
C H A P T E R

4
THE PRIMAL-DUAL METHOD FOR

APPROXIMATION ALGORITHMS AND
ITS APPLICATION TO NETWORK

DESIGN PROBLEMS

Michel X. Goemans David P. Williamson

Dedicated to the memory of Albert W. Tucker

The primal-dual method is a standard tool in the de-
sign of algorithms for combinatorial optimization problems.
This chapter shows how the primal-dual method can be
modified to provide good approximation algorithms for a
wide variety of NP-hard problems. We concentrate on re-
sults from recent research applying the primal-dual method
to problems in network design.

INTRODUCTION

4.1

In the last four decades, combinatorial optimization has been strongly influenced by
linear programming. With the mathematical and algorithmic understanding of linear
programs came a whole host of ideas and tools that were then applied to combinatorial
optimization. Many of these ideas and tools are still in use today, and form the bedrock
of our understanding of combinatorial optimization.

One of these tools is the primal-dual method. It was proposed by Dantzig, Ford, and
Fulkerson [DFF56] as another means of solving linear programs. Ironically, their inspira-
tion came from combinatorial optimization. In the early 1930s, Egerváry [Ege31] proved

144

4.1 INTRODUCTION 145

a min-max relation for the assignment problem (or the minimum-cost bipartite perfect
matching problem) by reducing it to a known min-max result for maximum cardinality
matchings. This lead Kuhn to propose his primal-dual “Hungarian Method” for solving
the assignment problem [Kuh55], which then inspired Dantzig, Ford, and Fulkerson. Al-
though the primal-dual method in its original form has not survived as an algorithm for
linear programming, it has found widespread use as a means of devising algorithms for
problems in combinatorial optimization. The main feature of the primal-dual method is
that it allows a weighted optimization problem to be reduced to a purely combinatorial,
unweighted problem. Most of the fundamental algorithms in combinatorial optimization
either use this method or can be understood in terms of it, including Dijkstra’s shortest
path algorithm [Dij59], Ford and Fulkerson’s network flow algorithm [FF56], Edmonds’
non-bipartite matching algorithm [Edm65] and, of course, Kuhn’s assignment algorithm.

The primal-dual method as described above has been used to solve problems that
can be modelled as linear programs; the method simply leads to efficient polynomial-
time algorithms for solving these problems. Since NP-hard problems cannot be modelled
as polynomially-sized linear programs unless P = NP, the primal-dual method does
not generalize straightforwardly to generate algorithms for the NP-hard optimization
problems that are the interest of this book. Nevertheless, with modifications the primal-
dual method leads to approximation algorithms for a wide variety of NP-hard problems.
In this chapter we will explain the current state of knowledge about how the primal-dual
method can be used to devise approximation algorithms.

One of the benefits of the primal-dual method is that it leads to a very general
methodology for the design of approximation algorithms for NP-hard problems. Until
quite recently, whenever one wanted to design an approximation algorithm, one usually
had to tailor-make an algorithm using the particular structure of the problem at hand.
However, in the past few years several general methods for designing approximation
algorithms have arisen. The primal-dual method is one of these, and we will see in this
chapter that it leads to approximation algorithms for a large number of problems.

Linear programming has long been used to design and analyze approximation al-
gorithms for NP-hard problems, particularly for problems which can be naturally for-
mulated as integer programs. Several approximation algorithms from the seventies use
linear programming (LP) in their analysis (see [Chv79, Lov75, CFN77], for example). A
1980 paper by Wolsey [Wol80] highlighted the use of linear programming, and showed
that several previously known approximation algorithms could be analyzed using linear
programming, including Christofides’ algorithm for the TSP [Chr76] and Johnson et al.’s
bin packing algorithms [JDU+74]. In the eighties, several papers appeared which used
the optimum solution of a linear program to derive an integer solution; the most com-
mon technique given rounds fractional solutions to integer solutions. The reader can find
examples of deterministic rounding and other techniques (as in [Hoc82]) in Chapter 3 of
this book, while randomized rounding [RT87] is presented in Chapter 11. In the primal-
dual method for approximation algorithms, an approximate solution to the problem and
a feasible solution to the dual of an LP relaxation are constructed simultaneously; the
performance guarantee is proved by comparing the values of both solutions. Many of
the approximation algorithms with an LP-based analysis can be viewed as primal-dual,
but the first truly primal-dual approximation algorithm in which the integer primal and

146 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

the dual solutions are constructed at the same time is the algorithm of Bar-Yehuda and
Even [BYE81] for the vertex cover problem. In the past few years, the power of the
primal-dual method has become apparent through a sequence of papers developing this
technique for network design problems [AKR95, GW95a, SVY92, KR93, WGMV95,
GGW93, AG94, GGP+94, GW94a, RW95]. This line of research started with a paper
by Agrawal, Klein, and Ravi [AKR95], who introduced a powerful modification of the
basic method. Our survey will focus mostly on these problems and results.

In basic versions of network design problems we are given a graph G = (V,E)
(undirected or directed) and a cost ce for each edge e ∈ E (or for each arc in the directed
case), and we would like to find a minimum-cost subset E ′ of the edges E that meets
some design criteria. For example, we may wish to find the minimum-cost set of arcs in a
directed graph such that every vertex can reach every other vertex; that is, we wish to find
the minimum-cost strongly connected subgraph. Network design problems arise from
many sources, including the design of various transportation systems (such as highways
and mass-transit systems), as well as telephone and computer networks. We direct the
reader to the book edited by Ball et al. [BMMN94] for a broad overview of network
design problems, models, and algorithms. For the most part, our survey will concentrate
on network design problems on undirected graphs G = (V,E) with nonnegative edge
costs ce.

We will present the primal-dual method as developed for network design problems
in a somewhat different fashion than in the original references. We isolate the essen-
tial ideas or design rules present in all these approximation results and develop generic
primal-dual algorithms together with generic proofs of their performance guarantees.
Once this is in place, it becomes quite simple to apply these algorithms and proofs to a
variety of problems, such as the vertex cover problem [BYE81], the edge covering prob-
lem [GW94a], the minimum-weight perfect matching problem [GW95a], the survivable
network design problem [AKR95, WGMV95], the prize-collecting traveling salesman
problem [GW95a], and the minimum multicut problem in trees [GVY93b]. We show
that each of these design rules is implicit in several long-known primal-dual algorithms
that solve network design problems exactly, namely Dijkstra’s shortest s-t path algo-
rithm [Dij59], Edmonds’ minimum-cost branching algorithm [Edm67], and Kruskal’s
minimum spanning tree algorithm [Kru56]. The generic algorithms reduce to these ex-
act algorithms for these problems.

The survey is structured as follows. In the next section, we review the classical
primal-dual method for solving linear programs and optimization problems that can
be modelled as linear programs. In Section 4.3 we gradually develop a primal-dual
method for the design of approximationalgorithm by modifying the classical method and
introducing a sequence of design rules. This yields our generic primal-dual algorithm
and generic theorems for proving good performance guarantees of the algorithm. We
then apply the algorithm and theorems to a number of network design problems in the
following sections. The general model of network design problems that we consider is
given in Section 4.4. We introduce a number of network design problems in Sections 4.5
through 4.7, and show that the generic algorithm yields near optimal results. In Section
4.8 we show that the primal-dual method can even be applied to other problems that do
not fit in our model, and we conclude in Section 4.9.

4.2 THE CLASSICAL PRIMAL-DUAL METHOD 147

THE CLASSICAL PRIMAL-DUAL METHOD

4.2

Before we begin to outline the primal-dual method for approximation algorithms, we
first review the classical primal-dual method as applied to linear programs and polyno-
mial-time solvable optimization problems. We refer the reader unfamiliar with the basic
theorems and terminology of linear programming to introductions in Chvátal [Chv83]
or Strang [Str88, Ch. 8]. For a more detailed description of the primal-dual method
for polynomial-time combinatorial optimization problems, see Papadimitriou and Stei-
glitz [PS82].

Consider the linear program

Min cT x

subject to:
Ax ≥ b

x ≥ 0

and its dual

Max bT y

subject to:
AT y ≤ c

y ≥ 0,

where A ∈Qm×n , c,x ∈Qn , b, y ∈Qm , and T denotes the transpose. For ease of presen-
tation we assume that c≥ 0. In the primal-dual method of Dantzig, Ford, and Fulkerson,
we assume that we have a feasible solution y to the dual; initially we can set y = 0. In
the primal-dual method, either we will be able to find a primal solution x that obeys the
complementary slackness conditions with respect to y, thus proving that both x and y are
optimal, or we will be able to find a new feasible dual solution with a greater objective
function value.

First consider what it means for x to be complementary slack to y. Let A i denote
the i th row of A and A j the j th column of A (written as a row vector to avoid the
use of transpose). For the linear program and dual given above, there are two types of
complementary slackness conditions. First, there are primal complementary slackness
conditions, corresponding to the primal variables, namely

x j > 0⇒ A j y = c j .

Let J = { j |A j y = c j }. Second, there are dual complementary slackness conditions,
corresponding to the dual variables, namely

yi > 0⇒ Ai x = bi .

Let I = {i |yi = 0}.
Given a feasible dual solution y we can state the problem of finding a primal feasible

x that obeys the complementary slackness conditions as another optimization problem:

148 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

find a solution x which minimizes the “violation” of the primal constraints and of the
complementary slackness conditions. The notion of violation can be formalized in sev-
eral ways leading to different restricted primal problems. For example, the following
restricted linear program performs the required role:

z I N F = Min
∑

i /∈I

si +
∑

j /∈J

x j

subject to:
Ai x ≥ bi i ∈ I

Ai x− si = bi i /∈ I

x ≥ 0
s ≥ 0.

(To ensure feasibility of the restricted primal, we are implicitly assuming the existence
of an x ≥ 0 satisfying Ax ≥ b.) If this linear program has a solution (x,s) such that
the objective function value z I N F is 0, then we will have found a primal solution x that
obeys the complementary slackness conditions for our dual solution y. Thus x and y
are optimal primal and dual solutions, respectively. However, suppose that the optimal
solution to the restricted primal has z I N F > 0. Consider now the dual of the restricted
primal:

Max bT y ′

subject to:
A j y ′ ≤ 0 j ∈ J

A j y ′ ≤ 1 j /∈ J

y ′i ≥−1 i /∈ I

y ′i ≥ 0 i ∈ I.

Since the optimal solution to its primal has value greater than 0, we know that this pro-
gram has a solution y ′ such that bT y ′ > 0. We will now show that we can find an ε > 0
such that y ′′ = y+εy ′ is a feasible dual solution. Thus, if we cannot find an x that obeys
the complementary slackness conditions, we can find a feasible y ′′ such that bT y ′′ =
bT y+εbT y ′ > bT y; that is, we can find a new dual solution with greater objective func-
tion value. Observe that, by definition of I , y ′′≥ 0 provided that ε ≤mini /∈I :y′i<0(−yi/y ′i)
while, by definition of J , AT y ′′≤ c provided that ε ≤min j /∈J :A j y′>0

c j−A j y
A j y′ . Choosing the

smaller upper bound on ε, we obtain a new dual feasible solution of greater value, and we
can reapply the procedure. Whenever no primal feasible solution obeys the complemen-
tary slackness conditions with y, the above restricted primal outputs the least infeasible
solution, and this can be used to trace the progress of the algorithm towards finding a
primal feasible solution.

Since the method outlined above reduces the solution of a linear program to the so-
lution of a series of linear programs, it does not seem that we have made much progress.
Notice, however, that the vector c has disappeared in the restricted primal and its dual.
In network design problems, this vector corresponds to the edge-costs. The classical
primal-dual method thus reduces weighted problems to their unweighted counterparts,
which are often much easier to solve. Furthermore, for combinatorial optimization prob-

4.2 THE CLASSICAL PRIMAL-DUAL METHOD 149

lems (such as network design problems), these unweighted problems can usually be
solved combinatorially, rather than with linear programming. That is, we can use com-
binatorial algorithms to find an x that obeys the complementary slackness conditions, or
failing that, to find a new feasible dual with greater dual objective value. In this way, the
method leads to efficient algorithms for these optimization problems.

As an example, we quickly sketch the primal-dual method as it is applies to the
assignment problem, also known as the minimum-weight perfect matching problem in
bipartite graphs. Suppose we have a bipartite graph G = (A,B,E), with |A| = |B| = n,
and each edge e = (a,b) has a ∈ A, b ∈ B. We assume that a perfect matching exists
in E . Let ce ≥ 0 denote the cost of edge e; throughout this section we will use ce and
cab interchangeably for an edge e = (a,b). We would like to find the minimum-cost
set of edges such that each vertex is adjacent to exactly one edge. This problem can be
formulated as the following integer program:

Min
∑

e∈E

cexe

subject to: ∑

b:(a,b)∈E

xab = 1 a ∈ A

∑

a:(a,b)∈E

xab = 1 b ∈ B

xe ∈ {0,1} e ∈ E .

It is well-known that the LP relaxation of this integer program has integer solutions as
extreme points (Birkhoff [Bir46], von Neumann [vN53]), so we can drop the integrality
constraints and replace them with xe ≥ 0. The dual of this LP relaxation is

Max
∑

a∈A

ua+
∑

b∈B

vb

subject to:
ua+vb ≤ cab (a,b) ∈ E .

The primal-dual method specifies that we start with a dual feasible solution, in this
case u = v = 0. Given our current feasible dual solution, we look for a primal feasible
solution that obeys the complementary slackness conditions. In this case, we only have
primal complementary slackness conditions. Let J = {(a,b) ∈ E : ua+vb = cab}. Then
the restricted primal is

Min
∑

a∈A

sa+
∑

b∈B

sb

subject to: ∑

b:(a,b)∈E

xab+ sa = 1 a ∈ A

∑

a:(a,b)∈E

xab+ sb = 1 b ∈ B

xe = 0 e ∈ (E− J)

xe ≥ 0 e ∈ J

s ≥ 0.

150 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

As with the original primal, every basic feasible solution to the restricted primal has
every component equal to 0 or 1. This implies that solving the restricted primal reduces
to the problem of finding the largest cardinality matching in the bipartite graph G ′ =
(A,B, J). Efficient algorithms are known for finding maximum matchings in bipartite
graphs. If we find a perfect matching in G ′, then we have found an x that obeys the
complementary slackness conditions with respect to (u,v), and x and (u,v) must be
optimal solutions. Initially, J is likely to be empty and, as a result, our initial primal
infeasible solution is x = 0. One can show that the infeasibility of x gradually decreases
during the course of the algorithm.

The dual of the restricted primal is

Max
∑

a∈A

u′a+
∑

b∈B

v′b

subject to:
u′a+v′b ≤ 0 (a,b) ∈ J

u′a ≤ 1 a ∈ A

v′b ≤ 1 b ∈ B.

It can easily be seen that every basic solution (u ′,v′) has all its components equal to
±1. Given the maximum matching, there is a straightforward combinatorial algorithm
to find an optimum solution to this dual. If the optimum value of the restricted primal is
not zero then an improved dual solution can be obtained by considering u ′′= u+εu′ and
v′′ = v+ εv′, for ε = min(a,b)∈E−J (cab− ua − vb). It is not hard to see that this choice
of ε maintains dual feasibility, and it can be shown that only O(n2) dual updates are
necessary before a perfect matching is found in G ′. At this point we will have found a
feasible x that obeys the complementary slackness conditions with a feasible dual u,v,
and thus these solutions must be optimal.

EXERCISE 4.1 Show how to formulate a restricted primal by using only one new vari-
able. Make sure that your restricted primal is always feasible.

THE PRIMAL-DUAL METHOD FOR
APPROXIMATION ALGORITHMS

4.3

Most combinatorial optimization problems have natural integer programming formula-
tions. However, unlike the case of the assignment problem, the LP relaxations typically
have extreme points which do not correspond to solutions of the combinatorial opti-
mization problem. Therefore, we cannot use the classical primal-dual method to find an
optimum integer solution. In this section, however, we will show that a suitable modifi-
cation of the method is very useful for finding approximate integer solutions. In addition,
we will show a sequence of design rules that leads to good approximation algorithms for
network design problems.

4.3 THE PRIMAL-DUAL METHOD FOR APPROXIMATION ALGORITHMS 151

The central modification made to the primal-dual method is to relax the comple-
mentary slackness conditions. In the classical setting described in the previous section,
we imposed both primal and dual complementary slackness conditions, and we used the
dual of the restricted primal problem to find a direction to improve the dual solution if
the complementary conditions were not satisfied. For the design of approximation al-
gorithms, we will impose the primal complementary slackness conditions, but relax the
dual complementary slackness conditions. Furthermore, given these conditions, if the
current primal solution is not feasible, we will be able to increase the value of the dual.

To illustrate this modification of the method, we will examine a specific combinato-
rial optimization problem, the hitting set problem. The hitting set problem is defined as
follows: Given subsets T1, . . . ,Tp of a ground set E and given a nonnegative cost ce for
every element e ∈ E , find a minimum-cost subset A ⊆ E such that A∩Ti 6= ∅ for every
i = 1, . . . , p (i.e. A “hits” every Ti). The problem is equivalent to the more well-known
set cover problem in which the goal is to cover the entire ground set with the minimum-
cost collection of sets (see Chapter 3).

As we proceed to construct piece by piece a powerful version of the primal-dual
method for approximation algorithms, along the way we will “rediscover” many classi-
cal (exact or approximation) algorithms for problems that are special cases of the hitting
set problem. From these classical algorithms, we will infer design rules for approxima-
tion algorithms which we will later show lead to good approximation algorithms for
other problems. The particular special cases of the hitting set problem we study are as
follows. The undirected s− t shortest path problem with nonnegative lengths can be for-
mulated as a hitting set problem by noticing that any s− t path must intersect every s− t
cut δ(S), where δ(S)= {e= (i, j) ∈ E : i ∈ S, j /∈ S} and s ∈ S and t /∈ S. Thus, we can
let E be the edge set of the undirected graph G = (V,E); ce be the length of the edge e;
and T1, . . . ,Tp be the collection of all s− t cuts, i.e. Ti = δ(Si)where Si runs over all sets
containing s but not t . Observe that the feasible solutions consist of subgraphs in which
s and t are connected; only minimal solutions (i.e. solutions for which no edge can be
removed without destroying feasibility) will correspond to s− t paths. The directed s− t
path problem can be similarly formulated. The minimum spanning tree problem is also
a special case of the hitting set problem; here we would like to cover all cuts δ(S) with
no restriction on S. The vertex cover problem (see Chapter 3) is the problem of finding a
minimum (cardinality or cost) set of vertices in an undirected graph such that every edge
has at least one endpoint in the set. The vertex cover is a hitting set problem in which
the ground set E is now the set of vertices and Ti corresponds to the endpoints of edge i .
In the minimum-cost arborescence problem, we are given a directed graph G = (V,E)
with nonnegative arc costs and a special root vertex r , and we would like to find a span-
ning tree directed out of r of minimum cost. Here the sets to hit are all r -directed cuts,
i.e. sets of arcs of the form δ−(S) = {(i, j) ∈ E : i /∈ S, j ∈ S} where S ⊆ V −{r}. All
these special cases, except for the vertex cover problem, are known to be polynomially
solvable. Dijkstra’s algorithm [Dij59] solves the shortest path problem, Edmonds’ algo-
rithm [Edm67] solves the minimum-cost arborescence problem, while Kruskal’s greedy
algorithm [Kru56] solves the minimum spanning tree problem. For many special cases
(again excluding the vertex cover problem), the number of sets to hit is exponential in
the size of the instance. We will see shortly that this does not lead to any difficulties.

152 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

The hitting set problem can be formulated as an integer program as follows:

Min
∑

e∈E

cexe

subject to: ∑

e∈Ti

xe ≥ 1 i = 1, . . . , p

xe ∈ {0,1} e ∈ E,

where x represents the incidence (or characteristic) vector of the selected set A, i.e.
xe = 1 if e ∈ A and 0 otherwise. Its LP relaxation and the corresponding dual are the
following:

Min
∑

e∈E

cexe

subject to: ∑

e∈Ti

xe ≥ 1 i = 1, . . . , p

xe ≥ 0 e ∈ E,

and

Max
p∑

i=1
yi

subject to: ∑

i :e∈Ti

yi ≤ ce e ∈ E

yi ≥ 0 i = 1, . . . , p.

For the incidence vector x of a set A and a dual feasible solution y, the primal comple-
mentary slackness conditions are

e ∈ A⇒
∑

i :e∈Ti

yi = ce (4.1)

while the dual complementary slackness conditions are

yi > 0⇒ |A∩ Ti | = 1. (4.2)

As we said earlier, the central modification made to the primal-dual method is to
enforce the primal complementary slackness conditions and relax the dual conditions.
Given a dual feasible solution y, consider the set A= {e :

∑
i :e∈Ti

yi = ce}. Clearly, if A is
infeasible then no feasible set can satisfy the primal complementary slackness conditions
(4.1) corresponding to the dual solution y. As in the classical primal-dual method, if we
cannot find a feasible primal solution given the complementary slackness conditions,
then there is a way to increase the dual solution. Here, the infeasibility of A means that
there exists k such that A∩Tk =∅. The set Tk is said to be violated. By increasing yk , the
value of the dual solution will improve; the maximum value yk can take without violating
dual feasibility is

yk =min
e∈Tk

{
ce−

∑

i 6=k:e∈Ti

yi

}
. (4.3)

4.3 THE PRIMAL-DUAL METHOD FOR APPROXIMATION ALGORITHMS 153

Observe that yk > 0 since no element e in Tk is also in A. For this value of yk, at least
one element e (the argmin in (4.3)) will be added to A since now

∑
i :e∈Ti

yi = ce. We can
repeat the procedure until A is a feasible primal solution.

This basic version of the primal-dual method is formalized in Figure 4.1. In the
description of the algorithm in the figure, we are adding only one element e at a time
to A, although other elements f could satisfy

∑
i : f ∈Ti

yi = c f . This means that in a later
stage such an element f could be added while the corresponding increase of yl for some
Tl 3 f would be 0. This does not affect the algorithm.

The primal-dual method as described is also referred to as a dual-ascent algo-
rithm. See for example the work of Erlenkotter [Erl78] for the facility location prob-
lem, Wong [Won84] for the Steiner tree problem, Balakrishnan, Magnanti, and Wong
[BMW89] for the fixed-charge network design problem, or the recent Ph.D. thesis of
Raghavan [Rag94].

The main question now is whether the simple primal-dual algorithm described in
Figure 4.1 produces a solution of small cost. The cost of the solution is c(A)=∑e∈A ce

and since e was added to A only if the corresponding dual constraint was tight, we can
rewrite the cost as

∑
e∈A

∑
i :e∈Ti

yi . By exchanging the two summations, we get

c(A)=
p∑

i=1
|A∩ Ti |yi .

Since y is a dual feasible solution, its value
∑p

i=1 yi is a lower bound on the optimum
value zO PT of the hitting set problem. If we can guarantee that

|A∩ Ti | ≤ α whenever yi > 0 (4.4)

then this would immediately imply that c(A) ≤ αz O PT , i.e. the algorithm is an α-
approximation algorithm. In particular, if α can be guaranteed to be 1, then the so-
lution given by the algorithm must certainly be optimal, and equation (4.4) together
with primal feasibility imply the dual complementary slackness conditions (4.2). Con-
ditions (4.4) certainly hold if we choose α to be the largest cardinality of any set Ti :
α=maxp

i=1 |Ti |. This α-approximation algorithm for the general hitting set problem was
discovered by Bar-Yehuda and Even [BYE81]; the analysis appeared previously in a pa-
per of Hochbaum [Hoc82], who gave an α-approximation algorithm using an optimal
dual solution. In the special case of the vertex cover problem, every Ti has cardinality
two, and therefore, the algorithm is a 2-approximation algorithm. We refer the reader to
the Chapter 3 for the history of these results, as well as additional results on the vertex

1 y← 0
2 A←∅
3 While ∃k : A∩Tk = ∅
4 Increase yk until ∃e ∈ Tk :

∑
i:e∈Ti

yi = ce

5 A← A∪{e}
6 Output A (and y)

FIGURE 4.1

The basic primal-dual algorithm.

154 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

cover problem and the general set cover problem. The algorithm above is functionally
equivalent to the “dual feasible” algorithm of Chapter 3.

Before refining the basic algorithm, we discuss some implementation and efficiency
issues. First, since A has at most |E| elements, the algorithm performs at most |E|
iterations and outputs a dual feasible solution y with at most |E| nonzero values. This
observation is particularly important when there are exponentially many sets Ti (and
these sets are given implicitly) as in the case of the s − t shortest path problem or the
minimum-cost arborescence problem. In such cases, the algorithm does not keep track
of every yi but only of the nonzero components of y. Also, the algorithm must be able
to find a set Tk not intersecting A. If there are many sets to hit, we must have a violation
oracle: given A the oracle must be able to decide if A∩Ti 6= ∅ for all i and, if not, must
output a set Tk for which A∩ Tk = ∅.

For the shortest path problem, the minimum-cost arborescence problem, or the net-
work design problems we will be considering, the sets Ti to be hit are naturally asso-
ciated to vertex sets Si (Ti = δ(Si), or for the minimum-cost arborescence problem,
Ti = δ−(Si)). For simplicity, we shall often refer to these vertex sets instead of the corre-
sponding cuts; for example, we will say that the set Si is violated, rather than Ti = δ(Si)

is violated. Also, we shall denote the dual variable corresponding to the cut induced by
S as yS .

We obtain our first design rule by considering a violation oracle for the s− t shortest
path problem. For this problem, the oracle simply computes the connected components
of (V, A) and check if s and t belong to the same component; if not, the component
containing s (or the one containing t , or the union of components containing s or t) is
a violated set. This comment raises the issue of which violated set to select in the basic
primal-dual algorithm when there are several sets which are not hit by A. For network
design problems in which the Ti ’s naturally correspond to vertex sets, a good selection
rule is to take among all violated edge sets T one for which the corresponding vertex set
S is (inclusion-wise) minimal, i.e. there is no violated S ′ with S′ ⊂ S. We refer to this
rule as the minimal violated set rule. In the case of the undirected shortest path problem,
this rule consists of selecting the connected component containing s, provided that this
component does not contain t . Here there is a unique minimal violated set, although this
is not always the case.

Let us consider the resulting primal-dual algorithm for the shortest path problem
in greater detail. Initially, all yS are 0, A = ∅, and the minimal violated set is simply
S = {s}. As yS is increased, the shortest edge (s, i) out of s is selected and added to A.
In a later stage, if S denotes the current minimal violated set, an edge (i, j) with i ∈ S
and j /∈ S is added to A and the minimal violated set becomes S∪ { j} (unless j = t in
which case there are no more violated sets). Thus, A is a forest consisting of a single
non-trivial component containing s. To see which edges get added to A, it is useful to
keep track of a notion of time. Initially, time is 0 and is incremented by ε whenever a
dual variable is increased by ε. For every edge e, let a(e) denote the time at which e
would be added to A if the minimal violated sets were not to change. We refer to a(e) as
the addition time of edge e. Similarly, let l(j) be the time at which a vertex j would be
added to S. Clearly, l(j) is simply the smallest a(e) over all edges e incident to j . The
next vertex to be added to S is thus the vertex attaining the minimum in min j /∈S l(j). As
j is added to S, we need to update the a(.) and l(.) values. Only the a(.) values of the
edges incident to j will be affected; this makes their update easy. Also, for k /∈ S, l(k)

4.3 THE PRIMAL-DUAL METHOD FOR APPROXIMATION ALGORITHMS 155

simply becomes min{l(k), l(j)+c jk}. By now, the reader must have realized that the l(.)
values are simply the labels in Dijkstra’s algorithm [Dij59] for the shortest path problem.
Keeping track of the a(.) values is thus not necessary in this case, but will be useful in
more sophisticated uses of the primal-dual method.

The primal-dual algorithm with minimal violated set rule thus reduces to Dijkstra’s
algorithm in the case of the shortest path. Or not quite, since the set A output by the
algorithm is not simply an s − t path but is a shortest path forest out of s. The cost of
this forest is likely to be higher than the cost of the shortest s − t path. In fact, if we
try to evaluate the parameter α as defined in (4.4), we observe that α could be as high as
|V |−1, if all edges incident to s have been selected. We should therefore eliminate all the
unnecessary edges from the solution. More precisely, we add a delete step at the end of
the primal-dual algorithm which discards as many elements as possible from A without
losing feasibility. Observe that, in general, different sets could be output depending on
the order in which edges are deleted; in this case, we simply keep only the path from
s to t in the shortest path forest. It is not difficult to show (this follows trivially from
the forthcoming Theorem 4.1) that the resulting s − t path P satisfies |P ∩ δ(S)| = 1
whenever yS > 0, implying that the algorithm finds an optimal solution to the problem.

In some cases, however, the order of deletion of elements is crucial to the proof of a
good performance guarantee; this leads to our next design rule. We adopt a reverse delete
step in which elements are considered for removal in the reverse order they were added to
A. This version of the primal-dual algorithm with the reverse delete step is formalized in
Figure 4.2. We first analyze the performance guarantee of this algorithm in general, then
show that it leads to Edmonds’ algorithm for the minimum-cost arborescence problem.

To evaluate the performance guarantee of the algorithm, we need to compute an
upper bound on α as given in (4.4). To avoid any confusion, let A f be the set output
by the algorithm of Figure 4.2. Fix an index i such that yi > 0, and let e j be the edge
added when yi was increased. Because of the reverse delete step, we know that when e j

is considered for removal, no element e p with p< j was removed already. Let B denote
the set of elements right after e j is considered in the reverse delete step. This means that
B = A f ∪{e1, . . . ,e j−1}, and that B is a minimal augmentation of {e1, . . . ,e j−1}, i.e. B
is feasible, B ⊇ {e1, . . . ,e j−1} and for all e ∈ B−{e1, . . .e j−1} we have that B−{e} is

1 y← 0
2 A←∅
3 l← 0
4 While ∃k : A∩Tk = ∅
5 l← l+1
6 Increase yk until ∃el ∈ Tk :

∑
i:el∈Ti

yi = cel

7 A← A∪{el}
8 For j← l downto 1
9 if A−{e j } is feasible then A← A−{e j }

10 Output A (and y)

FIGURE 4.2

Primal-dual algorithm with reverse delete step.

156 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

not feasible. Moreover, |A f ∩ Ti | ≤ |B ∩ Ti | and this continues to hold if we maximize
over all minimal augmentations B of {e1, . . . ,e j−1}. Thus, as an upper bound on α, we
can choose

β = max



infeasible
A ⊂ E





max



minimal
augmentations B of A





|B∩T (A)|, (4.5)

where T (A) is the violated set selected by the primal-dual algorithm when confronted
with the set A. We have therefore proved the following theorem:

THEOREM 4.1 The primal-dual algorithm described in Figure 4.2 delivers a feasible
solution of cost at most β

∑p
i=1 yi ≤ βzO PT , where β is given in (4.5).

The reverse delete step has thus allowed us to give a bound on the performance of the
algorithm without looking at the entire run of the algorithm, but simply by considering
any minimal augmentation of a set. As an exercise, the reader is invited to derive the
optimality of the primal-dual algorithm for the shortest path problem from Theorem 4.1.

Consider now the minimum-cost arborescence problem. For any subset A of arcs,
the violation oracle with minimal violated set rule can be implemented by first comput-
ing the strongly connected components and then checking if any such component not
containing the root, say S, has no arc incoming to it (i.e. δ−(S)∩ A=∅). If no such com-
ponent exists then one can easily derive that A contains an arborescence. Otherwise, the
algorithm would increase the dual variable corresponding to such a strongly connected
component (observe that we have the choice of which component to select if there are
several of them). Any minimal augmentation of A must have only one arc incoming to
a strongly connected component S, since one such arc is sufficient to reach all vertices
in S. Thus, the parameter β is equal to 1, and the primal-dual algorithm delivers an op-
timum solution. This elegant algorithm is due to Edmonds [Edm67]. We should point
out that in the case of the arborescence problem, deleting the edges in reverse is crucial
(while this was not the case for the shortest path problem). The use of the reverse delete
step will also be crucial in the design of approximation algorithms for network design
problems described in the following sections; in this context, this idea was first used by
Klein and Ravi [KR93] and Saran, Vazirani, and Young [SVY92].

Several variants of the primal-dual algorithm described in Figure 4.2 can be de-
signed, without affecting the proof technique for the performance guarantee. One useful
variant is to allow the algorithm to increase the dual variable of a set which does not need
to be hit. More precisely, suppose we also add to the linear programming relaxation the
constraints

∑

e∈Ti

xe ≥ 1

i = p+1, . . . ,q, for a collection {Tp+1, . . . ,Tq} of sets. This clearly may affect the value
of the relaxation. Assume we now use the primal-dual algorithm by increasing the dual
variable corresponding to any set Ti , where i now runs from 1 to q. Thus, in step 4 of
Figure 4.2, a solution A is considered feasible if it hits every set Ti for i = 1, . . . ,q. How-
ever, in the reverse delete step 9, A only needs to hit every Ti for i = 1, . . . , p. Although
the addition of sets Ti ’s has made the relaxation invalid, we can still use the dual solution

4.3 THE PRIMAL-DUAL METHOD FOR APPROXIMATION ALGORITHMS 157

we have constructed. Indeed,
∑p

i=1 yi is still a lower bound on the optimum value, and, as
before, it can be compared to the cost

∑q
i=1 |A∩Ti |yi of the output solution A. The proof

technique we have developed for Theorem 4.1 still applies, provided we can guarantee
that A∩ Ti = ∅ for i = p+1, . . . ,q. In this case, the performance guarantee will again
be β as given by (4.5). As an application, assume that in the minimum-cost arborescence
problem, we also include the constraints corresponding to sets S containing the root (this
would constitute a formulation for the strongly connected subgraph problem). Then, as
long as A does not induce a strongly connected graph, we increase the dual variable cor-
responding to any strongly connected component with no arc incoming to it (whether
or not it contains r). This step is thus independent of the root. It is only in the reverse
delete step that we use knowledge of the root. This algorithm still outputs the optimum
arborescence (for any specific root r) since it is easy to see that any arc incoming to a
strongly connected component containing r and selected by the algorithm will be deleted
in the reverse delete step. The algorithm therefore constructs a single dual solution prov-
ing optimality for any root. This observation was made by Edmonds [Edm67]. Another
application of this variant of the primal-dual algorithm will be discussed in Section 4.5.

Our final design rule comes from considering the minimum spanning tree problem
and the associated greedy algorithm due to Kruskal [Kru56]. In the case of the min-
imum spanning tree problem, the violation oracle with minimal violated set rule can
be implemented by first computing the connected components of (V, A) and, if there
are k components where k > 1, by selecting any such component, say S. It is easy to
see that any minimal augmentation of A must induce a spanning tree if we separately
shrink every connected component of (V, A) to a supervertex. The resulting algorithm
has a bad performance guarantee since a minimal augmentation of A could therefore
have as many as k− 1 edges incident to S. Recall that Kruskal’s greedy algorithm re-
peatedly chooses the minimum-cost edge spanning two distinct connected components.
This choice of edge is equivalent to simultaneously increasing the dual variables corre-
sponding to all connected components of (V, A), until the dual constraint for an edge
becomes tight.

To see this, consider the notion of time as introduced for the shortest path problem.
As in that context, we let the addition time a(e) of an edge e to be the time at which this
edge would be added to A if the collection of minimal violated sets were not to change.
Initially, the addition time of e is ce/2 (since the duals are increased on both endpoints
of e), and it will remain so as long as both ends are in different connected components of
(V, A). The next edge to be added to A is the one with smallest addition time and is thus
the minimum-cost edge between two components of (V, A). Thus, the algorithm mimics
Kruskal’s algorithm.

This suggests that we should revise our primal-dual algorithm and increase simulta-
neously and at the same speed the dual variables corresponding to several violated sets.
We refer to this rule as the uniform increase rule. This is formalized in Figure 4.3, in
which the oracle VIOLATION returns a collection of violated sets whose dual variables
will be increased. In the case of network design problems, the study of the minimum
spanning tree problem further suggests that the oracle VIOLATION should return all
minimal violated sets. In the context of approximation algorithms for network design
problems, this uniform increase rule on minimal violated sets was first used by Agrawal,
Klein, and Ravi [AKR95] without reference to linear programming; its use was broad-
ened and the linear programming made explicit in a paper of the authors [GW95a]. The

158 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

1 y← 0
2 A←∅
3 l← 0
4 While A is not feasible
5 l← l+1
6 V← VIOLATION(A)
7 Increase yk uniformly for all Tk ∈ V until ∃el /∈ A :

∑
i:el∈Ti

yi = cel

8 A← A∪{el}
9 For j← l downto 1

10 if A−{e j } is feasible then A← A−{e j }
11 Output A (and y)

FIGURE 4.3

Primal-dual algorithm with uniform increase rule
and reverse delete step.

algorithm of Agrawal et al. can be considered the first highly sophisticated use of the
primal-dual method in the design of approximation algorithms.

The analysis of the performance guarantee can be done in a similar way as for the
primal-dual algorithm of Figure 4.2. Remember we compared the cost of the solution
output A f , which can be written as

∑p
i=1 |A f ∩ Ti |yi , to the value

∑p
i=1 yi of the dual

solution. However, instead of comparing the two summations term by term, we may take
advantage of the fact that several dual variables are being increased at the same time. Let
V j denote the collection of violated sets returned by the oracle VIOLATION in the j th
iteration of our primal-dual algorithm of Figure 4.3 and let ε j denote the increase of the
dual variables corresponding to V j in iteration j . Thus, yi =∑ j :Ti∈V j

ε j . We can rewrite
the value of the dual solution as

p∑

i=1
yi =

l∑

j=1
|V j |ε j ,

and the cost of A f as:

p∑

i=1
|A f ∩ Ti |yi =

p∑

i=1
|A f ∩ Ti |

∑

j :Ti∈V j

ε j =
l∑

j=1


∑

Ti∈V j

|A f ∩ Ti |

ε j .

From these expressions (comparing them term by term), it is clear that the cost of A f is
at most the value of the dual solution times γ if, for all j = 1, . . . , l,

∑

Ti∈V j

|A f ∩ Ti | ≤ γ |V j |.

Again using the reverse delete step, we can replace A f , (which depends on the entire
algorithm in an intricate fashion) by any minimal augmentation B of the infeasible so-
lution at the start of iteration j . We have thus proved the following theorem.

THEOREM 4.2 The primal-dual algorithm described in Figure 4.3 delivers a feasible
solution of cost at most γ

∑p
i=1 yi ≤ γ zO PT , if γ satisfies that for any infeasible set A

4.3 THE PRIMAL-DUAL METHOD FOR APPROXIMATION ALGORITHMS 159

and any minimal augmentation B of A
∑

Ti∈V(A)
|B ∩ Ti | ≤ γ |V(A)|,

where V(A) denotes the collection of violated sets output by VIOLATION on input A.

Let us consider again the minimum spanning tree problem. For any set A, V(A)
denotes the set of connected components of A, and we know that any minimal augmen-
tation B of A must induce a spanning tree when shrinking all connected components.
Therefore,

∑
Ti∈V(A) |B ∩ Ti | corresponds to the sum of the degrees of a spanning tree

on a graph with k = |V(A)| supervertices, and is thus equal to 2k− 2, independent of
the spanning tree. The upper bound γ on the performance guarantee can thus be set to
2. Theorem 4.2 will be used repeatedly in the next sections to prove the performance
guarantee of approximation algorithms for many network design problems.

The reader may be surprised that we did not prove optimality of the spanning tree
produced since the algorithm reduces to Kruskal’s greedy algorithm. The reason is sim-
ply that our linear programming formulation of the minimum spanning tree problem is
not strong enough to prove optimality. Instead of increasing the dual variables corre-
sponding to all sets S ∈ V , we could also view the algorithm as increasing a single dual
variable corresponding to the aggregation of the inequalities for every S ∈ V . The result-
ing inequality

∑
S∈V

∑
e∈δ(S) xe ≥ |V| can in fact be strengthened to

∑

S∈V

∑

e∈δ(S)
xe ≥ 2|V|−2

since any connected graph on k vertices has at least k− 1 edges. The value of the dual
solution constructed this way is therefore greater, and with this stronger formulation, it is
easy to see that the proof technique developed earlier will prove the optimality of the tree
produced. The use of valid inequalities in this primal-dual framework is also considered
in Bertsimas and Teo [BT95].

We would like to point out that the bound given in Theorem 4.2 is tight in the
following sense. If there exists a set A and a minimal augmentation B of A for which

∑

Ti∈V(A)
|B ∩ Ti | = γ |V(A)|,

then the algorithm can return solutions of value equal to γ times the value
∑p

i=1 yi of the
dual solution constructed by the algorithm. For this, one simply needs to set the cost of
all elements of A to 0 and to set appropriately the cost of the elements in B− A so that
they would all be added to A at the same time during the execution of the algorithm.

As a final remark, we could also allow the oracle VIOLATION to return sets which
do not need to be hit, as we did in the case of the minimum-cost arborescence problem.
The performance guarantee is given in the following theorem. Its proof is similar to the
proof of Theorem 4.2 and is therefore omitted.

THEOREM 4.3 If the oracle VIOLATION may return sets which do not need to be hit
then the performance guarantee of the primal-dual algorithm described in Figure 4.3 is

160 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

γ , provided that for any infeasible set A and any minimal augmentation B of A
∑

Ti∈V(A)
|B∩ Ti | ≤ γ c,

where V(A) denotes the collection of sets output by VIOLATION, and c denotes the
number of sets in V(A) which need to be hit.

EXERCISE 4.2 Prove the correctness of Dijkstra’s algorithm by using Theorem 4.1.

EXERCISE 4.3 Find an instance of the minimum-cost arborescence problem where the
use of a non-reverse delete step leads to a non-optimal solution.

EXERCISE 4.4 Consider the minimum spanning tree problem on a complete graph
with all edge costs equal to 1. Given a set A of edges, write a restricted primal in the
spirit of Section 4.2. Show that the unique optimum solution to its dual is to set the dual
variables corresponding to all connected components of (V, A) to 0.5 and all other dual
variables to 0.

EXERCISE 4.5 Prove Theorem 4.3.

A MODEL OF NETWORK DESIGN PROBLEMS

4.4

With a primal-dual method for approximation algorithms in place, we show how to apply
it to various other network design problems. In this and following sections, we will
discuss various problems and prove that the design principles listed above lead to good
approximation algorithms for these problems.

Most of the network design problems we discuss have as input an undirected graph
G= (V,E)with nonnegative edge costs ce, and can be modelled by the following integer
program:

Min
∑

e∈E

cexe

subject to:
(I P)

∑

e∈δ(S)
xe ≥ f (S) ∅ 6= S ⊂ V

xe ∈ {0,1} e ∈ E .

This integer program is a variation on some of the hitting set problems discussed above,
parametrized by the function f : 2V → N: here, our ground set is the set of edges E
and a feasible solution must contain at least f (S) edges of any cut δ(S). Sometimes we
consider further variations of the problem in which the constraint xe ∈ {0,1} is replaced
by xe ∈ N; that is, we are allowed to take any number of copies of an edge e in order
to satisfy the constraints. If the function f has range {0,1}, then the integer program

4.4 A MODEL OF NETWORK DESIGN PROBLEMS 161

(I P) is a special case of the hitting set problem in which we must hit the sets δ(S) for
which f (S)= 1.

We have already seen that (I P) can be used to model two classical network design
problems. If we have two vertices s and t , and set f (S)= 1 when S contains s but not t ,
then edge-minimal solutions to (I P) model the undirected s− t shortest path problem.
If f (S)= 1 for all ∅ 6= S ⊂ V , then (I P) models the minimum spanning tree problem.

The integer program (I P) can also be used to model many other problems, which
we will discuss in subsequent sections. As an example, (I P) can be used to model
the survivable network design problem, sometimes also called the generalized Steiner
problem. In this problem we are given nonnegative integers r i j for each pair of vertices
i and j , and must find a minimum-cost subset of edges E ′ ⊂ E such that there are
at least ri j edge-disjoint paths for each i, j pair in the graph (V,E ′). This problem
can be modelled by (I P) with the function f (S) =maxi∈S, j /∈S ri j ; a min-cut/max-flow
argument shows that it is necessary and sufficient to select f (S) edges from δ(S) in order
for the subgraph to have at least ri j paths between i and j . The survivable network design
problem is used to model a problem in the design of fiber-optic telephone networks
[GMS94, Sto92]. It finds the minimum-cost network such that nodes i and j will still
be connected even if ri j −1 edges of the network fail.

The reader may notice that the two network design problems mentioned above are
special cases of the survivable network design problem: the undirected s − t shortest
path problem corresponds to the case in which rst = 1 and ri j = 0 for all other i, j , while
the minimum spanning tree problem corresponds to the case r i j = 1 for all pairs i, j .
Other well-known problems are also special cases. In the Steiner tree problem, we are
given a set of terminals T ⊆ V and must find a minimum-cost set of edges such that
all terminals are connected. This problem corresponds to the case in which r i j = 1 if
i, j ∈ T and ri j = 0 otherwise. In the generalized Steiner tree problem, we are given p
sets of terminals T1, . . . ,Tp, where Ti ⊆ V . We must find a minimum-cost set of edges
such that for each i , all the vertices in Ti are connected. This problem corresponds to
the survivable network design problem in which r i j = 1 if there exists some k such that
i, j ∈ Tk , and ri j = 0 otherwise. We will show how the primal-dual method can be applied
to these two special cases (and many others) in Section 4.6, and show how the method
can be applied to the survivable network design problem in general in Section 4.7.

It is not known how to derive good approximation algorithms for (I P) for any given
function f . Nevertheless, the primal-dual method can be used to derive good appro-
ximation algorithms for particular classes of functions that model interesting network
design problems, such as those given above. In the following sections we consider vari-
ous classes of functions f , and prove that the primal-dual method (with the design rules
of the previous section) gives good performance guarantees.

4.4.1 0-1 FUNCTIONS

First we focus our attention on the case in which the function f has range {0,1}. We often
refer to such functions as 0-1 functions. The shortest path, minimum spanning tree, and
(generalized) Steiner tree problems all fit in this case, as well as many other problems to
be discussed in the coming sections. For functions with range {0,1}, the integer program

162 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

(I P) reduces to

Min
∑

e∈E

cexe

subject to:
(I P)

∑

e∈δ(S)
xe ≥ 1 S : f (S)= 1

xe ∈ {0,1} e ∈ E,

and the dual of its LP relaxation is:

Max
∑

S: f (S)=1
yS

subject to: ∑

S:e∈δ(S)
yS ≤ ce e ∈ E

yS ≥ 0 S : f (S)= 1.

Observe that the edge-minimal solutions of (I P) are forests since one can remove
arbitrarily any edge from a cycle without destroying feasibility. In Figure 4.4, we have
specialized the algorithm of Figure 4.3 to this case, assuming the oracle VIOLATION
returns the minimal violated sets. As already mentioned in the previous section, we will
often stretch our terminology to say that a vertex set S is violated, instead of saying
that the associated cut T = δ(S) is violated. Let δA(S) = δ(S)∩ A. Then a set S ⊂ V
is violated when δA(S)= ∅ and f (S)= 1. We can restate Theorem 4.2 as follows.

THEOREM 4.4 The primal-dual algorithm described in Figure 4.4 delivers a feasible
solution of cost at most γ

∑
S: f (S)=1 yS ≤ γ zO PT , if γ satisfies that for any infeasible set

A and any minimal augmentation B of A
∑

S∈V(A)
|δB(S)| ≤ γ |V(A)|,

where V(A) denotes the collection of minimal violated sets.

1 y← 0
2 A←∅
3 l← 0
4 While A is not feasible
5 l← l+1
6 V← {minimal violated sets S}
7 Increase yS uniformly for all S ∈ V until ∃el ∈ δ(T),T ∈ V :

∑
S:el∈δ(S) yS = cel

8 A← A∪{el}
9 For j← l downto 1

10 if A−{e j } is feasible then A← A−{e j }
11 Output A (and y)

FIGURE 4.4

Primal-dual algorithm for (I P) with uniform increase rule
on minimal violated sets and reverse delete step.

4.4 A MODEL OF NETWORK DESIGN PROBLEMS 163

For general functions f with range {0,1}, there could be exponentially many sets S
for which f (S)= 1. As a result, we assume that f is implicitly given through an oracle
taking a set S as input and outputting its value f (S). But, for arbitrary 0-1 functions,
it might not be easy to check whether an edge set A is feasible, i.e. whether it hits all
cuts δ(S) for which f (S) = 1. Also, the minimal violated sets might not have any nice
structure as they do for the shortest path or minimum spanning tree problems. However,
consider the class of functions satisfying the maximality property:

• [Maximality] If A and B are disjoint, then f (A∪ B)≤max(f (A), f (B)).

For functions with range {0,1}, this can also be expressed as:

• [Maximality] If A and B are disjoint, then f (A) = f (B) = 0 implies
f (A∪ B)= 0.

This is equivalent to requiring that if f (S) = 1 then for any partition of S at least one
member of the partition has an f (.) value equal to 1. For this class of functions, the
following lemma shows how to check whether an edge set is feasible and, if it is not,
how to find the minimal violated sets.

LEMMA 4.1 Let f be a function with range {0,1} satisfying the maximality property.
Let A be any edge set. Then,

1. A is feasible for f if and only if every connected component C of (V, A) satisfies
f (C)= 0,

2. the minimal violated sets of A are the connected components C of (V, A) for
which f (C)= 1.

Proof. Consider a violated set S, i.e. a set S for which f (S)= 1 but δA(S)=∅. Clearly,
S must consist of the union of connected components of (V, A). But, by maximality, one
of these components, say C , must satisfy f (C)= 1, and is thus a violated set. Thus, only
connected components can correspond to minimal violated sets, and A is feasible only
if no such component has f (C)= 1.

In the case of functions satisfying the maximality property, the collection V(A) of
minimal violated sets can thus easily be updated by maintaining the collection C(A) of
connected components of (V, A). This is exploited in Figure 4.5, where we present a
more detailed implementation of the primal-dual algorithm of Figure 4.4 in the case of
functions satisfying maximality. When implementing the algorithm, there is no need to
keep track of the dual variables yS . Instead, in order to be able to decide which edge to
select next, we compute for every vertex i ∈ V the quantity d(i) defined by

∑
S:i∈S yS.

Initially, d(i) is 0 (lines 5-6) and it increases by ε whenever the dual variable corre-
sponding to the connected component containing i increases by ε (line 12). As long as
i and j are in different connected components C p and Cq (respectively), the quantity
(ce− d(i)− d(j))/(f (C p)+ f (Cq)) being minimized in line 10 represents the differ-
ence between the addition time of edge e = (i, j) and the current time. This explains
why the edge with the smallest such value is being added to A. When an edge is added
to A, the collection C of connected components of (V, A) is updated in line 15. We are
also maintaining and outputting the value L B of the dual solution, since this allows us to

164 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

1 A←∅
2 Comment: Implicitly set yS← 0 for all S ⊂ V
3 L B← 0
4 C← {{v} : v ∈ V }
5 For each i ∈ V
6 d(i)← 0
7 l← 0
8 While ∃C ∈ C : f (C)= 1
9 l← l+1

10 Find edge el = (i, j)with i ∈C p ∈C, j ∈Cq ∈ C, C p 6=Cq that minimizes ε= cel−d(i)−d(j)

f (Cp)+ f (Cq)

11 A← A∪{el}
12 For all k ∈ Cr ∈ C do d(k)← d(k)+ ε · f (Cr)

13 Comment: Implicitly set yC ← yC + ε · f (C) for all C ∈ C.
14 L B← L B+ ε∑C∈C f (C)
15 C← C∪{C p ∪Cq}−{C p}−{Cq}
16 For j← l downto 1
17 If all components C of A−{e j } satisfy f (C)= 0 then A← A−{e j }
18 Output A and L B

FIGURE 4.5

Primal-dual algorithm for (I P) for functions satisfying
the maximality property.

estimate the quality of the solution on any instance. The algorithm can be implemented
quite easily. The connected components can be maintained as a union-find structure of
vertices. Then all mergings take at most O(nα(n,n)) time overall, where α is the in-
verse Ackermann function and n is the number of vertices [Tar75]. To determine which
edge to add to A, we can maintain a priority queue of edges, where the key of an edge
is its addition time a(e). If two components C p and Cq merge, we only need to update
the keys of the edges incident to C p ∪Cq . Keeping only the smallest edge between two
components, one derives a running time of O(n2 logn) for all queue operations and this
is the overall running time of the algorithm. This is the original implementation as pro-
posed by the authors in [GW95a]. Faster implementations have been proposed by Klein
[Kle94] and Gabow, Goemans, and Williamson [GGW93].

Even for 0-1 functions obeying maximality, the parameter γ of Theorem 4.4 can be
arbitrarily large. For example, consider the problem of finding a tree of minimum cost
containing a given vertex s and having at least k vertices. This problem corresponds
to the function f (S) = 1 if s ∈ S and |S| < k, which satisfies maximality. However,
selecting A= ∅ and B a star rooted at s with k vertices, we observe that γ ≥ k−1. As a
result, for this problem, the primal-dual algorithm can output a solution of cost at least
k−1 times the value of the dual solution produced.

In the following two sections, we apply the primal-dual algorithm to some sub-
classes of 0-1 functions satisfying maximality. We show that, for these subclasses, the
primal-dual algorithm of Figures 4.4 and 4.5 is a 2-approximation algorithm by proving
that γ can be set to 2. Before defining these subclasses of functions, we reformulate γ in

4.5 DOWNWARDS MONOTONE FUNCTIONS 165

terms of the average degree of a forest. This explains why a performance guarantee of 2
naturally arises. To prove that γ = 2, we need to show that, for any infeasible set A and
any minimal augmentation B of A, we have

∑
S∈V(A) |δB(S)| ≤ 2|V(A)|. For functions

satisfying the maximality property, the collection V(A) of minimal violated sets con-
sists of the connected components of (V, A) whose f (.) value is 1 (Lemma 4.1). Now,
construct a graph H formed by taking the graph (V,B) and shrinking the connected com-
ponents of (V, A) to vertices. For simplicity, we refer to both the graph and its vertex set
as H . Because B is an edge-minimal augmentation, there will be a one-to-one correspon-
dence between the edges of B− A and the edges in H , and H is a forest. Each vertex v
of H corresponds to a connected component Sv ⊂ V of (V, A); let dv denote the degree
of v in H , so that dv = |δB(Sv)|. Let W be the set of vertices of H such that for w ∈W ,
f (Sw) = 1. Then, each of these vertices corresponds to a minimal violated set; that is,
V(A)= {Sw|w ∈W }. Thus, in order to prove the inequality

∑
S∈V(A) |δB(S)| ≤ 2|V(A)|,

we simply need to show that
∑

v∈W

dv ≤ 2|W |. (4.6)

In other words, the average degree of the vertices in H corresponding to the violated
sets is at most 2. In the next two sections, we show that equation (4.6) holds for two
subclasses of functions satisfying the maximality property.

EXERCISE 4.6 Show that the function f corresponding to the generalized Steiner tree
problem satisfies the maximality property.

DOWNWARDS MONOTONE FUNCTIONS

4.5

In this section, we consider the network design problems that can be modelled by the
integer program (I P) with functions f that are downwards monotone. We say that a
function is downwards monotone if f (S) ≤ f (T) for all S ⊇ T 6= ∅. Notice that any
downwards monotone function satisfies maximality and, as a result, the discussion of
the previous section applies. Later in the section, we will prove the following theorem.

THEOREM 4.5 The primal-dual algorithm described in Figure 4.5 gives a 2-approxi-
mation algorithm for the integer program (I P) with any downwards monotone function
f : 2V → {0,1}.

In fact, we will also show that applying the reverse delete procedure to the edges
of a minimum spanning tree is also a 2-approximation algorithm for the problem; see
Figure 4.6 for the algorithm. The advantage of the algorithm in Figure 4.6 is that its
running time is that of computing the minimum spanning tree and sorting its edges, rather
than O(n2 logn) time. Thus, the algorithm takes O(m+n logn) time in general graphs,
and O(n logn) time in Euclidean graphs.

166 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

1 A← MINIMUM-SPANNING-TREE
2 Sort edges of A = {e1, . . . ,en−1} so that ce1 ≤ ·· · ≤ cen−1

3 For j← n−1 downto 1
4 If A−{e j } is feasible then A← A−{e j }.

FIGURE 4.6

Another 2-approximation algorithm for downwards
monotone functions f .

THEOREM 4.6 The primal-dual algorithm described in Figure 4.6 gives a 2-approxi-
mation algorithm for the integer program (I P) with any downwards monotone function
f : 2V → {0,1}.

Before we get to the proofs of these theorems, we consider the kinds of network
design problems that can be modelled by (I P) with a downwards monotone function
f : 2V → {0,1}.

4.5.1 THE EDGE-COVERING PROBLEM

The edge-covering problem is that of selecting a minimum-cost set of edges such that
each vertex is adjacent to at least one edge. The problem can be solved in polynomial
time via a reduction to the minimum-weight perfect matching problem (see Grötschel,
Lovász, and Schrijver [GLS88, p. 259]). The problem can be modelled by the down-
wards monotone function f (S) = 1 iff |S| = 1. Thus, the primal-dual algorithm yields
a 2-approximation algorithm for this problem. It is interesting to observe that another
primal-dual algorithm for the hitting set problem (or the set cover problem) due to
Chvátal [Chv79] (see Chapter 3) gives a performance guarantee of 3

2 for the edge-
covering problem.

4.5.2 LOWER-CAPACITATED PARTITIONING PROBLEMS

In the lower-capacitated partitioning problems we wish to find a minimum-cost set of
edges that partitions the vertices into trees, paths, or cycles such that each tree, path, or
cycle has at least k vertices for some parameter k. When k = 3, the lower-capacitated cy-
cle partitioning problem is also known as the binary two-matching problem; when k = 4,
it is also known as the triangle-free binary two-matching problem. The lower-capacitated
cycle partitioning problem is NP-complete for k ≥ 5 (Papadimitriou in Cornuéjols and
Pulleyblank [CP80] for k ≥ 6 and Vornberger [Vor79] for k = 5), polynomially solvable
for k = 2 or 3 (Edmonds and Johnson [EJ70]), while its complexity for k = 4 is open.
Imielińska, Kalantari, and Khachiyan [IKK93] have shown that the lower-capacitated
tree partitioning problem is NP-complete for k ≥ 4, even if the edge costs obey the tri-
angle inequality.

4.5 DOWNWARDS MONOTONE FUNCTIONS 167

The lower-capacitated tree partitioning problem can be modelled by (I P) with the
downwards monotone function f (S) = 1 if 0 < |S| < k and 0 otherwise. If the edge
costs obey the triangle inequality, we can also obtain an approximation algorithm for
the lower-capacitated path partitioning problem. Obviously the cost of the optimal tree
partition is a lower bound on the cost of the optimal lower-capacitated path partition.
Given the tree partition produced by our algorithm, we duplicate each edge and find a
tour of each component by shortcutting the resulting Eulerian graph on each component;
this gives a cycle partition of no more than twice the cost of the original solution. Re-
moving an edge from each cycle gives a path partition; thus we have a 4-approximation
algorithm for the lower-capacitated path partitioning problem.

If the edge costs obey the triangle inequality, then we can obtain a 2-approximation
algorithm for the lower-capacitated cycle problem. The algorithm constructs a cycle
partition as above. To show that the cost of solution is no more than twice optimal, notice
that the following linear program is a relaxation of the lower-capacitated cycle problem:

Min
∑

e∈E

cexe

subject to: ∑

e∈δ(S)
xe ≥ 2 f (S) ∅ 6= S ⊂ V

xe ≥ 0.

The dual of this relaxation is

Max 2
∑

S⊂V

f (S)yS

subject to: ∑

S:e∈δ(S)
yS ≤ ce ∀e ∈ E

yS ≥ 0.

The dual solution generated by the primal-dual algorithm for the lower-capacitated tree
problem is feasible for this dual, but has twice the objective function value. Let y denote
the dual solution given by the primal-dual algorithm, let T denote the set of tree edges
produced by the algorithm for the lower-capacitated tree problem, let C denote the set of
cycle edges produced by doubling and shortcutting the tree edges, and let Z ∗C denote the
cost of the optimal cycle partition. We know c(T) ≤ 2

∑
S f (S)yS and c(C) ≤ 2c(T),

so that c(C)≤ 2(2
∑

S f (S)yS)≤ 2Z ∗C , proving that the algorithm is a 2-approximation
algorithm for the cycle partitioning problem. This illustrates one of the benefits of the
primal-dual method: the dual lower bound can be used to prove stronger results.

A paper of the authors [GW95a] provided the first 2-approximation algorithms for
these problems. Imielińska, Kalantari, and Khachiyan [IKK93] showed how to select a
subset of the edges of a minimum spanning tree to get a 2-approximation algorithm for
the tree partitioning problem and a 4-approximation algorithm for the cycle partitioning
problem. A subsequent paper of the authors [GW94b] showed how spanning tree edges
could be used for any downwards monotone function.

168 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

4.5.3 LOCATION-DESIGN AND LOCATION-ROUTING PROBLEMS

The primal-dual method can be used to solve a problem in network design and vehicle
routing. Many problems of this type require two levels of decisions. In the first level
the location of special vertices, such as concentrators or switches in the design of com-
munication networks, or depots in the routing of vehicles, needs to be decided. There
is typically a set of possible locations and a fixed cost is associated with each of them.
Once the locations of the depots are decided, the second level deals with the design or
routing per se. These problems are called location-design or location-routing problems
(Laporte [Lap88]).

The algorithm can be applied to one of the simplest location-routing problems. In
this problem (Laporte et al. [LNP83, Lap88]), we need to select depots among a subset
D of vertices of a graph G = (V,E) and cover all vertices in V with a set of cycles, each
containing a selected depot. The goal is to minimize the sum of the fixed costs of opening
our depots and the sum of the costs of the edges of our cycles. In order to approximate
this NP-complete problem we consider an augmented graph G ′ = (V ∪ D′,E ′), which
we obtain from G by adding a new copy u ′ of every vertex u ∈ D and adding edges of the
form (u,u′) for all u ∈ D. Edge (u,u ′) has a cost equal to half the value of the fixed cost of
opening a depot at u. Consider the downwards monotone function f (S)= 1 if ∅ 6= S⊆ V
and 0 otherwise. We apply the 2-approximation algorithm for this function f . As in
the case of the lower-capacitated cycle partitioning problem, doubling the edges and
shortcutting the solution obtained can be shown to result in a 2-approximation algorithm
for the original location-design problem.

4.5.4 PROOF OF THEOREMS 4.5 AND 4.6

We now turn to the proof of Theorems 4.5 and 4.6.

Proof of Theorem 4.5. Using the arguments developed in Section 4.4.1, we simply
need to show that, for downwards monotone functions, equation (4.6) holds.

Recall that we construct a graph H by taking the graph (V,B) and shrinking the
connected components of (V, A) to vertices. Each vertex v of H corresponds to a con-
nected component Sv of (V, A), and has degree dv. The set W is the set of vertices
{v ∈ H : f (Sv)= 1}. We first claim that each connected component of H has at most
one vertex v such that f (Sv) = 0. Suppose this is false, and some connected compo-
nent of H has two vertices, v and w, such that f (Sv) = f (Sw) = 0. Let e be an edge
of B corresponding to an edge on the path between v and w in H . By minimality of B,
B−{e} is not feasible. Thus, there is a set S ⊂ V such that e ∈ δ(S) and f (S) = 1, but
(B−{e})∩δ(S)=∅. The removal of e must split a connected component of H . In order
that e ∈ δ(S) and (B−{e})∩δ(S)=∅, it must be the case that S contains the vertices of
one of the two parts of this component. Thus, either Sv ⊆ S or Sw ⊆ S. By the downwards
monotonicity of f , f (S)= 0, a contradiction.

Let c be the number of components of H . Then
∑

v∈W

dv ≤
∑

v∈H

dv = 2(|H |− c)≤ 2|W |,

4.6 0-1 PROPER FUNCTIONS 169

as desired, since H is a forest, and |H −W | ≤ c by the claim above.

Proof of Theorem 4.6. If we increase the dual variables on all connected components
C(A) of (V, A), rather than the minimal violated sets V(A), then, as was argued in Sec-
tion 4.3, the first part of the algorithm reduces to Kruskal’s algorithm for the minimum
spanning tree. We can therefore use Theorem 4.3 to prove a performance guarantee of 2
for the algorithm of Figure 4.6 if we can show that

∑

S∈C(A)
|δB(S)| ≤ 2|{S ∈ V(A)}|,

where B is any minimal augmentation of A, C(A) is the set of connected components
of (V, A), and V(A)= {C ∈ C(A) : f (C)= 1} is the set of minimal violated sets. Using
the notation developed in the previous section, this reduces to

∑
v∈H dv ≤ 2|W |, which

was proved above. This proves that the algorithm of Figure 4.6 is also a 2-approximation
algorithm.

Further variations on the algorithm also yield 2-approximation algorithms. Imiel-
ińska et al. [IKK93] give a 2-approximation algorithm for the lower capacitated tree
problem that selects appropriate edges of a minimum spanning tree in order of increasing
cost, rather than deleting edges in order of decreasing cost. The authors have general-
ized this algorithm to a 2-approximation algorithm for downwards monotone functions
f : 2V → N for the integer program (I P) with the constraint xe ∈ N [GW94b].

EXERCISE 4.7 Show that the performance guarantee in the statement of Theorem 4.5
can be improved to 2−1/ l where l = |{v : f ({v})= 1}|.

EXERCISE 4.8 Give a very simple proof of the fact that the algorithm of Figure 4.6 is
a 2-approximation algorithm for the edge covering problem.

0-1 PROPER FUNCTIONS

4.6

In this section we consider the network design problems which can be modelled by the
integer program (I P) with a proper function f with range {0,1}. A function f : 2V →N
is proper if

• f (V)= 0,
• f satisfies the maximality property, and
• f is symmetric, i.e. f (S)= f (V − S) for all S ⊆ V .

Under symmetry it can be shown that, for 0-1 functions, the maximality property is
equivalent to requiring that if f (S)= f (A)= 0 for A ⊆ S then f (S− A)= 0. We will
refer to this property as complementarity. The class of 0-1 proper functions is incompara-
ble to the class of downwards monotone functions; neither class is contained in the other.

170 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

The class of network design problems which can be formulated by proper functions is
particularly rich. It encompasses very diverse problems such as the shortest path prob-
lem, the minimum-weight T -join problem, the generalized Steiner tree problem, or the
point-to-point connection problem. Later in this section we elaborate on some of these
applications. The work described in this section appeared in [GW95a], the first paper of
the authors on the use of the primal-dual method for network design problems.

As with downwards monotone functions, the primal-dual algorithm described in
Figure 4.5 is a 2-approximation algorithm.

THEOREM 4.7 The primal-dual algorithm described in Figure 4.5 gives a 2-approxi-
mation algorithm for the integer program (I P) with any 0-1 proper function
f : 2V → {0,1}.

The proof of this theorem is given below. With regard to the (reverse) delete step,
proper functions behave very much as in the case of the shortest path problem. No matter
how the delete step is implemented, the same subgraph is output, since, as is shown in
the next lemma, there is a unique minimally feasible subset of any feasible solution.

LEMMA 4.2 Let f be any 0-1 proper function and let A be any feasible solution. Let
R = {e : A−{e} is feasible}. Then A− R is feasible.

Notice that R represents the set of all edges that can possibly be removed without losing
feasibility. The lemma shows that all these edges can be simultaneously removed without
losing feasibility. For 0-1 proper functions, we can thus replace the reverse delete step
(lines 16-17) in Figure 4.5 by the following command:
16 A← {e ∈ A : For some connected component N of (V, A−{e}), f (N) = 1}.

Proof of Lemma 4.2. Let N be any connected component of (V, A − R). We first
claim that f (N)= 0. Clearly, N ⊆ C for some connected component C of (V, A). Now
let e1, . . . ,ek be the edges of A such that ei ∈ δ(N) (possibly k = 0). Let Ni and C− Ni

be the two components created by removing ei from the edges of component C , with
N ⊆C−Ni (see Figure 4.7). Since ei ∈ R, it must be the case that f (Ni)= 0. Note also
that the sets N,N1, . . . ,Nk form a partition of C . Therefore, by maximality, f (C−N)=
f (∪k

i=1 Ni) = 0. Since f (C) = 0, complementarity now implies that f (N) = 0. Since
every connected component of (V, A− R) has f (.) value equal to 0, Lemma 4.1 implies
that A− R is feasible.

Proof of Theorem 4.7. As discussed at the end of Section 4.4.1, the proof of the
theorem can be reduced to the proof of inequality (4.6), as was the case for downwards
monotone functions.

In order to prove (4.6) for 0-1 proper functions, we first claim that no leaf v of H sat-
isfies f (Sv)= 0. Suppose otherwise. Let e be the edge incident to v and let C be the con-
nected component of (V,B) that contains Sv . By feasibility of B, f (C)= 0. The assump-
tion that f (Sv)= 0 together with complementarity now implies that f (C− Sv)= 0. But
by minimality of B, B−{e} is not feasible, which implies that either Sv or C− Sv has an
f (.) value equal to 1, which is a contradiction. Thus, every leaf v of H belongs to W .

4.6 0-1 PROPER FUNCTIONS 171

N1

N2

Nk
Ne1

e2

ek

C

R

A-R

FIGURE 4.7

Illustration for the proof of Lemma 4.2.

Showing that the average degree over the vertices in W is at most 2 is now easy.
First discard all isolated vertices from H (they do not contribute in any way). Now,

∑

v∈W

dv =
∑

v∈H

dv−
∑

v /∈W

dv ≤ (2|H |−2)−2(|H |− |W |)= 2|W |−2,

since H is a forest of at most |H |−1 edges, and since all vertices not in W have degree
at least two. This proves inequality (4.6), and completes the proof of the theorem.

Since the inequality proved is a bit stronger than what was claimed, the proof can
be refined to show that the performance guarantee is in fact equal to 2− 2

l , where l =
|{v : f ({v}) = 1}|. Also, observe the similarities and differences between the proofs of
the performance guarantee for downwards monotone functions and proper functions. In
both cases, the argument hinges on the fact that the average degree of a forest remains
at most 2 if we discard certain vertices. In the former we discard at most one vertex
per component, and in the latter we discard only inner vertices (i.e. non-leaves). The
result would still hold if we discard any number of inner vertices, but at most one leaf
(or even two leaves) per component. By using the same arguments as in the proofs
of Theorems 4.5 and 4.7, this for example shows that the algorithm of Figure 4.5 is
still a 2-approximation algorithm for the class of functions satisfying maximality and
the following condition: there do not exist a set S and two disjoint subsets A,B of S
such that f (S) = f (A) = f (B) = 0 and f (S − A) = f (S − B) = 1. This class of
functions contains both the downwards monotone functions and the proper functions,
but we are not aware of any interesting application of this generalization not covered by
the previous two classes.

We now discuss network design problems that can be modelled as integer programs
(I P) with a proper function f .

4.6.1 THE GENERALIZED STEINER TREE PROBLEM

The generalized Steiner tree problem is the problem of finding a minimum-cost forest
that connects all vertices in Ti for i = 1, . . . , p. The generalized Steiner tree problem
corresponds to the proper function f with f (S) = 1 if there exists i ∈ {1, . . . , p} with

172 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

∅ 6= S∩ Ti 6= Ti and 0 otherwise. In this case, the primal-dual algorithm we have pre-
sented simulates an algorithm of Agrawal, Klein, and Ravi [AKR95]. Their algorithm
was the first approximation algorithm for this problem and has motivated much of the
authors’ research in this area.

When p = 1, the problem reduces to the classical Steiner tree problem. For a long
time, the best approximation algorithm for this problem had a performance guarantee
of (2− 2

k) (for a survey, see Winter [Win87]) but, recently, Zelikovsky [Zel93] obtained
an 11

6 –approximation algorithm. Further improvements have been obtained; we refer the
reader to Chapter 8.

4.6.2 THE T -JOIN PROBLEM

Given an even subset T of vertices, the T -join problem consists of finding a minimum-
cost set of edges that has an odd degree at vertices in T and an even degree at vertices not
in T . Edmonds and Johnson [EJ73] have shown that the T -join problem can be solved
in polynomial time. The problem corresponds to the proper function f with f (S)= 1 if
|S∩T | is odd and 0 otherwise. When |T | = 2, the T -join problem reduces to the shortest
path problem. The primal-dual algorithm for 0-1 proper functions in this case reduces to
a variant of Dijkstra’s algorithm that uses bidirectional search (Nicholson [Nic66]).

4.6.3 THE MINIMUM-WEIGHT PERFECT MATCHING PROBLEM

The minimum-weight perfect matching problem is the problem of finding a minimum-
cost set of non-adjacent edges that cover all vertices. This problem can be solved in poly-
nomial time by a primal-dual algorithm discovered by Edmonds [Edm65]. The fastest
strongly polynomial time implementation of Edmonds’ algorithm is due to Gabow
[Gab90]. Its running time is O(n(m + n logn)). For integral costs bounded by C , the
best weakly polynomial algorithm runs in O(m

√
nα(m,n) log n lognC) time and is due

to Gabow and Tarjan [GT91].
These algorithms are fairly complicated and, in fact, time-consuming for large in-

stances that arise in practice. This motivated the search for faster approximation al-
gorithms. Reingold and Tarjan [RT81] have shown that the greedy procedure has a
tight performance guarantee of 4

3 n0.585 for general nonnegative cost functions. Supowit,
Plaisted and Reingold [SPR80] and Plaisted [Pla84] have proposed an
O(min(n2 logn,m log2 n)) time approximation algorithm for instances that obey the tri-
angle inequality. Their algorithm has a tight performance guarantee of 2log3(1.5n).

As shown by Gabow and Tarjan [GT91], an exact scaling algorithm for the maxi-
mum-weight matching problem can be used to obtain an (1+ 1/na)-approximation al-
gorithm (a ≥ 0) for the minimum-weight perfect matching problem. Moreover, if the
original exact algorithm runs in O(f (m,n) logC) time, the resulting approximation al-
gorithm runs in O(m

√
n logn+(1+a) f (m,n) logn). Vaidya [Vai91] obtains a (3+2ε)-

approximation algorithm for minimum-weight perfect matching instances satisfying the
triangle inequality. His algorithm runs in O(n2 log2.5 n log(1/ε)) time.

4.6 0-1 PROPER FUNCTIONS 173

The primal-dual algorithm for problems modelled with a proper function can be
used to approximate the minimum-weight perfect matching problem when the edge costs
obey the triangle inequality. We use the algorithm with the proper function f (S) being
the parity of |S|, i.e. f (S) = 1 if |S| is odd, and 0 if |S| is even. This function is the
same as the one used for the V -join problem. The algorithm returns a forest whose
components have even size. More precisely, the forest is a V -join, and each vertex has
odd degree: if a vertex has even degree, then, by a parity argument, some edge adjacent
to the vertex could have been deleted so that the resulting components have even size.
Thus, this edge would have been deleted in the delete step of the algorithm. The forest
can be transformed into a perfect matching with no increase of cost by repeatedly taking
two edges (u,v) and (v,w) from a vertex v of degree three or more and replacing these
edges with the edge (u,w). This procedure maintains the property that the vertices have
odd degree. This algorithm has a performance guarantee of 2− 2

n .
Often the vertices of matching instances are given as points in the plane; the cost

of an edge is then the Euclidean distance between its endpoints. Jünger and Pulleyblank
[JP91] have observed that the dual variables of matching problems in this case corre-
spond nicely to “moats” around sets of points. That is, a dual variable yS corresponds
to a region of the plane of width yS surrounding the vertices of S. The dual program
for these instances attempts to find a packing of non-overlapping moats that maximizes
the sum of the width of the moats around odd-sized sets of vertices. The algorithm of
Figure 4.5 applied to Euclidean matching instances can thus be interpreted as growing
odd moats at the same speed until two moats collide, therefore adding the corresponding
edge, and repeating the process until all components have even size. The reverse delete
step then removes unnecessary edges. See Figure 4.8 for an example.

The notion of moats is not particular to matching problems: one can also consider
moat packings for Euclidean instances of other problems modelled by (I P). The moats
for a feasible dual solution y can be drawn in the plane whenever the non-zero dual
variables yS form a laminar family (any two sets in the family are either disjoint or one
is contained in the other). One can show that whenever f is a 0-1 proper function, there
exists an optimal dual solution y such that {S : yS > 0} is laminar (this even holds when
f is an uncrossable function; see Section 4.7 for a definition). This is also clearly true
for the dual solutions constructed by our primal-dual algorithms.

4.6.4 POINT-TO-POINT CONNECTION PROBLEMS

In the point-to-point connection problem we are given a set C = {c1, . . . ,cp} of sources
and a set D = {d1, . . . ,dp} of destinations in a graph G = (V,E), and we need to find a
minimum-cost set F of edges such that each source-destination pair is connected in F
[LMSL92]. This problem arises in the context of circuit switching and VLSI design. The
fixed destination case in which ci is required to be connected to di is a special case of the
generalized Steiner tree problem where Ti = {ci ,di }. In the non-fixed destination case,
each component of the forest F is only required to contain the same number of sources
and destinations. This problem is NP-complete [LMSL92]. The non-fixed case can be
modelled by the proper function f with f (S)= 1 if |S∩C| 6= |S∩D| and 0 otherwise.

174 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

(a) (b)

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

(c) (d)

FIGURE 4.8

(a) A Euclidean matching instance. (b) An intermediate stage of the primal-dual algo-
rithm of Figure 4.5 with a partial moat packing. The odd connected components are
{1}, {2}, {3,4,5} and {6}. (c) When growing odd moats uniformly, the edge (5,6) be-
comes tight and is added to A. (d) The final solution. The edges removed in the reverse
delete step are dashed, the others belong to the matching (or the V -join) output by the
algorithm. Observe that every moat is intersected by exactly one edge of the matching,
implying that the matching and the dual solution (or moat packing) are both optimal.

4.6.5 EXACT PARTITIONING PROBLEMS

In the exact tree (cycle, path) partitioning problem, for a given k we must find a mini-
mum-cost collection of vertex-disjoint trees (cycles, paths) of size k that cover all ver-
tices. These problems generalize the minimum-weight perfect matching problem (in
which each component must have size exactly 2), the traveling salesman problem, the
Hamiltonian path problem, and the minimum-cost spanning tree problem.

We can approximate the exact tree, cycle, and path partitioning problems for in-
stances that satisfy the triangle inequality. For this purpose, we consider the proper

4.7 GENERAL PROPER FUNCTIONS 175

function f (S) = 1 if S 6≡ 0(mod k) and 0 otherwise. Our algorithm finds a forest in
which each component has a number of vertices that are multiples of k, and such that
the cost of the forest is within 2− 2

n of the optimal such forest. Obviously, the cost of the
optimal such forest is a lower bound on the optimal exact tree and path partitions. Given
the forest, we duplicate each edge and find a tour of each component by shortcutting the
resulting Eulerian graph on each component. If we remove every kth edge of the tour,
starting at some edge, the tour is partitioned into paths of k nodes each. Some choice of
edges to be removed (i.e., some choice of starting edge) accounts for at least 1

k of the cost
of the tour, and so we remove these edges. Thus, this algorithm is a

(
4(1− 1

k)(1− 1
n)
)
-

approximation algorithm for the exact tree and path partitioning problems.
To produce a solution for the exact cycle partitioning problem, we add the edge join-

ing the endpoints of each path; given the triangle inequality, this at most doubles the cost
of the solution produced. However, the resulting algorithm is still a

(
4(1− 1

k)(1− 1
n)
)
-

approximation algorithm for the cycle problem by the same argument as was used in
Section 4.5.2.

The proper functions corresponding to the non-fixed point-to-point connection
problem, the T -join problem and the exact partitioning problems, are all of the form
f (S)= 1 if

∑
i∈S ai 6≡ 0(mod p) and 0 otherwise, for some integers ai , i ∈ V , and some

integer p.

EXERCISE 4.9 Prove that, for symmetric functions f , the maximality property is
equivalent to complementarity.

EXERCISE 4.10 Consider a (non necessarily symmetric) function f satisfying maxi-
mality and complementarity. Consider the symmetrization of f defined by f sym(S) =
max(f (S), f (V − S)). Observe that the integer programs corresponding to f and f sym

are equivalent. Show that fsym is a proper function.

EXERCISE 4.11 Prove that the performance guarantee of Theorem 4.7 is in fact
2−2/ l, where l = |{v : f ({v}) = 1}|. What is the resulting performance guarantee for
the shortest path problem (i.e. for f (S)= 1 iff |S∩{s, t}| = 1)?

EXERCISE 4.12 Prove that the algorithm of Figure 4.5 is a 2-approximation algorithm
for the class of functions f satisfying maximality and the property that there do not exist
a set S and two disjoint subsets A,B of S such that f (S) = f (A) = f (B) = 0 and
f (S− A)= f (S− B)= 1.

GENERAL PROPER FUNCTIONS

4.7

We now turn from 0-1 proper functions to the case of general proper functions in which
the function f can range over the nonnegative integers. In the previous two sections we
discussed special cases of the hitting set problem in which we considered the integer

176 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

program (I P) with a 0-1 function f . Now consider the case in which we must hit a
set δ(S) at least f (S) times. We will give a 2H(fmax)-approximation algorithm for any
proper function f , where fmax = maxS f (S) and H(k) = 1+ 1

2 + ·· · + 1
k ≈ lnk. The

results presented in this section were initially given in [WGMV95, GGW93, GGP+94].
The main application of an algorithm for general proper functions is the survivable

network design problem, as discussed in Section 4.4. As we previously observed, this
problem can be modelled by (I P) with the function f (S) = maxi∈S, j /∈S ri j . It is not
hard to show that this function is proper: first, it is obviously symmetric. To see that it
obeys maximality, let A and B be disjoint sets, and pick i ∈ A∪ B, j /∈ A∪ B that attain
the maximum maxi∈A∪B, j /∈A∪B ri j = f (A ∪ B). If i ∈ A, then f (A) ≥ f (A ∪ B), else
f (B)≥ f (A∪ B), ensuring that f (A∪ B)≤max(f (A), f (B)).

In order to apply the primal-dual method to this class of problems, we reduce the
overall problem to a sequence of hitting set problems, and apply the primal-dual appro-
ximation algorithm to each subproblem. Thus, we build a solution to the original problem
in a series of phases. We start with an empty set of edges F0 = ∅. In each phase p,
we consider a hitting set problem with the ground set of elements E p = E− Fp−1. Let
1p(S) = f (S)− |δFp−1(S)| be the deficiency of the set S; that is, the number of edges
we must still choose from δ(S) since a feasible solution to the overall problem must
contain f (S) edges, but our current solution Fp−1 contains only |δFp−1(S)| edges. Let
1p,max denote the maximum deficiency, 1p,max =maxS1p(S). In the hitting set prob-
lem for phase p, the sets to be hit are defined as the sets δ(S) for which1 p(S)=1p,max.
If A is a feasible solution to this problem, then the maximum deficiency of A∪ Fp−1
can be no greater than 1p,max− 1. Thus, we apply the algorithm of Figure 4.4 to this
hitting set problem; given the resulting set of edges A, we set Fp to A∪ Fp−1 and we
proceed to phase p+1. Since the maximum deficiency in the first phase is fmax , where
fmax = maxS f (S), at most fmax phases are necessary before we have a feasible solu-
tion to the overall problem. It is possible to show that given this scheme all fmax phases
are necessary, and the maximum deficiency in phase p is exactly fmax − p+1. The al-
gorithm for general proper functions is formalized in Figure 4.9 on page 177. The idea
of augmenting a graph in phases has been previously used in many graph algorithms;
in terms of primal-dual approximation algorithms it was first used by Klein and Ravi
[KR93] and Saran et al. [SVY92].

The central difficulties of obtaining an algorithm for general proper functions be-
come applying the algorithm of Figure 4.4 to the hitting set problems generated by the
algorithm above, and showing that a good performance guarantee for the solution of each
hitting set problem leads to the performance guarantee of 2H(fmax) for the overall prob-
lem. We postpone the second difficulty for a moment in order to deal with the first. Given
a hitting set problem from phase p, let h p(S)= 1 if we must hit δ(S) and h p(S)= 0 oth-
erwise. Unfortunately, it is easy to come up with examples such that h p does not obey
maximality, and so we cannot straightforwardly apply the discussion of the previous two
sections. Fortunately, the functions h p arising from the hitting set problems of the phases
have a particularly nice structure. We will prove below that the functions belong to the
class of uncrossable functions. A function h : 2V → {0,1} is uncrossable if

• h(V)= 0; and
• if h(A)= h(B)= 1 for any sets of vertices A,B, then either h(A∪ B)= h(A∩

B)= 1 or h(A− B)= h(B− A)= 1.

4.7 GENERAL PROPER FUNCTIONS 177

1 F0←∅
2 for p← 1 to fmax

3 Comment: Phase p.
4 1p(S)← f (S)−|δFp−1 (S)| for all S ⊂ V

5 h p(S)←
{

1 if 1p(S)=maxS1p(S)= fmax − p+1
0 otherwise

6 E p← E− Fp−1

7 Let A be the edge set returned by the algorithm of Figure 4.4 applied to the hitting set
problem associated with the the graph (V,E p) and the function h p

8 Fp← Fp−1 ∪ A
9 Output F fmax

FIGURE 4.9

Primal-dual algorithm for proper functions f .

The class of uncrossable functions contains all functions satisfying the maximality prop-
erty. We will show below that the minimal violated sets of uncrossable functions are
disjoint.

LEMMA 4.3 Let f be a proper function, F ⊆ E ,1(S)= f (S)−|δF(S)|, and1max =
maxS1(S). Then the function h(S) = 1 if 1(S) = 1max and h(S) = 0 otherwise is
uncrossable.

Proof. Since f (V) = |δF(V)| = 0, we have h(V) = 0. By the maximality of f , we
have the following four inequalities for any two sets X and Y :

• max{ f (X −Y), f (X ∩Y)} ≥ f (X).
• max{ f (Y − X), f (X ∪Y)} ≥ f (X).
• max{ f (Y − X), f (X ∩Y)} ≥ f (Y).
• max{ f (X −Y), f (X ∪Y)} ≥ f (Y).

Summing the two inequalities involving the minimum of f (X − Y), f (Y − X),
f (X ∪Y), and f (X ∩ Y) shows that f (X) + f (Y) ≤ max{ f (X − Y)+ f (Y − X),
f (X ∩Y)+ f (X ∪Y)}. To prove the lemma, we use the well-known fact that δF(S) is
submodular; that is, for any sets of vertices X and Y

|δF(X)|+ |δF(Y)| ≥ |δF(X ∩Y)|+ |δF(X ∪Y)|,
and

|δF(X)|+ |δF(Y)| ≥ |δF(X −Y)|+ |δF(Y − X)|.
Then we can see that 1(X) + 1(Y) ≤ max{1(X −Y) + 1(Y − X),1(X ∩Y) +
1(X ∪Y)}. From this inequality it is easy to see that h is uncrossable.

LEMMA 4.4 Let h be any uncrossable function. Then the minimal violated sets of any
subset A are disjoint.

178 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

Proof. Note that a set S is violated if h(S)= 1 and δA(S)=∅. Suppose there exist two
minimal violated sets X and Y that are not disjoint. Then we know that h(X)= h(Y)= 1
and δA(X) = δA(Y) = ∅. Since the sets are minimal, Y − X 6= ∅ and X − Y 6= ∅;
since they are not disjoint, X ∩Y 6= ∅. By the definition of uncrossable functions, either
h(X−Y)= h(Y − X)= 1 or h(X ∩Y)= h(X ∪Y)= 1. Suppose the latter is true. Then
by submodularity, δA(X ∪Y)= δA(X ∩Y)= ∅, implying that X ∪Y and X ∩Y are also
violated, and contradicting the minimality of X and Y . The other case is similar.

Despite Lemma 4.4, it is still difficult to find the minimal violated sets (or even just
check feasibility, see Exercise 4.17) for an arbitrary uncrossable function if the function
is given only as an oracle. Consider a function taking the value 1 for only one arbitrary
set S; this function is uncrossable but the oracle would not allow us to find S without
testing all sets in the worst case. Nevertheless, for the uncrossable functions generated
by our algorithm, it is possible to find these minimal violated sets in polynomial time
by using minimum cut computations. See Williamson et al. [WGMV95], Gabow et al.
[GGW93], Williamson [Wil93], and to Exercise 4.19 for details.

Williamson et al. [WGMV95] have shown that the algorithm of Figure 4.4 is a 2-
approximation algorithm for any uncrossable function; it runs in polynomial time given
a polynomial-time algorithm to compute h and the minimal violated sets.

THEOREM 4.8 The primal-dual algorithm of Figure 4.4 is a 2-approximation algo-
rithm for any uncrossable function f .

This theorem can again be proved using the proof technique developed in Section
4.3 (see Theorem 4.4). However, the proof that γ can be set to 2 is more complicated
than in the previous cases, and is therefore omitted.

We must now tackle the second difficulty and show that the performance guarantee
of 2 for the uncrossable functions arising in each phase leads to a performance guarantee
of 2H(fmax) for the overall algorithm of Figure 4.9.

THEOREM 4.9 The primal-dual algorithm described in Figure 4.9 gives a 2H(fmax)-
approximation algorithm for the integer program (I P) with any proper function f ,
whereH(k)= 1+ 1

2 + 1
3 + . . .+ 1

k .

In order to prove Theorem 4.9 from Theorem 4.8, we first show that the dual solution
y constructed in phase p by the algorithm can be mapped to a feasible solution to the dual
of the LP relaxation of (I P). This dual is:

Max
∑

S⊂V

f (S)yS−
∑

e∈E

ze

subject to:
(D)

∑

S:e∈δ(S)
yS ≤ ce+ ze e ∈ E,

yS ≥ 0 ∅ 6= S ⊂ V,

ze ≥ 0 e ∈ E .

4.7 GENERAL PROPER FUNCTIONS 179

Given the dual variables y constructed by the algorithm in phase p, define z e =∑
S:e∈δ(S) yS for all e ∈ Fp−1, and ze = 0 otherwise. It is easy to verify that (y, z) is a

feasible solution for (D). We now provide a proof of Theorem 4.9.

Proof. Observe that
∑

e∈E

ze =
∑

e∈Fp−1

∑

S:e∈δ(S)
yS =

∑

S

|δFp−1(S)|yS .

Comparing the value of the dual solution produced by the algorithm in phase p to the
optimum value Z ∗D of the dual (D), we deduce

Z ∗D ≥
∑

S

f (S)yS−
∑

e∈E

ze

=
∑

S

(f (S)−|δFp−1(S)|)yS

= (fmax − p+1)
∑

S

yS,

where we have used the fact that in phase p the dual variable yS > 0 only if the deficiency
of S (f (S)−|δFp−1(S)|) is fmax − p+1. Using the proof of the performance guarantee
for uncrossable functions and summing over all phases, we obtain that

∑

e∈F fmax

ce ≤ 2
fmax∑

p=1

1
fmax − p+1

Z ∗D = 2H(fmax) Z ∗D,

proving the desired result.

Notice that the algorithm for uncrossable functions constructs a dual feasible solu-
tion is crucial for the proof of the above theorem. An improved approximation algorithm
for uncrossable functions would be useless for proving any performance guarantee for
proper functions if it only compared the solution produced to the optimum value rather
than to a dual feasible solution.

It is an interesting open question whether the primal-dual method can be used to
design approximation algorithms for general proper functions or the survivable network
design problem with a performance guarantee independent of fmax .

EXERCISE 4.13 Prove that, for a proper function f , fmax =max{ f ({v}) : v ∈ V }.

EXERCISE 4.14 Show that any 0-1 function satisfying the maximality property is un-
crossable.

EXERCISE 4.15 Dijkstra’s algorithm corresponds to the algorithm of Figure 4.4 with
f (S) = 1 if s ∈ S and t /∈ S, and f (S) = 0 otherwise. Show that this function does not
satisfy the maximality property but is uncrossable.

EXERCISE 4.16 Show that Lemma 4.3 also holds for the more general class of skew
supermodular functions. A function f is skew supermodular if f (V) = 0 and f (A)+
f (B)≤max(f (A− B)+ f (B− A), f (A∪ B)+ f (A∩ B)) for all sets A and B.

180 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

EXERCISE 4.17 Let h be an uncrossable function and assume we have an oracle for
deciding the feasibility of a set A of edges. First prove that if S ⊂ V is a maximal set
such that A∪ {(i, j) : i, j ∈ S} is not feasible, then V − S is a minimal violated set for
A. Then deduce that the set of minimal violated sets can be obtained by less than |V |2
calls to the feasibility oracle. Given a general proper function f , consider the problem
of checking the feasibility of a set F of edges. Prove that F is feasible if and only if
the |V | − 1 cuts induced by the Gomory-Hu cut equivalent tree [GH61] of F have the
required number of edges [GGW93].

EXERCISE 4.18 Consider the uncrossable function h p defined in phase p of the algo-
rithm of Figure 4.9. Show that A is feasible for h p if and only if A∪ Fp−1 is feasible for
the function gp(S)=max(f (S)− fmax + p,0). Moreover, show that this function g p is
proper.

EXERCISE 4.19 Using Exercises 4.17–4.18, show how to find the minimal violated
sets for the uncrossable function h p of the algorithm of Figure 4.9 in polynomial time.
More efficient solutions to this exercise can be found in [WGMV95, GGW93, Wil93].

EXERCISE 4.20 Prove Theorem 4.8. Can you improve the performance guarantee to
2− 2/ l where l denotes the maximum number of disjoint sets C1, . . . ,Cl such that
f (Ci)= 1 for all i?

EXTENSIONS

4.8

Up to this point, we have concentrated on showing how the primal-dual method can be
applied to various network design problems that can be modelled by the integer program
(I P) with different classes of functions f . In this section, we show that the method can
be applied to other problems as well.

4.8.1 MINIMUM MULTICUT IN TREES

The primal-dual method can be applied to problems that are not network design prob-
lems. For example, Garg, Vazirani, and Yannakakis [GVY93a] have given a primal-dual
2-approximation algorithm for the problem of finding a minimum multicut in a tree. In
the general minimum multicut problem, we are given an undirected graph G = (V,E)
with nonnegative capacities ue on the edges, and pairs si , ti ∈ V , for i = 1, . . . ,k. We
must remove a minimum-capacity subset of edges E ′ so that no si , ti pair is in the same
connected component of (V,E− E ′). In the minimum multicut problem in trees, the set
of edges E is a tree on V . In this case, we can formulate the problem as a hitting set prob-
lem: E is the ground set of elements, the cost of each element is ue, and for each i we
must hit a set Ti , where Ti contains the edges on the unique path from si to ti in the tree.

4.8 EXTENSIONS 181

The minimum multicut problem in trees generalizes the vertex cover problem. In-
deed, consider a star graph G with center vertex r , with leaves v1, · · · ,vn , and with termi-
nal pairs (si , ti) for i = 1, · · · ,k. Construct a graph H with vertex set {v1, · · · ,vn}, edge
set {(si , ti) : i = 1, · · · ,k} and assign a weight of urv to any vertex v. Then {(r,vi) : i ∈C}
is a multicut of G of capacity U if and only if {vi : i ∈ C} is a vertex cover of H of
weight U .

We can get a 2-approximation algorithm for this problem by applying the algorithm
in Figure 4.2. In order to do this, we must specify how to select a violated set. At the
beginning of the algorithm, we root the tree at an arbitrary vertex r . Define the depth of
a vertex v to be the number of edges in the path from v to r , and define the least common
ancestor of vertices u and v to be the vertex x of smallest depth that lies on the path
from u to v. For each i , we compute the depth di of the least common ancestor of si and
ti . Then, among the violated sets Ti , we choose a set that maximizes di . The resulting
algorithm is the algorithm proposed by Garg et al. [GVY93a].

THEOREM 4.10 The algorithm given in Figure 4.2 is a 2-approximationalgorithm for
the minimum multicut problem in trees.

Proof. We will apply Theorem 4.1. For this purpose, let A be any infeasible solution,
let T be the violated set selected by the algorithm (i.e., the one that maximizes the depth
of the least common ancestor), and let B be any minimal augmentation of A. We only
need to prove that |T ∩ B| ≤ 2. Recall that T corresponds to a path from si to ti in the
tree, and let ai be the least common ancestor of si and ti . Let T1 denote the path from
si to ai and T2 denote the path from ai to ti . Then the theorem will follow by showing
that |B ∩ T1| ≤ 1 (the proof that |B ∩ T2| ≤ 1 is identical). Suppose that |B ∩ T1| ≥ 2.
We claim that removing all edges in B∩T1 from B except the edge closest to ai is still a
feasible solution, contradicting the minimality of B. To see this, notice that by the choice
of T , for any other violated sets T j such that T1∩ T j 6= ∅, the set T1∩ T j is a path from
some vertex in T1 to ai ; if not, T j would have a least common ancestor of depth d j > di , a
contradiction. Therefore, if T j contains any edge in B∩T1, it contains the edge in B∩T1
closest to ai .

The algorithm of Figure 4.2 not only constructs an approximate primal solution but
also constructs an approximate dual solution. Moreover, if the capacities are integral, so
is the dual solution constructed. In the case of the multicut problem, the (integral) dual is
referred to as the maximum (integral) multicommodity flow problem: one needs to pack a
maximum number of paths between terminal pairs without using any edge e more than u e

times. By Theorem 4.1, the algorithm of Figure 4.2 constructs a multicut and an integral
multicommodity flow whose values are within a factor of 2 of each other.

4.8.2 THE PRIZE-COLLECTING PROBLEMS

We next show how to derive 2-approximation algorithms for extensions of the traveling
salesman problem and the Steiner tree problem. These extensions are known as the prize-
collecting traveling salesman problem and the prize-collecting Steiner tree problem.

182 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

In the prize-collecting traveling salesman problem, the input is an undirected graph
G = (V,E), nonnegative edge costs ce, and nonnegative penalties on the vertices πi .
The goal is to find a tour on a subset of the vertices that minimizes the sum of the
cost of the edges in the tour and the penalties on the vertices not in the tour. We will
consider a variant in which a prespecified root vertex r must be in the tour; this is
without loss of generality, since we can repeat the algorithm n = |V | times, setting each
vertex to be the root. The version of the prize-collecting TSP is a special case of a more
general problem introduced by Balas [Bal89]. The prize-collecting Steiner tree problem
is defined analogously; one needs to find a tree containing the root r which minimizes the
sum of the cost of the edges of the tree plus the penalties of the vertices not spanned. The
first approximation algorithms for these problems were given by Bienstock, Goemans,
Simchi-Levi, and Williamson [BGSLW93]: they gave a 5/2-approximationalgorithm for
the TSP version (assuming the triangle inequality) and a 3-approximation algorithm for
the Steiner tree version. The 2-approximation algorithms that we describe here are due
to the authors [GW95a].

We first concentrate on deriving a 2-approximation algorithm for the prize-collect-
ing Steiner tree problem; we will then show how a 2-approximation algorithm for the
prize-collecting TSP can be derived from it. The 2-approximation algorithm is simply
going to be the algorithm of Figure 4.3 for an appropriate formulation of the hitting set
problem. Given the input graph (V,E) and root vertex r , the set of ground elements for
the hitting set problem is the set of all edges E together with the set of all subsets of
V not containing r ; that is, the set of ground elements is E ∪ {S : S ⊆ V − {r}}. The
cost of a ground element e ∈ E is ce, while the cost of a ground element S ⊂ V is∑

v∈S πv . The sets that must be hit are the sets Ti = δ(Si)∪ {S : S ⊇ Si } ranging over
all ∅ 6= Si ⊆ V −{r}. Throughout the section, we assume that A denotes a subset of the
ground set, so A contains vertex sets as well as edges; we will denote the collection of
edges of A by Ae and the collection of vertex sets by As .

We now argue that this hitting set problem exactly models the prize-collecting
Steiner tree problem. First, any feasible solution A to this hitting set problem is a feasible
solution of no greater cost to the prize-collecting Steiner tree problem. Let S be the set of
vertices not connected to the root r by the edges in Ae. The set T = δ(S)∪{S′ ⊇ S}must
be hit, so some S′ ⊇ S must be in A. Thus, the cost of A includes the penalty

∑
v∈S πv .

Furthermore, given any feasible solution to the prize-collecting Steiner tree problem, we
get a feasible solution to the hitting set problem of no greater cost by taking the set of all
edges in the Steiner tree plus the set S of the vertices not connected to the root.

Since the ground set contains two types of elements, the dual of the LP relaxation
will contain two types of constraints; the one corresponding to an edge e is as usual

∑

S:e∈δ(S)
yS ≤ ce,

while the one corresponding to a set C is
∑

S:S⊆C

yS ≤
∑

v∈C

πv .

If a dual feasible solution y satisfies the dual constraints for C1 and C2 at equality then
it can easily be seen that it also satisfies the dual constraint for C1 ∪ C2 at equality.
This means that, given a solution A and a dual feasible solution y satisfying the primal

4.8 EXTENSIONS 183

complementary slackness conditions, the solution obtained by replacing the sets in As

by their union still satisfies the primal complementary slackness conditions with y. Al-
though it will be important to keep track of the different sets in As , we will always assume
that the union of the sets in As is implicitly taken before checking feasibility of A. Thus,
we will regard A as feasible if the set of vertices not connected to the root r by edges in
Ae can be covered by subsets of As .

Since the sets to be hit naturally correspond to vertex sets, we will again refer to
the vertex sets Si instead of referring to the associated subsets Ti of the ground set. In
particular, we can use the algorithm of Figure 4.4 on page 162 rather than the one of
Figure 4.3. But, for this, we first need to understand what sets are violated and which
ones are minimal. Given the definition of Ti , a violated set for the current solution A
will be a union of connected components of (V, Ae) provided the union (i) does not
contain the root and (ii) cannot be covered by sets of As. Thus, the minimal violated sets
V are the connected components C of (V, Ae) which do not contain the root and which
cannot be covered by sets in As . We give the specialization of the algorithm of Figure 4.4
to the prize-collecting Steiner tree problem in Figure 4.10. In the figure, C denotes the
connected components of (V, Ae) and V denotes the collection of minimal violated sets.
Also, for simplicity, we have allowed a set S /∈ As to be violated even though it can be
covered by sets of As . The algorithm would then simply add S to As without increasing
any dual variable.

THEOREM 4.11 The primal-dual algorithm described in Figure 4.10 gives a 2-
approximation algorithm for the prize-collecting Steiner tree problem.

1 y← 0
2 A←∅
3 C←{{v} : v ∈ V }
4 l← 0
5 While A is not feasible
6 l← l+1
7 V← {S ∈ C : r /∈ S and S /∈ As}
8 Increase yS uniformly for all S ∈ V until
9 either (i) ∃el ∈ δ(T),T ∈ V such that

∑
S:el∈δ(S) yS = cel

10 or (ii) ∃Sl ∈ V such that
∑

S:S⊆Sl
yS =∑v∈Sl

πv

11 If (i) then
12 al ← el

13 merge the two components of C spanned by el

14 else al ← Sl

15 A← A∪{al}
16 For j← l downto 1
17 if A−{a j } is feasible then A← A−{a j }
18 Output Ae (and the union of the sets in As and y)

FIGURE 4.10

Primal-dual algorithm for the prize-collecting
Steiner tree problem.

184 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

Before we present the proof of this theorem, it is useful to understand what the
reverse delete step really achieves in this case. First, observe that at any point during
the execution of the algorithm the sets in As form a laminar family; i.e., any two sets in
As are either disjoint or one is contained in the other. Moreover, if S1 ⊂ S2 are two sets
of As , then S2 was added after S1 and will be considered for removal before S1. Because
of the reverse delete step, in any solution B output by the algorithm, the sets in Bs will
be disjoint. Furthermore, a set S in As will be considered for removal after all the edges
in δ(S), but before all the edges with both endpoints within S. This implies that S must
be kept in the reverse delete step only if all the edges in δ(S) have been removed.

Proof. Since the algorithm is equivalent to the algorithm of Figure 4.3, we can use
Theorem 4.2. We must therefore show that for any infeasible solution A and any minimal
augmentation B of A,

∑

i :Si∈V(A)
|B∩ Ti | ≤ 2|V(A)|,

where V(A) is the the collection of violated sets. In fact, looking back at the proof of
Theorem 4.2, we don’t need to show the inequality for any minimal augmentation B, but
only for those which could be produced by the algorithm. Given the above discussion, we
can thus assume that the sets in Bs are disjoint, that they all consist of unions of connected
components of (V, Ae), and that no edge e ∈ Be belongs to δ(S) for some set S ∈ Bs .

Consider now the graph H formed by shrinking the connected components of
(V, Ae). Let W denote the vertices of H corresponding to the sets in V(A), and let W ′ ⊆
W denote the subset of these vertices corresponding to the union of the sets in Bs. Then,∑

i :Si∈V(A) |B ∩ Ti | =∑Si∈V(A)(|Be ∩ δ(Si)| + |Bs ∩ {S : S ⊇ Si }|) =∑v∈W dv + |W ′|,
and we must show that this quantity is no more than 2|W |. By the observations about Bs

above, if v ∈ W ′, then dv = 0, so that we must prove that
∑

v∈W−W ′ dv+|W ′| ≤ 2|W |.
The fact that the reverse delete step produces a minimal solution implies that any leaf
of H must be a vertex of W ; if a leaf of H is not in W , we could delete the correspond-
ing edge of Be without affecting the feasibility of B. Then, as before, we derive that∑

v∈W−W ′ dv ≤ 2|W −W ′| since we are only discarding vertices of degree at least 2.
Thus,

∑

v∈W−W ′
dv+|W ′| ≤ 2|W −W ′|+ |W ′| = 2|W |− |W ′| ≤ 2|W |,

which is the desired inequality.

Given that edge costs obey the triangle inequality, a 2-approximation algorithm
for the prize-collecting TSP can be obtained as follows: given the input graph G, edge
costs ce, penalties πi , and root vertex r , we apply the above algorithm for the prize-
collecting Steiner tree to the graph G, edge costs ce, penalties π ′i = πi/2, and root
vertex r . The resulting tree is converted to a tour by the usual technique of doubling
the edges and shortcutting the resultant Eulerian tour. The proof that this algorithm is a
2-approximation algorithm for the prize-collecting TSP is similar to the proof used in
Section 4.5.2 for the lower capacitated cycle problem, and we leave it as an exercise for
the reader. This 2-approximation algorithm has been used for deriving approximation
algorithms for more complex problems; see [BCC+94, GK96, AABV95, BRV95].

4.8 EXTENSIONS 185

4.8.3 VERTEX CONNECTIVITY PROBLEMS

So far all network design problems discussed have involved finding minimum-cost sub-
graphs with certain edge-connectivity properties. However, the primal-dual method can
also be applied to some vertex-connectivity problems. Ravi and Williamson [RW95]
have shown that the primal-dual method gives a 2H(k)-approximation algorithm for
the minimum-cost k-vertex-connected subgraph problem, in which one must find a
minimum-cost set of edges such that there are at least k vertex-disjoint paths between
any pair of vertices. They also present a 3-approximation algorithm for the survivable
network design problem when there must be ri j vertex-disjoint paths between i and j ,
and ri j ∈ {0,1,2} for all i, j . No approximation algorithms were previously known for
either of these problems.

We briefly sketch how the primal-dual algorithm is used in the case of the minimum-
cost k-vertex-connected subgraph problem. As in the case of general proper functions
(Section 4.6), the solution is constructed in a sequence of k phases. In phase p, the current
solution is augmented to a p-vertex-connected graph. By Menger’s Theorem, a graph is
p-vertex-connected if there does not exist any set of p− 1 or fewer vertices such that
removing the set divides the graph into two non-empty pieces. Let (V,E) be the input
graph, and let Fp−1 denote the set of edges selected at the end of phase p−1. To augment
a (p−1)-vertex-connectedgraph (V,Fp−1) to a p-vertex-connectedgraph, we apply the
algorithm of Figure 4.4 to the hitting set problem in which the ground elements are the
edges of E−Fp−1. For any set of p−1 vertices whose removal separates (V,Fp−1) into
two pieces Si and S′i , we must hit the set Ti = δ(Si : S′i)∩ (E − Fp−1), where δ(S : S′)
denotes the set of edges with one endpoint in S and one in S ′. If A is any feasible solution
to this hitting set problem, then A∪ Fp−1 is a p-vertex-connected graph by Menger’s
Theorem. We correspond the smaller of Si and S′i to each violated set Ti ; one can then
show for this problem that the minimal violated sets S are disjoint. The algorithm of
Figure 4.4 can then be applied in a straightforward way to find a low-cost augmentation
A of Fp−1; we set Fp to A∪ Fp−1. As with Theorem 4.8, it is possible to show that the
algorithm yields a 2-approximation algorithm for this hitting set problem, and using a
proof similar to that of Theorem 4.9, it can be proven that the overall algorithm gives a
2H(k)-approximation algorithm for the k-vertex-connected subgraph problem.

Other results known for vertex-connectivity problems can be found in Chapter 6.

EXERCISE 4.21 Show that for star graphs and unit capacities, finding the maximum
integral multicommodity flow is equivalent to a maximum matching problem.

EXERCISE 4.22 Prove that the primal-dual algorithm for the prize-collecting TSP is a
2-approximation algorithm.

EXERCISE 4.23 Show that the algorithm of Figure 4.10 returns a tree such that the sum
of the cost of the edges plus twice the sum of the penalties of the vertices not visited is
at most twice the cost of the optimum solution. For an application, see [GK96, BRV95].

EXERCISE 4.24 Does the fact that the elements are deleted in reverse matter for the
algorithm of Figure 4.10?

186 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

CONCLUSIONS

4.9

Up to this point, we have concentrated mainly on showing how the primal-dual method
allows the proof of good performance guarantees, and have mostly set aside the issues
of running time and performance in practice. A common criticism of approximation
algorithms is that they might not generate “nearly-optimal” solutions in practice. A prac-
titioner will seldom be satisfied with a solution guaranteed to be of cost less than twice
the optimum cost, as guaranteed by most of the algorithms of this chapter, and would
prefer an algorithm that finds solutions within a few percent of optimal. The good news
is that the studies of the primal-dual method performed thus far show that it seems to
perform very well in practice, at least on some problems. The authors [WG94] report
computational results with the 2-approximation algorithm for the minimum-weight per-
fect matching problem under the triangle inequality. They consider both random and
real-world instances having between 1000 and 131,072 vertices. The results indicate that
the algorithm generates a matching within 2% of optimal in most cases. In over 1,400
experiments, the algorithm was never more than 4% from optimal. Hu and Wein [Wei94]
implemented the algorithm for the generalized Steiner tree problem, and found that the
algorithm was usually within 5% of optimal. Because of the difficulty of finding the op-
timal solution in this case, their instances had at most 64 vertices. Finally, Mihail and
Shallcross implemented a modification of the algorithm given for the survivable network
design problem for inclusion in a network design software package. Although they did
no rigorous testing, they report that the algorithm does well in practice, coming within
a few percent of the expected optimal solution [MSDM96].

In this chapter, we have shown the power of the primal-dual method for designing
approximation algorithms for a wide variety of problems. Most of the problems consid-
ered in this chapter were network design problems, but the method is so general that it is
likely to have interesting applications for many kinds of problems. Indeed, primal-dual
techniques have also been applied to derive approximation algorithms for other prob-
lems, such as the feedback vertex set problem (see Chapter 9) or some of its variants in
planar graphs [GW95b]. For network design problems, the moral of the chapter is that
two design rules are very important. First, one should grow uniformly the dual variables
corresponding to the minimal violated sets. Secondly, one should delete unnecessary
edges in a reverse order before the solution is output. These rules should lead to app-
roximation algorithms for many more problems.

Acknowledgments The first author was supported by NSF grant 9302476-CCR. The
second author was supported by an NSF Postdoctoral Fellowship, and by the IBM
Corporation.

REFERENCES 187

REFERENCES

[AABV95] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. Improved approximation guaran-
tees for minimum-weight k-trees and prize-collecting salesmen. In Proceedings of
the 27th Annual ACM Symposium on Theory of Computing, pages 277–283, 1995.

[AG94] M. Aggarwal and N. Garg. A scaling technique for better network design. In Pro-
ceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
233–240, 1994.

[AKR95] A. Agrawal, P. Klein, and R. Ravi. When trees collide: An approximation algo-
rithm for the generalized Steiner problem on networks. SIAM Journal on Computing,
24:440–456, 1995.

[Bal89] E. Balas. The prize collecting traveling salesman problem. Networks, 19:621–636,
1989.

[BCC+94] A. Blum, P. Chalasani, D. Coppersmith, W. Pulleyblank, P. Raghavan, and M. Sudan.
The minimum latency problem. In Proceedings of the 26th ACM Symposium on
Theory of Computing, pages 163–171, 1994.

[BGSLW93] D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. Williamson. A note on the
prize collecting traveling salesman problem. Mathematical Programming, 59:413–
420, 1993.

[Bir46] G. Birkhoff. Tres observaciones sobre el algebra lineal. Revista Facultad de Ciencias
Exactas, Puras y Aplicadas Universidad Nacional de Tucuman, Serie A, 5:147–151,
1946.

[BMMN94] M. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser. Network Models.
Handbooks in Operations Research and Management Science. North-Holland, 1994.

[BMW89] A. Balakrishnan, T. L. Magnanti, and R. Wong. A dual-ascent procedure for large-
scale uncapacitated network design. Operations Research, 37:716–740, 1989.

[BRV95] A. Blum, R. Ravi, and S. Vempala. A constant-factor approximation algorithm for
the k-MST problem. Manuscript, 1995.

[BT95] D. Bertsimas and C.-P. Teo. From valid inequalities to heuristics: A unified view of
primal-dual approximation algorithms in covering problems. In Proceedings of the
6th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 102–111, 1995.

[BYE81] R. Bar-Yehuda and S. Even. A linear time approximation algorithm for the weighted
vertex cover problem. Journal of Algorithms, 2:198–203, 1981.

[CFN77] G. Cornuéjols, M. L. Fisher, and G. L. Nemhauser. Location of bank accounts to op-
timize float: An analytical study of exact and approximate algorithms. Management
Science, 23:789–810, 1977.

[Chr76] N. Christofides. Worst case analysis of a new heuristic for the traveling sales-
man problem. Report 388, Graduate School of Industrial Administration, Carnegie-
Mellon University, Pittsburgh, PA, 1976.

[Chv79] V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of Oper-
ations Research, 4:233–235, 1979.

[Chv83] V. Chvátal. Linear Programming. W.H. Freeman and Company, New York, NY,
1983.

[CP80] G. Cornuéjols and W. Pulleyblank. A matching problem with side constraints. Dis-
crete Mathematics, 29:135–159, 1980.

188 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

[DFF56] G. B. Dantzig, L. R. Ford, and D. R. Fulkerson. A primal-dual algorithm for linear
programs. In H. W. Kuhn and A. W. Tucker, editors, Linear Inequalities and Related
Systems, pages 171–181. Princeton University Press, Princeton, NJ, 1956.

[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[Edm65] J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal of
Research of the National Bureau of Standards B, 69B:125–130, 1965.

[Edm67] J. Edmonds. Optimum branchings. Journal of Research of the National Bureau of
Standards B, 71B:233–240, 1967.

[Ege31] E. Egerváry. Matrixok kombinatorius tujajdonságairól. Matematikai és Fizikai
Lapok, 38:16–28, 1931.

[EJ70] J. Edmonds and E. Johnson. Matching: A well-solved class of integer linear pro-
grams. In R. Guy, H. Hanani, N. Sauer, and J. Schonheim, editors, Proceedings of
the Calgary International Conference on Combinatorial Structures and Their Appli-
cations, pages 82–92. Gordon and Breach, 1970.

[EJ73] J. Edmonds and E. L. Johnson. Matching, Euler tours and the Chinese postman.
Mathematical Programming, 5:88–124, 1973.

[Erl78] D. Erlenkotter. A dual-based procedure fo uncapacitated facility location. Opera-
tions Research, 26:992–1009, 1978.

[FF56] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal
of Mathematics, 8:399–404, 1956.

[Gab90] H. N. Gabow. Data structures for weighted matching and nearest common ancestors
with linking. In Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 434–443, 1990.

[GGP+94] M. Goemans, A. Goldberg, S. Plotkin, D. Shmoys, E. Tardos, and D. Williamson.
Improved approximation algorithms for network design problems. In Proceedings
of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 223–232,
1994.

[GGW93] H. N. Gabow, M. X. Goemans, and D. P. Williamson. An efficient approximation
algorithm for the survivable network design problem. In Proceedings of the Third
MPS Conference on Integer Programming and Combinatorial Optimization, pages
57–74, 1993.

[GH61] R. Gomory and T. Hu. Multi-terminal network flows. SIAM Journal of Applied
Mathematics, 9:551–570, 1961.

[GK96] M. X. Goemans and J. M. Kleinberg. Improved approximation algorithms for the
minimum latency problem. To appear in the Proceedings of the Seventh Annual
Symposium on Discrete Algorithms, 1996.

[GLS88] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial
Optimization. Springer-Verlag, Berlin, 1988.

[GMS94] M. Grötschel, C. L. Monma, and M. Stoer. Design of survivable networks. In Hand-
book in Operations Research and Management Science. North-Holland, 1994.

[GT91] H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for general graph-matching
problems. Journal of the ACM, 38:815–853, 1991.

[GVY93a] N. Garg, V. Vazirani, and M. Yannakakis. Primal-dual approximation algorithms
for integral flow and multicut in trees, with applications to matching and set cover.

REFERENCES 189

In Proceedings of the 20th International Colloquium on Automata, Languages and
Programming, 1993. To appear in Algorithmica under the title ”Primal-dual appro-
ximation algorithms for integral flow and multicut in trees”.

[GVY93b] N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi)cut
theorems and their applications. In Proceedings of the 25th Annual ACM Symposium
on Theory of Computing, pages 698–707, 1993.

[GW94a] M. X. Goemans and D. P. Williamson. .878-approximation algorithms for MAX
CUT and MAX 2SAT. In Proceedings of the 26th Annual ACM Symposium on The-
ory of Computing, pages 422–431, 1994.

[GW94b] M. X. Goemans and D. P. Williamson. Approximating minimum-cost graph prob-
lems with spanning tree edges. Operations Research Letters, 16:183–189, 1994.

[GW95a] M. X. Goemans and D. P. Williamson. A general approximation technique for con-
strained forest problems. SIAM Journal on Computing, 24:296–317, 1995.

[GW95b] M. X. Goemans and D. P. Williamson. Primal-dual approximation algorithms for
feedback problems in planar graphs. Manuscript, 1995.

[Hoc82] D. S. Hochbaum. Approximation algorithms for the set covering and vertex cover
problems. SIAM Journal on Computing, 11:555–556, 1982.

[IKK93] C. Imielińska, B. Kalantari, and L. Khachiyan. A greedy heuristic for a minimum-
weight forest problem. Operations Research Letters, 14:65–71, 1993.

[JDU+74] D. Johnson, A. Demers, J. Ullman, M. Garey, and R. Graham. Worst-case per-
formance bounds for simple one-dimensional packing problems. SIAM Journal on
Computing, 3:299–325, 1974.

[JP91] M. Jünger and W. Pulleyblank. New primal and dual matching heuristics. Research
Report 91.105, Universität zu Köln, 1991.

[Kle94] P. N. Klein. A data structure for bicategories, with application to speeding up an
approximation algorithm. Information Processing Letters, 52:303–307, 1994.

[KR93] P. Klein and R. Ravi. When cycles collapse: A general approximation technique for
constrained two-connectivity problems. In Proceedings of the Third MPS Conference
on Integer Programming and Combinatorial Optimization, pages 39–55, 1993. Also
appears as Brown University Technical Report CS-92-30.

[Kru56] J. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7:48–50, 1956.

[Kuh55] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2:83–97, 1955.

[Lap88] G. Laporte. Location-routing problems. In B. L. Golden and A. A. Assad, editors,
Vehicle routing: Methods and studies, pages 163–197. North-Holland, Amsterdam,
1988.

[LMSL92] C.-L. Li, S. T. McCormick, and D. Simchi-Levi. The point-to-point delivery and
connection problems: Complexity and algorithms. Discrete Applied Mathematics,
36:267–292, 1992.

[LNP83] G. Laporte, Y. Nobert, and P. Pelletier. Hamiltonian location problems. European
Journal of Operations Research, 12:82–89, 1983.

[Lov75] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Mathe-
matics, 13:383–390, 1975.

190 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

[MSDM96] M. Mihail, D. Shallcross, N. Dean, and M. Mostrel. A commercial application of sur-
vivable network design: ITP/INPLANS CCS network topology analyzer. To appear
in the Proceedings of the Seventh Annual Symposium on Discrete Algorithms, 1996.

[Nic66] T. Nicholson. Finding the shortest route between two points in a network. Computer
Journal, 9:275–280, 1966.

[Pla84] D. A. Plaisted. Heuristic matching for graphs satisfying the triangle inequality. Jour-
nal of Algorithms, 5:163–179, 1984.

[PS82] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, Englewood Cliffs, NJ, 1982.

[Rag94] S. Raghavan. Formulations and algorithms for network design problems with con-
nectivity requirements. PhD thesis, MIT, 1994.

[RT81] E. M. Reingold and R. E. Tarjan. On a greedy heuristic for complete matching. SIAM
Journal on Computing, 10:676–681, 1981.

[RT87] P. Raghavan and C. Thompson. Randomized rounding: a technique for provably
good algorithms and algorithmic proofs. Combinatorica, 7:365–374, 1987.

[RW95] R. Ravi and D. Williamson. An approximation algorithm for minimum-cost vertex-
connectivity problems. In Proceedings of the 6th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 332–341, 1995. To appear in Algorithmica.

[SPR80] K. J. Supowit, D. A. Plaisted, and E. M. Reingold. Heuristics for weighted perfect
matching. In Proceedings of the 12th Annual ACM Symposium on Theory of Com-
puting, pages 398–419, 1980.

[Sto92] M. Stoer. Design of Survivable Networks, volume 1531 of Lecture Notes in Mathe-
matics. Springer-Verlag, 1992.

[Str88] G. Strang. Linear Algebra and its Applications. Harcourt Brace Jovanovich, San
Diego, CA, Third edition, 1988.

[SVY92] H. Saran, V. Vazirani, and N. Young. A primal-dual approach to approximation
algorithms for network Steiner problems. In Proceedings of Indo-US Workshop on
Cooperative Research in Computer Science, pages 166–168, 1992.

[Tar75] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the
ACM, 22:215–225, 1975.

[Vai91] P. Vaidya. Personal communication, 1991.
[vN53] J. von Neumann. A certain zero-sum two-person game equivalent to the optimal

assignment problem. In H. W. Kuhn and A. W. Tucker, editors, Contributions to the
Theory of Games, II, pages 5–12. Princeton University Press, Princeton, NJ, 1953.

[Vor79] O. Vornberger. Complexity of path problems in graphs. PhD thesis, Universität-GH-
Paderborn, 1979.

[Wei94] J. Wein. Personal communcation, 1994.
[WG94] D. P. Williamson and M. X. Goemans. Computational experience with an approxi-

mation algorithm on large-scale Euclidean matching instances. In Proceedings of the
5th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 355–364, 1994.
To appear in ORSA Journal on Computing.

[WGMV95] D. P. Williamson, M. X. Goemans, M. Mihail, and V. V. Vazirani. An approximation
algorithm for general graph connectivity problems. Combinatorica, 15:435–454,
1995.

REFERENCES 191

[Wil93] D. P. Williamson. On the design of approximation algorithms for a class of graph
problems. PhD thesis, MIT, Cambridge, MA, September 1993. Also appears as Tech
Report MIT/LCS/TR-584.

[Win87] P. Winter. Steiner problem in networks: a survey. Networks, 17:129–167, 1987.
[Wol80] L. A. Wolsey. Heuristic analysis, linear programming and branch and bound. Math-

ematical Programming Study, 13:121–134, 1980.
[Won84] R. Wong. A dual ascent approach for Steiner tree problems on a directed graph.

Mathematical Programming, 28:271–287, 1984.
[Zel93] A. Zelikovsky. An 11/6-approximation algorithm for the network Steiner problem.

Algorithmica, 9:463–470, 1993.

