is denoted by CapIBDC:

CapIBDC: Let U be a set of n cache locations with
given available capacities Ai and given available bandwidths
Bi for each cache location i. There are k request types;4

each request type t has a size at (1 ≤ t ≤ k). Let H be
a set of m requests with a reward Rj , a required bandwidth
bj , a request type tj for each request j, and a cost cij for
connecting each cache location i to each request j. The profit
of providing request j by cache location i is fij = Rj − cij .
A cache location i can service a set of requests Si, if it
satisfies the bandwidth constraint:

∑

j∈Si
bj ≤ Bi, and the

capacity constraint:
∑

t∈{tj |j∈Si}
at ≤ Ai (this means that

the sum of the sizes of the request types of the requests in
cache location i should be less than or equal to the available
capacity of cache location i). We say that a set Si of requests
is feasible for cache location i if it satisfies both bandwidth
and capacity constraints for bin i. The goal of the CapIBDC

problem is to find a feasible assignment of requests to cache
locations to maximize the total profit; i.e., the total reward
of requests that are provided minus the connection costs of
these requests.

We also consider the following special cases of the
CapIBDC problem: The CapDC problem is a special case of
CapIBDC problem without bandwidth constraint. The IBDC

problem is a special case of CapIBDC problem without
capacity constraint. From this definition, one can see that
IBDC is a special case of CapDC where there exists exactly
one request of each request type, the available capacity of
cache locations in CapDC is equal to the available bandwidth
of cache locations in IBDC, and the size of request types
in CapDC corresponds to the bandwidth requirement of
requests in IBDC. The uniform CapDC problem is a special
case of the CapDC problem where the size of all request
types is the same, i.e., at = a for all 1 ≤ t ≤ k.
The uniform IBDC problem is a special case of the IBDC

problem where the bandwidth requirement of all requests
is the same, i.e., bj = b for all j ∈ H . We refer to all

4Request type can be thought as different files that should be delivered
to clients.

variants of the distributed caching problems as DCP. We
also consider the fractional variant of CapIBDC, denoted by
CapFBDC. In CapFBDC, a cache location may satisfy a
request fractionally. The main reason to consider this setting
is that a request may capture the requests for the same file in a
region. In this case, some of these files may get service from
one cache location and others from another cache location.

2 LP-Based Approximation Algorithms

In this section, we give a ((1− 1
e
)β)-approximation for SAP

and its variants where β is the approximation factor of the
algorithm for the single-bin subproblem. The general ap-
proach is to formulate an (exponential-size) integer program,
solve the linear program relaxation approximately, round the
solution to the linear program, and prove that the rounded
solution has this guarantee. There are two main issues here:
proving the goodness of the rounded solution, and obtaining
a good solution to the large linear program in polynomial
time. We first discuss the approach in the context of SAP,
and then discuss some extensions.

2.1 Separable Assignment Problems
Formulation. We give an exponential-size integer pro-

gramming formulation for SAP. Let Ii for i ∈ U be the
set of all feasible assignments of items to bin i; these are
the feasible solutions to the single-bin subproblem for bin
i. For a set S ∈ Ii, let X i

S be the indicator variable that
indicates if we choose S as the subset of items for bin i.
The first constraint is that we cannot assign more than one
set to a bin i, thus for all i ∈ U ,

∑

S∈Ii
X i

S = 1. More-
over, we cannot assign each item to more than one bin:
∑

i,S∈Ii:j∈S XS
i ≤ 1. Our objective is to find an assign-

ment of items to bins to maximize the sum of profits, i.e.,
∑

i,S∈Ii
fS

i XS
i where fS

i =
∑

j∈S fij . By relaxing the 0-1
variables to nonnegative real variables, we obtain the follow-
ing linear programming relaxation:

max
∑

i∈U,S∈Ii
fS

i XS
i(2.1)

s.t.
∑

i∈U,S∈Ii:j∈S XS
i ≤ 1 ∀j ∈ H

∑

S∈Ii
XS

i = 1 ∀i ∈ U

XS
i ≥ 0 ∀i ∈ U, ∀S ∈ Ii

Let LP(SAP) denote the objective function value of this LP.
Rounding the Fractional Solution. Given a solution to

the linear program (2.1), independently for each bin i, assign
set S to i with probability X i

S . In the resulting solution,
some item j may be contained in more than one of the sets
assigned to the bins. In this case, item j is assigned to the
bin among these bins with the maximum fij -value. Note that
the resulting assignment after this step is feasible, since the
family Ii for each bin i is lower-ideal.

THEOREM 2.1. The expected value of the rounded solution

is at least
(

1 −
(

1 − 1
n

)n)

LP(SAP).

Proof. For item j, sort the bins i for which Yi =
∑

S∈Ii:j∈S XS
i is nonzero in the non-increasing order of

fij . Without loss of generality assume that these bins are
1, 2, . . . , l and f1j ≥ f2j . . . ≥ flj ≥ 0. With probability
Y1 the set that is assigned to bin 1 contains j, thus item j
is assigned to bin 1. In this case, the value of item j is f1j .
With probability (1 − Y1)Y2, bin 1 does not have item j in
its subset and bin 2 has item j in its set. In this case, the
value of item j is f2j . Proceeding similarly, we obtain that
the expected value for request j in the rounded solution is
f1jY1 + f2j(1 − Y1)Y2 + . . . + flj(Π

l−1
i=1(1 − Yi))Yl. The

contribution of item j in the value of the fractional solution
is
∑

1≤i≤l fijYi. This in conjunction with Lemma 2.1 below
yields the result.

LEMMA 2.1. f1jY1 + f2j(1− Y1)Y2 + . . . + flj(Π
l−1
i=1(1−

Yi))Yl ≥
(

1 −
(

1 − 1
l

)l
)

∑

1≤i≤l fijYi whenever Yi ≥ 0

for all i and
∑

i Yi ≤ 1 and f1j ≥ f2j ≥ . . . ≥ flj ≥ 0.

Proof. From the arithmetic/geometric mean inequality, one
can derive (see Lemma 3.1 in [15]):

1 − (

k
∏

i=1

(1 − Yi))

= Y1 + (1 − Y1)Y2 + · · · + (

k−1
∏

i=1

(1 − Yi))Yk

≥

(

1 −

(

1 −
1

k

)k
)

k
∑

i=1

Yi

for any k. Multiplying this inequality by fkj − fk+1,j ≥ 0
where fl+1,j = 0, summing over k and using the monotonic-
ity of (1 − (1 − 1/k)k), we derive the lemma.

Solving the LP. The number of variables in the linear
program (2.1) is exponential. To solve this LP, we first solve
its dual (2.2) given below.

min
∑

i∈U qi +
∑

j∈H λj(2.2)
s.t. qi +

∑

j∈S λj ≥ fS
i ∀i ∈ U, ∀S ∈ Ii

λj ≥ 0 ∀j ∈ H.

The dual linear program (2.2) has a polynomial number of
variables, but exponentially many constraints. We rewrite it
as a fractional covering problem as follows:

min
∑

i∈U qi +
∑

j∈H λj(2.3)
s.t. (qi, λ) ∈ Pi ∀i ∈ U

λj ≥ 0 ∀j ∈ H.

Here, Pi is the polytope defined by constraints of the form
qi ≥

∑

j∈S(fij − λj) for all S ∈ Ii. To solve the LP, we

will need a separation algorithm for Pi. We define an β-
approximate separation algorithm for polytope Pi to be an
algorithm that given a point (qi, λj |j ∈ H) returns either
a violated constraint, or guarantees that (qi

β
, λj |j ∈ H) is

feasible for Pi. We let LP(Dual SAP) denote the objective
function value of the linear program (2.2).

LEMMA 2.2. For any δ > 0, given a polynomial-time β-
approximate separation algorithm for Pi, we can design a
polynomial-time (β − δ)-approximation algorithm to solve
the linear program (2.2) and hence the linear program (2.1).

The proof of this lemma is omitted here. The fact that,
for a class of packing-covering linear programs, an approx-
imate separation oracle for the dual implies an approximate
solution for the primal is also observed by Carr and Vem-
pala [4] and by Jain, Mahdian and Salavatipour [17]. An
approximate solution to the linear programs (2.1) and (2.2)
can also be obtained via Lagrangian LP algorithms [11, 25,
33, 34].

We can use a β-approximation algorithm for the single-
bin subproblem for bin i to design a β-approximate separa-
tion algorithm for Pi. The β-approximate separation algo-
rithm for Pi asks, given (qi, λj |j ∈ H), find a set S ∈ Ii

such that qi <
∑

j∈S(fij −λj). It is sufficient to find the set
S ∈ Ii that maximizes

∑

j∈S(fij − λj). Since Ii is lower-
ideal, we know that if qi < 0 then the set S = ∅ violates the
above inequality. Moreover, we can consider only items j for
which fij−λj is positive. In fact, we can set max(0, fij−λj)
as the value of item j in the single-bin subproblem and use
a β-approximation algorithm for the single-bin subproblem,
to find a subset S∗ ∈ Ii with value q∗i such that for any set
S′ ∈ Ii, q∗i =

∑

j∈S∗(fij − λj) ≥ β
∑

j∈S′(fij − λj).
We know that either q∗i > qi in which case we find a vi-
olated constraint, or q∗i ≤ qi. In the later case, we know
that for any subset S ′ ∈ Ii,

∑

j∈S′ (fij − λj) ≤ q∗

i

β
≤ qi

β
.

Therefore, in this case (qi

β
, λj |j ∈ U) is feasible for Pi.

Hence, a β-approximation algorithm for the single-bin sub-
problem is a β-approximate separation algorithm for Pi.
The above and previous discussion yields a guarantee of
(

1 −
(

1 − 1
n

)n)

(β − δ). Since δ can be chosen to be ex-
ponentially small (it determines the parameters of a binary
search) and we have that

(

1 −
(

1 − 1
n

)n)

≥ 1 − 1
e

+ 1
32n2 ,

we can remove the dependence on δ and obtain the following
general result.5

THEOREM 2.2. Given a polynomial-time β-approximation
algorithm for the single-bin subproblem, there exists a
polynomial-time ((1 − 1

e
)β)-approximation algorithm for

SAP.

5The observation that one has enough room between (1 − 1/e) and
(1 − (1 − 1/n)n) was pointed out to us by Raphael Yuster (similarly
to Proposition 2.1 in [22]); see also the improvement in the forthcoming
Theorem 2.4.

Solving the single-bin subproblem. In this section, we
show that the single-bin problem for each problem class
in SAP discussed in the introduction has an approxima-
tion scheme. Thus, for all problem classes, this yields
polynomial-time 1 − 1

e
− ε-approximation algorithms.

GAP: the single-bin subproblem is a knapsack problem,
for which an efficient FPTAS is well-known.

CapDC: the single-bin subproblem is to pack request
types into the bin (respecting the bin capacity) to maximize
the value of the items that can then be assigned to the bin.
An item j can only be assigned if the corresponding type
tj is assigned. This is a knapsack problem, and thus has an
FPTAS.

CapIBDC: the single-bin subproblem is the following 2-
dimensional knapsack problem: bin i has Ai available space
and Bi available bandwidth. Item j ∈ S has value vj , type
tj , and bandwidth consumption rj . Each type t has size st. A
feasible packing of items and types into bin i, satisfies total
bandwidth of items in bin i is at most Bi, the total size of
request types is at most Ai, and an item j is packed only if
type tj is also packed. The goal is to to maximize the total
value of items packed in all bins. Shachnai and Tamir [27]
describe a PTAS for this problem. We design a simpler PTAS
which also handles a fractional variant, CapFBDC.

THEOREM 2.3. There exists a polynomial-time (1− 1
e
− ε)-

approximation algorithm for GAP, CapDC, and CapIBDC

for any ε > 0.

Furthermore, if the subproblem admits an FPTAS as in
GAP or CapDC, we can get rid of the ε by using the same
argument as before Theorem 2.2 (and running the FPTAS
with a guarantee of 1 − O(1)

n2). This was brought to our
attention by Raphael Yuster. Thus,

THEOREM 2.4. There exists a polynomial-time (1 − 1
e
)-

approximation algorithm for GAP and CapDC.

2.2 Extensions to SAP. The above general framework
can be extended very slightly to also capture other classes of
problems. Here we describe two extensions. The first adds a
two-sided packing constraint: we are not only packing items
in bins, but the items are in classes, and there is a limit, in
terms of a budget constraint, on the set of items that can be
packed in each class. The second extends DCP to fractional
problems. The issue in this last case is how to solve the LP,
since the number of feasible packings is no longer finite, and
thus the straightforward modification of (2.1) yields a linear
program with an infinite number of constraints.

The AdWords Assignment Problem (AAP) is as fol-
lows: we are given a set of n bidders with a limited budget
Bi for each bidder i. Each bidder i also has an ad, Υi, to
advertise. Ad Υi is a rectangle of width wi and length li. We
are also given a set of m AdWords. For each AdWord j, we

can advertise the ads of a subset of bidders in a rectangular
area of width Wj and length Lj . The rectangles for ads may
not overlap and may not be rotated. For each AdWord j and
each bidder i, we are given a value vij that is the maximum
value that bidder i is willing to pay for AdWord j. For an
assignment of AdWords to bidders, if we assign the set Si

of AdWords to bidder i, the revenue from bidder i is equal
to min(Bi,

∑

j∈Si
vij). Our goal is to find an assignment of

AdWords to bidders to maximize the total revenue, i.e., the
sum of revenue from all bidders.

In related work [2], a (1− 1
e
)-approximation algorithm is

given for budget-constrained auctions. Budget-constrained
auctions [12, 2] are special cases of AAP where we can
assign each AdWord to at most one bidder. AAP cannot
be formalized as a separable assignment problem. However,
it can be formulated as an exponential-size program similar
to the linear program that we used for SAP. Let Jj be the
family of the feasible sets of bidders for the AdWord j. In
the linear program, for each AdWord j and each bidder i,
there exists a variable zij : zij = 1 if bidder i is assigned to
AdWord j and zij = 0 otherwise. For each AdWord j and
each subset T ⊆ Jj , there exists a variable Y T

j : Y T
j = 1

if set T of bidders is assigned to AdWord j and Y T
j = 0

otherwise. We relax the 0-1 variables to real variables. The
following are the primal and dual linear programs.

max
∑

i∈U,j∈H vijzij(2.4)
s.t.

∑

T∈Jj :i∈T Y T
j = zij ∀i ∈ U, j ∈ H

∑

T∈Jj
Y T

j ≤ 1 ∀j ∈ H
∑

j∈H vijzij ≤ Bi ∀i ∈ U

Y T
j ≥ 0 ∀j ∈ H, ∀T ∈ Jj

zij ≥ 0 ∀i ∈ U, j ∈ H

min
∑

i∈U Biqi +
∑

j∈H λj(2.5)
s.t. λj +

∑

i∈T yij ≥ 0 ∀j ∈ H, ∀T ∈ Jj

vijqi − yij ≥ vij ∀j ∈ H, ∀i ∈ U

λj ≥ 0 ∀j ∈ H

qi ≥ 0 ∀i ∈ U.

Similar to solving linear program (2.1), and using a β-
approximation polynomial-time algorithm for the rectangle
packing problem for AdWord j, we can solve the primal
linear program (2.4) within a factor β in polynomial time.
Now, given a fractional solution, we round the solution as
follows: for each AdWord j, we assign exactly one set of
bidders to j and we assign a set T of bidders to j with
probability Y T

j . The following lemma proves that in the
rounding process, we do not lose more than a factor 1 − 1

e
.

LEMMA 2.3. Let B′
i be the revenue of bidder i in the

fractional solution and Ei be the expected revenue from
bidder i in the rounded solution. Then Ei ≥ B′

i(1 − 1
e
).

Proof. We know that B′
i =

∑

j∈H vijzij . Let Xij be
the indicator random variable that indicates if AdWord j
is assigned to bidder i in the rounded solution. Therefore,
Ei = E[min(Bi,

∑

j∈H Xijvij)]. We know that Pr[Xij =
1] = zij . Therefore, similar to the proof of Theorem 4 in
[2], we can show that Ei ≥ B′

i(1 − 1
e
).

The above lemma along with the (1
2 − ε)-approximation

algorithm for the rectangle packing problem [18] give a
0.31-approximation algorithm for AAP. If the width of the
rectangles of ads and the rectangular area for advertisement
(Wj’s) are the same, then the packing problem for each
AdWord is a knapsack problem, therefore, our algorithm is a
0.63-approximation algorithm for this special case of AAP.

Fractional DCP. We reformulate the infinite linear
program so that it has a finite, although exponential num-
ber of constraints. There is a PTAS for the correspond-
ing separation problem, and thus we obtain polynomial time
(1− 1

e
− ε) approximation algorithm. Details are omitted in

this extended abstract.

3 Local Search Algorithms

In this section, for any ε > 0, we give a simple local search
(β

β+1−ε)-approximation algorithm for separable assignment
problems given a β-approximation algorithm for the single-
bin subproblem. This, in turn, gives a combinatorial (1

2 − ε)-
approximation algorithm for GAP and all variants of DCP.
We also show how to extend this algorithm to give a (1

2 − ε)-
approximation algorithm for the k-median problem with
hard capacities and packing constraints.

Fisher, Nemhauser, and Wolsey [10] describe both a
simple greedy algorithm and a local search algorithm that
both yield 1

2 -approximation guarantees for the problem of
maximizing a submodular function subject to the constraint
that the set is an independent set of a matroid, which
we’ll call submodular function maximization over matroids
(SFMM). Chekuri [5] gives a reduction (below) from SAP

to SFMM, which implies that the algorithms in [10] yield
1
2 -approximation guarantees for SAP when β = 1.

Reduction to SFMM. Let Ii be the set of all feasible
packings of bin i and let I = ∪iIi (with repeated copies for
sets feasible for different bins), so that each element S ∈ I
corresponds to a set of items that can packed in some bin.
A feasible solution for SAP is a set of sets A ⊆ I such
that |A ∩ Ii| ≤ 1 for all i. The goal is to maximize f(A)
where f(A) is the profit obtained by the sets in A. Define
this as

∑

j∈H maxS∈AfS,j . It can be verified that f(A) is
a submodular set function over I. The constraint that one
picks at most one element of I from each Ii is a simple
matroid constraint.

3.1 Our Local Search Algorithm. We first give a naive
local search β

β+1 -approximation algorithm whose running

time might be exponential. Then, we refine the algorithm
and change it to a polynomial-time algorithm. Let S =
(S1, . . . , Sn) be an assignment of items to bins, where Si is
the set of items in bin i. For an assignment S = (S1, . . . , Sn)
of items to bins, we denote the value of this assignment by
v(S). Also, let αi(S) be the total value of items satisfied by
bin i in S. For an item j, let vj(S) the value of item j in S.

The naive algorithm repeatedly iterates over the bins.
For bin i, it runs procedure Local(i). Local(i), given current
solution S, finds a repacking S ′

i of bin i. If replacing Si

with S′
i improves the solution then this replacement is made.

When no further improvements can be made on any bin, the
algorithm halts. We call the result an β-approximate local
optimal solution. Specifically, Local(i) does the following:

1. For each item j, let valuej(S) be equal to fi′j if j is
assigned to a bin i′ 6= i in S, and be equal to zero if j is
unassigned or is assigned to bin i in S.

2. For each item j, let the marginal value of j be wj =
fij − valuej(S).

3. Use the β-approximation algorithm for the single-bin
subproblem for bin i to pack a subset of items in bin i
with the maximum marginal value.

LEMMA 3.1. Let S = (S1, . . . , Sn) be a β-approximate
local optimal solution and OPT teh value of the optimum
assignment. Then v(S) ≥ βOPT

β+1 .

The proof of this lemma is ommited. Lemma 3.1 shows
that if we can find an β-approximate local solution then we
have a β

β+1 -approximation algorithm. We prove it is PLS-
hard to find a local solution. The proof of this fact is very
similar to the proof of Theorem 5.3. An implication of the
PLS-hardness of this problem is that there exists a set of
instances for which the above local search algorithm may
take exponential time to converge to a local optimal solution.
Below, we modify the naive algorithm to get a polynomial-
time (β

β+1 − ε)-approximation algorithm. The analysis of
this algorithm uses the following fact (which we prove in the
proof of Theorem 3.1). Using this fact, we show that after
a polynomial number of local improvements the value of the
solution is a good approximate solution.

FACT 3.1. If v(S) ≤ β
β+1OPT then there is a bin i for

which Local(i) finds a packing with marginal value at least
β
n
OPT− 1+β

n
v(S).

Local Search Algorithm.

1. Start with the empty solution, i.e., S = (S1, . . . , Sn)
and Si = ∅ for all i ∈ U .

2. For an appropriate ε′ > 0, run the following loop for
1
β
n ln(1

ε′
) times:

(a) Let the current assignment be S = (S1, . . . , Sn).
(b) For each bin i, run Local(i). Let the marginal

value of this solution for bin i be Wi and let S′
i

be the set of items with marginal value Wi.
(c) For each bin i, let ∆i = Wi − αi(S).
(d) Let bin i∗ be the bin with the maximum ∆i, i.e.,

∆i∗ ≥ ∆i for any bin i.
(e) If ∆i∗ > 0, change the set Si∗ of items for bin i∗

to S′
i∗ .

THEOREM 3.1. For any ε > 0, the above local search
algorithm is a polynomial-time (β

β+1 − ε)-approximation
algorithm for SAP.

Proof. Let Ω be an optimal assignment, and let S be an inter-
mediate assignment obtained in the local search algorithm.
Let R be the set of items that are better served in Ω than in S
and L be the rest of the items. Let Ri be the set of items in
R satisfied by bin i in Ω. For any set T of items, let o(T) be
the value of the items in T in assignment Ω and l(T) be the
value of items of T in assignment S. Thus, we have OPT =
o(R)+o(L) and v(S) = l(R)+ l(L). For each item j ∈ Ri,
the marginal value of j is fij − valuej(S) ≥ fij − vj(S).
Thus, the total marginal value of items in set Ri for bin i is
at least

∑

j∈Ri
(fij − vj(S)) = o(Ri) − l(Ri) and Ri is a

feasible solution for bin i. Since we use a β-approximation
algorithm to find Wi, Wi ≥ β(o(Ri) − l(Ri)). Therefore,
∑

i∈U Wi ≥ β
∑

i∈U (o(Ri) − l(Ri)) = β(o(R) − l(R)).
Since o(L) ≤ l(L),

∑

i∈U Wi ≥ β(o(R) − l(R) + o(L) −
l(L)) = β(OPT − v(S)). Thus,

∑

i∈U

∆i =
∑

i∈U

Wi −
∑

i∈U

αi(S)

≥ β(OPT − v(S)) − v(S)

= βOPT− (1 + β)v(S).

In particular, ∆i∗ ≥ β
n
OPT − 1+β

n
v(S). Let S ′ be the

assignment after changing the set of items of i∗ to S′
i∗ , i.e.,

S ′ = (S1, S2, . . . , Si∗−1, s
′
i∗ , Si∗+1, . . . , Sn). As a result,

v(S ′) = v(S) + ∆i∗

≥ v(S) +
β

n
OPT −

1 + β

n
v(S)

= v(S)(1 −
1 + β

n
) +

β

n
OPT.

Let yk be the total value of the assignment after the kth

execution of Step 2. From the above discussion, yk ≥
(1− 1+β

n
)yk−1+

β
n
OPT and y0 = 0. Using induction, we get

that for any 1 ≤ i ≤ k: yk ≥ β
1+β

(1−(1− β+1
n

)k)OPT. By

setting k =
n ln(1

ε′
)

β+1 , we get yk ≥ β
1+β

(1 − 1

e
ln(1

ε′
)
)OPT =

β
1+β

(1− ε′)OPT. Therefore, for ε′ = ε 1+β
β

, the value of the
output of the above algorithm is at least (β

1+β
− ε)OPT as

desired.

3.2 k-Median with Hard Capacities and Packing Con-
straints. We can extend the local search algorithm for
SAP to the k-median with hard capacities and packing
constraints(KMed). KMed is as follows: Given a set of bins
and a single-bin subproblem for each bin i, and also a set of
items that have different value for each bin, choose at most
K bins and pack a set of items in each selected bin to max-
imize the total value packed. To the best of our knowledge,
this is the first constant-factor approximation algorithm for
the the k-median problem with hard capacity constraints.

The local search algorithm for the KMed problem is
very similar to the local search algorithm for SAP. At each
step of the algorithm, we try to unpack a used bin, and
pack a (possibly different) bin to increase the total value.
The formal description of the algorithm and the analysis is
omitted here. Thus, we get:

THEOREM 3.2. Given a polynomial-time α-approximation
algorithm for the single-bin subproblem, there is a
polynomial-time (α

α+1 − ε)-approximation algorithm for
KMed.

4 A Hardness Result

In this section, we show a hardness result for the CapDC

problem and special cases of SAP. We prove that the CapDC

problem is not approximable better than a factor of 1 − 1
e

unless NP ⊆ DTIME(nO(log log n)) showing that the 1 − 1
e

-
approximation algorithm for CapDC is tight. This hardness
result uses a hardness result by Feige, Halldorson, Kortsarz,
and Srinivasan [8] for the domatic number of graphs. The
domatic number of a graph is the maximum number of
disjoint dominating sets in the graph. A subset S of vertices
of a graph G(V, E) is a dominating set if for any vertex
v 6∈ S, there exists a vertex u ∈ S which is connected to
v, i.e., (u, v) ∈ E(G). We first define a set of problems that
are used in the reduction and restate the result of Feige et
al. [8].

The Max 3-colorability problem is as follows: Given a
graph G = (V, E) color the vertices of G with 3 colors to
maximize the number of legally colored edges (edges whose
endpoints are colored differently). The Max 3-colorability-
5 problem is the Max 3-colorability problem for 5-regular
graphs. Petrank [24] proved that the Max 3-colorability
problem is APX-hard. Using this proof, Feige et al. [8]
proved that the Max 3-colorability-5 problem is APX-hard.
Formally, they showed that for some number δ < 1, it is
NP-hard to distinguish between 5-regular graphs that have
a legal 3-coloring, and 5-regular graphs in which every 3-
coloring legally colors at most δ fraction of the edges. The
following claim is implicit in the hardness result of Feige
et al. [8]: Given an instance G = (V, E) of the Max 3-
colorability-5 problem, we can construct an instance of a set
cover problem with m = O(|V |O(log log |V |)|E|O(log log |V |))

elements and n = O(|V |O(log log |V |)|E|O(log log |V |)) sets of
size m

p
where m

p
= O(|V |O(log log |V |)|E|O(log log |V |)) such

that: (i) If the vertices of graph G are (legally) 3-colorable,
then there exist n

p
disjoint set covers, each with p sets6 in

the set cover instance; and (ii) If any 3-coloring of G has
less than δ|E| legally colored edges then any collection of
βp sets cover at most (1 − (1 − 1

p
)βp)m elements7.

From an instance of the set cover problem with n sets
and m elements, we construct an instance of CapDC with
n
p

types, m · n
p

requests, and n cache locations as follows:
For each element j in the ground set of the set cover, we put
n
p

requests j1, j2, . . . , jn
p

of different types in the CapDC

instance. For each set i in the set cover instance, we put a
cache location i in the CapDC instance. The capacity Ai

for cache location i is Ai = 1 and the size of each request
type is equal to 1. Thus, we can locate at most one type in
each cache location. The profit of assigning request je to
cache location i is 1 if the corresponding element j is in the
corresponding set in the set cover instance. If the set cover
instance has n

p
disjoint set covers then in the instance of the

CapDC problem, we can satisfy all requests of a particular
type using one set cover and thus, we can find a solution
to the instance of the CapDC problem with a total profit of
mn
p

. Moreover, we claim that if any collection of βp sets
in the set cover problem, cover at most (1 − (1 − 1

p
)βp)m

of elements then the profit of any assignment to the CapDC

problem is at most (1 − (1 − 1
p
)p)mn

p
. Assume that in the

set cover instance, any collection of βp sets cover at most
(1−(1− 1

p
)βp)m of the elements. Consider a solution S with

the maximum profit for the CapDC problem. For 1 ≤ t ≤ n
p

,
let αtp be the number of cache locations that keep the request
type t in solution S. We know that

∑

n
p

t=1 αtp = n. Also
from the inequality (1 − (1 − 1

p
)xp) + (1 − (1 − 1

p
)tp) ≤

(1 − (1 − 1
p
)yp) + (1 − (1 − 1

p
)zp) where x ≤ y ≤ z ≤ t

and x + t = y + z, it follows that the profit of S maximizes
when all αt for 1 ≤ t ≤ n

p
are the same, i.e., αt = 1.

By setting αt = 1, we have that the profit of S is at most
∑

n
p

t=1(1 − (1 − 1
p
)αtp)m ≤

∑

n
p

t=1(1 − (1 − 1
p
)p)m ≤

(1 − (1 − 1
p
)p)mn

p
.

Therefore, if we apply the Feige et al. reduction from

6See Lemma 17 of [8]. In fact, Feige et al. [8] present their result in
terms of the dominating set and the domatic number problem. We restate
their result for the set cover problem.

7The proof of this claim comes from the proof of Lemma 18 of [8], in
which authors refer to the hardness result for the set cover problem by Feige
(e.g. see Proposition 4.3 of [7]). Essentially, the proof of our claim comes
from the fact that for the construction in [7] applied to our problem, any
collection of βp sets cover at most (1 − (1 − 1

p
)βp)m elements [9]. The

reason is that the number of elements that βp sets cover is less than the
expected number of elements that βp random sets of size p cover where a
random set is a set in which each element is picked uniformly at random
and independent of other elements. We also note that p is not a constant. In
particular, as |V | tends to ∞, p also tends to ∞.

Max 3-colorobality-5 to the set cover and the above reduc-
tion from the set cover to the CapDC problem, we have the
following: Given an instance of Max 3-colorability-5 prob-
lem, we can construct an instance of the CapDC problem
with n

p
types, m· n

p
requests, and n cache locations such that:

(i) If vertices of graph G are (legally) 3-colorable, then there
exists a solution with profit mn

p
for the CapDC instance; and

(ii) If any 3-coloring of G has less than δ|E| legally col-
ored edges, the maximum possible profit of the CapDC in-
stance is at most 1− (1− 1

p
)p of the number of requests, i.e.,

(1 − (1 − 1
p
)p)mn

p
.

Note that (1 − (1 − 1
p
)p) tends to 1 − 1

e
as p tends to

∞. Therefore, for any ε > 0, there exists a sufficiently
large p such that (1 − (1 − 1

p
)p) ≤ (1 − 1

e
) + ε. Hence,

for any ε > 0, for any sufficiently large instance of Max 3-
colorability-5 problem, we can construct an instance of the
CapDC problem with n

p
types, m · n

p
requests, and n cache

locations such that:

• If vertices of graph G are (legally) 3-colorable, then
there exists a solution with profit mn

p
for the CapDC

instance.

• If any 3-coloring of G has less than δ|E| legally colored
edges, the maximum possible profit of the CapDC

instance is at most 1− 1
e

+ ε of the number of requests,
i.e., (1 − 1

e
+ ε)mn

p
.

This shows that for any ε > 0, if we can approximate the
CapDC problem within a factor better than 1− 1

e
+ε then we

can distinguish between the aforementioned cases of the suf-
ficiently large instances of the Max 3-colorability-5 problem
in time O(V O(log log V)EO(log log V)). Since distinguishing
between these two cases of the Max 3-colorability-5 problem
is NP-hard, if we can approximate the CapDC problem in
polynomial time within a factor of 1− 1

e
+ ε′ for ε′ < ε, then

NP⊆ DTIME(nO(log log n)). Note that in the above reduc-
tion, we only used instances of the CapDC problem with uni-
form sizes and uniform capacities, this shows that even the
uniform CapDC problem is not approximable within a fac-
tor better than 1 − 1

e
unless NP ⊆ DTIME(nO(log log n)). In

particular, it means that there are instances of SAP in which
the single-bin subproblem is solvable in polynomial time, but
the multiple-bin SAP problem is not approximable within a
factor better than 1 − 1

e
unless NP ⊆ DTIME(nO(log log n)).

5 A Decentralized Mechanism

In this section, we explore methods to obtain decentralized
algorithms with a good performance. Motivated from service
provider cellular networks [13], we may assume that bins or
cache locations are selfish agents (resident subscribers) who
want to maximize their own profit. We state the results of this
section in terms of DCP terminology, but all the results hold

for separable assignment problems. Proofs of this section are
omitted here and can be found in Mirrokni [20].

We define the distributed caching game in the setting
of CapIBDC - with both capacity and bandwidth constraints.
Each cache location is a player of this game. The strategy
of a player i is to choose a subset of requests Di such that
the total bandwidth of these requests is within the bandwidth
of the player (

∑

j∈Di
bj ≤ Bi) and the total capacity of

types of these requests is less than the capacity of the player
(
∑

t∈{tj |j∈Di}
at ≤ Ai). A strategy profile S is a vector of

strategies for each player. Given S, each request goes to a
cache location with the minimum connection cost among the
set of cache locations that provide this request. The profit
of this request is evenly divided between the cache locations
with the minimum connection cost. The reward of a cache
location is the sum of profits of the requests it actually serves.
The social value of strategy profile S, denoted by v(S), is the
sum of profits of all players. This value v(S) is a measure
of the efficiency of the assignment of requests and request
types to cache locations. We assume that cache locations are
selfish and choose strategies to maximize their own profit.
Since the distributed caching game is a strategic game, it
has (mixed) Nash equilibria [21]. We prove that in a Nash
equilibrium of this game, the social value is at least 1

2 of the
optimal social value.

THEOREM 5.1. The price of anarchy of the distributed
caching game for a mixed Nash equilibrium is at most 2.

We can show that this game is a valid-utility game.
These games are defined by Vetta [32]. The results in [32]
imply that the price of anarchy is 2. However, it is simpler
to give a direct proof of Theorem 5.1. We further investigate
existence of pure strategy Nash equilibria in these games and
prove the following:

THEOREM 5.2. There are instances of CapDC game that
have no pure Nash equilibria. Moreover, there exist cycles
of best responses in the uniform CapDC game.

Finally, we prove that there are instances of the uniform
CapDC game in which finding a pure Nash equilibrium is
PLS-complete [19, 23, 26].

THEOREM 5.3. There are instances of the uniform CapDC

game with pure Nash equilibria8 for which finding a pure
Nash equilibrium is PLS-complete.

Proof. We give a reduction from the local search Max-Cut
problem with swapping neighborhood to the uniform CapDC

game.

8We can also say that finding a sink equilibrium [14, 20] is PLS-
complete. A sink equilibrium is a set of strategy profiles that is closed under
best-response moves. A pure equilibrium is a sink equilibrium with exactly
one profile [14, 20].

Consider an instance G = (V, E) of the Max-Cut
problem with weights w : E → N on edges. We construct
an instance R(G) of the CapDC game as follows: Each
player corresponds to a vertex of graph G. There are two
types of requests: p and q. The size of each request type is
equal to one and the capacity of each cache location is one.
For each edge, we define one request each of type p and q:
request puv and request quv . The connection costs of both
puv and quv to either u or v is zero and to any other vertex is
wuv + 1. The reward of each of these two requests is wuv .

Each player caches either request type p or q. For each
edge (u, v), if both u and v cache requests of the same type
then they each get profit wuv

2 . If they cache different types
then they each get profit wuv . Thus, given a strategy profile,
the total profit obtained is w(E)+w(C) where C is the set of
edges with one player caching type p and the other caching
type q. In the Max-Cut problem, C corresponds to the cutset
defined by the cut with all vertices that cache type p on one
side and all vertices that cache type q on the other. Call this
cut M(S, G).

Under this profit sharing scheme, it is clearly in player
u’s best interest to include all requests of the type it caches
that correspond to edges incident to u in G. Let L be the
set of strategy profiles S of the instance R(G) that have this
form.

In a strategy profile S ∈ L of game R(G), player u can
strictly improve his payoff by playing switching from request
type p to request type q if and only if the value of the cutset
M(S, G) strictly improves by moving u to the other side of
the cut. Thus, if a strategy profile S ∈ L is a pure Nash
equilibrium in game R(G), then M(S, G) is a local optimal
solution of the Max-Cut local search problem for graph G.

Thus, if we have a polynomial-time algorithm for find-
ing a pure Nash equilibrium S (or a sink equilibrium) in any
instance of the uniform CapDC game, since this pure Nash
equilibrium is in L, this implies a polynomial-time algorithm
for finding a local optimum M(S, G) of any instance of the
Max-Cut local search problem with swapping neighborhood.
The PLS-hardness follows from a PLS-completeness result
of Schaffer and Yannakakis [26].

Acknowledgements. We thank Li Li for helpful discussions
on the problem formulation and motivations from cellular
networks. We thank Raphael Yuster for pointing out the
stronger version of the inequality of Lemma 2.1 that lead to
Theorem 2.4. And we thank Chandra Chekuri for pointing
out the reduction of SAP to SFMM described in Section 3.

References

[1] A. A. Ageev and M. I. Sviridenko. Pipage rounding: A new
method of constructing algorithms with proven performance
guarantee. J. of Combinatorial Optimization, 8:307–328,
2004.

[2] N. Andelman and Y. Mansour. Auctions with budget con-
straints. In SWAT, 2004.

[3] I. D. Baev and R. Rajaraman. Approximation algorithms for
data placement in arbitrary networks. In 12th ACM-SIAM
Symp. on Discrete Algorithms (SODA), pages 661–670, 2001.

[4] B. Carr and S. Vempala. Randomized meta-rounding. Ran-
dom Structure and Algorithms, 20(3):343–352, 2002.

[5] C. Chekuri. Personal communication. 2005.
[6] C. Chekuri and S. Khanna. A PTAS for the multiple knapsack

problem. In 11th ACM-SIAM Symp. on Discrete Algorithms
(SODA), pages 213–222, 2000.

[7] U. Feige. A threshold of ln n for approximating set cover.
Journal of the ACM, 45(4):634 – 652, 1998.

[8] U. Feige, M. M. Halldorsson, G. Kortsarz, and A. Srinivasan.
Approximating the domatic number. SIAM Journal of Com-
puting, 32(1):172–195, 2002.

[9] U. Feige and G. Kortsarz. Personal communication. 2005.
[10] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. An

analysis of the approximations for maximizing submodular
set functions II. Mathematical Programming Study, 8:73–87,
1978.

[11] N. Garg and J. Könemann. Faster and simpler algorithms for
multicommodity flow and other fractional packing problems.
In 39th Annual IEEE Symposium on Foundations of Computer
Science, pages 300–309, 1998.

[12] R. Garg, V. Kumar, and V. Pandit. Approximation algorithms
for budget-constrained auctions. In 4th International Work-
shop on Approximation Algorithms for Combinatorial Opti-
mization Problems (APPROX), 2001.

[13] M. Goemans, L. Li, V. S. Mirrokni, and M. Thottan. Market
sharing games applied to content distribution in ad-hoc net-
works. In 5th ACM International Symp. on Mobile Ad Hoc
Networking and Computing (MobiHoc), 2004.

[14] M. Goemans, V. S. Mirrokni, and A. Vetta. Sink equilibria
and convergence. In FOCS, 2005.

[15] M. X. Goemans and D. P. Williamson. New 3/4-
approximation algorithms for the maximum satisfiability
problem. SIAM Journal of Discrete Mathematics, 7:656–666,
1994.

[16] C. Gomes, R. Regis, and D. Shmoys. An improved ap-
proximation algorithm for the partial Latin square extension
problem. In 14th ACM-SIAM Symp. on Discrete Algorithms
(SODA), 2003.

[17] K. Jain, M. Mahdian, and M. Salavatipour. Packing stiner
trees. In 14th ACM-SIAM Symp. on Discrete Algorithms
(SODA), pages 266–274, 2003.

[18] K. Jansen and G. Zhang. On rectangle packing: maximizing
benefits. In 15th ACM-SIAM Symp. on Discrete Algorithms
(SODA), pages 204 – 213, 2004.

[19] D. Johnson, C.H. Papadimitriou, and M. Yannakakis. How
easy is local search? Journal of Computer and System
Sciences, 37:79–100, 1988.

[20] V. S. Mirrokni. Approximation Algorithms for Distributed
and Selfish Agents. MIT Thesis, 2005.

[21] J. F. Nash. Equilibrium points in N-person games. In
Proceedings of NAS, 1950.

[22] Z. Nutov, I. Beniaminy, and R. Yuster. A (1-1/e)-
approximation algorithm for the maximum profit generalized
assignment problem with fixed profits. Operations Research
Letters. To appear.

[23] C.H. Papadimitriou, A. Schaffer, and M. Yannakakis. On
the complexity of local search. In 22nd Symp. on Theory of
Computing (STOC), pages 438 – 445, 1990.

[24] E. Petrank. The hardness of approximation: Gap location. In
Computational Complexity, pages 133–137, 1994.

[25] S. A. Plotkin, D. Shmoys, and É. Tardos. Fast approximation
algorithms for fractional packing and covering problems.
Mathematics of Operations Research, 20:257–301, 1995.

[26] A. Schaffer and M. Yannakakis. Simple local search prob-
lems that are hard to solve. SIAM journal on Computing,
20(1):56–87, 1991.

[27] H. Shachnai and T. Tamir. Approximation schemes for gener-
alized 2-dimensional vector packing with application to data
placement. In 6th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (AP-
PROX), pages 167–177, 2003.

[28] D. Shmoys and E. Tardos. An approximation algorithm for
the generalized assignment problem. Mathematical Program-
ming, 62(3):461–474, 1993.

[29] A. Srinivasan. Distributions on level-sets with applications to
approximation algorithms. In 44th Symp. on Foundations of
Computer Science (FOCS), pages 588–597, 2001.

[30] M. Sviridenko. A note on maximizing a submodular set
function subject to knapsack constraint. Operations Research
Letters, 32:41–43, 2004.

[31] C. Swamy. Algorithms for the data placement problem.
Unpublished, 2004.

[32] A. Vetta. Nash equilibria in competitive societies, with
applications to facility location, traffic routing and auctions.
In 43rd Symp. on Foundations of Computer Science (FOCS),
pages 416–425, 2002.

[33] N. Young. Randomized rounding without solving the linear
program. In 7th ACM-SIAM Symp. on Discrete Algorithms
(SODA), pages 170–178, 1996.

[34] N. Young. Sequential and parallel algorithms for mixed
packing and covering. In 42nd Annual IEEE Symposium on
Foundations of Computer Science, pages 538–546, 2001.

