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Abstract

We consider the minimum cost spanning tree problem un-
der the restriction that all degrees must be at most a given

valuek. We show that we can efficiently find a spanning
tree of maximum degree at mdst 2 whose cost is at most

The goal of this paper is to prove a weaker version of
this conjecture witht + 1 replaced byk + 2; the original
conjecture remains open.

Theorem 2. The polynomial-time algorithm described in
Figure 1 returns a spanning tree of maximum degrek+-2

the cost of the optimum spanning tree of maximum degregvhose cost is at mo&!PT'(k).

at mostk. This is almost best possible.

The approach uses a sequence of simple algebraic, poly

hedral and combinatorial arguments. It illustrates many
techniques and ideas in combinatorial optimization as it
involves polyhedral characterizations, uncrossing, oiatr

intersection, and graph orientations (or packing of span-

ning trees). The result generalizes to the setting where ev-.
ery vertex has both upper and lower bounds and gives then
a spanning tree which violates the bounds by at most two
units and whose cost is at most the cost of the optimum
tree. It also gives a better understanding of the subtour

relaxation for both the symmetric and asymmetric traveling
salesman problems. The generalizatioi-talge-connected
subgraphs is briefly discussed.

1 Introduction

The Minimum Bounded Degree Spanning Tree
(MBDST) problem is given an undirected graph
G = (V,E), costsc : E — R (not necessarily non-
negative) and an integér > 2, find a spanning tree of
maximum degree at mogt and of minimum cost. For
k = 2, this is the Hamiltonian path problem. The problem
is NP-hard for any givert. We denote byOPT' (k) the

This improves upon the results of Kdnemann and Ravi
[18, 19] and of Chaudhuri et al. [3]. The latter one is cur-
rently the best known result and produces in polynomial
time a tree of cost at mog? PT'(k) whose maximum de-
gree isbk + 2(b + 1) log, n whereb > 1. Chaudhuri et
al. also give aquasi-polynomiatime algorithm produc-
ing a tree of cost at mogP PT'(k) and of maximum de-
greek + O(logn/ loglog n). Ravi and Singh [24] consider
a slight variant of MBDST in which the goal is to mini-
mize the maximum degreg" of a minimumspanning tree
in a weighted graph. They describe an algorithm to find a
minimum spanning tree of degree at mést+ p wherep
is the number of distinct costs in any minimum spanning
tree. Our result actually implies that we can find a mini-
mum spanning tree of maximum degree+ 2. We should
also point out that Furer and Raghavachari [9] consider the
version without costs and provide an algorithm returning a
tree of maximum degree at most+ 1 in a graph with a
tree of maximum degrek; a different algorithm (growing
such a tree starting from a vertex) was also discovered by
the author in 1991 but never published.

As Theorem 2 is surprisingly simple to present and ana-
lyze, we sketch it in this introduction.

Without the degree restrictions, the classical minimum
spanning tree problem (MST) is the prototypical problem

minimum cost of any spanning tree of maximum degree Which the greedy algorithm solves exactly in polynomial

< k.
In 1991, we formulated the conjecture:

Conjecture 1. In polynomial time, one can find a span-
ning tree of maximum degree k + 1 whose cost is at most
OPT(k), the minimum cost of any spanning tree of maxi-
mum degree k.
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time. More generally, the greedy algorithm allows to find
a minimum-cost baga maximum cardinality independent
set)in any matroidM = (E,Z) with ground setF and
family of independent set<. In the case of the MST, the
corresponding matroid is the graphic matrdif{ G) whose
independent sets are all forestsGhand whose bases are

1For M to be a matroidZ needs to be suchthat (@ € Z, B C A
imply that B € 7 and (ii) A, B € Z, |A| > |B| imply that there exists
e€ A\ BwithBU {e} € T.



all spanning trees /. One of the fundamental results in
combinatorial optimization is that one can even optimize
efficiently over the sets which are independentvio ma-
troids (Edmonds [8] and Lawler [21]), or over the common

bases of them, or over the bases of one matroid and the in-

dependent sets of the other. This is knowmreroid inter-
section

If the edge sets of maximum degree at mbstere the
independent sets of a matroid, we could solve MBDST in
polynomial time by matroid intersection, but of course they
are not. To attack the conjecture, we cotdthx the prob-
lem and try to construct a matroitd’ whose independent
sets contain all subgraphs of maximum degree at imast

also other sets (whose maximum degree is not too large)mplies that the cost of the trég, ¢(T") =

main step is then to construct a matrditt with ground set
E* with the following properties:

(i). z* canbe seen as a convex combination of independent
sets inM*,

(ii). everyindependentset i * has maximum degrée+

Using matroid intersection, we can find in polynomial time
a minimum cost spanning trééwhich is also independent
in M*. By (ii), this means thaf” has maximum degree
< k+ 2. Furthermore, from the polyhedral characterization
of matroid intersection (Edmonds [6]), one can see that (i)

> ect Ces IS UP-

and then use matroid intersection to find a spanning tree ofper bounded by.z}, which is a lower bound o®PT (k).

minimum cost which is also independent far’. However,
this “matroid relaxation” would fail to prove Conjecture 1
as one can see that, for a general gréghany such ma-
troid M’ would also contain independent sets of maximum
degree at leastk/2 (and probably even higher).

1. Solve the LP relaxatiofiL P) and obtain an ex
treme pointc* with supporte™*.

2. Orient E* into a directed grapl* with maxi-
mum indegree at mos&t

3. Find a spanning treg of minimum cost such that
ITN6Y.(v)| < kforallveV,

Figure 1. The algorithm for Minimum

Bounded Degree Spanning Trees.

Instead, our approach proceeds as follows (see Figur
1). We start by formulating a classical linear programming
relaxation for the MBDST problem:

Min  ¢(x) = Z CeTe
subject to:
z(E(S)) <|S| -1 ScV (1)
(LP) w(E(V)) =[V[-1 )
( (v)) <k veV (3)
e >0 ec€ B, (4)

wherex(F) = > .pz., 6(v) are the edges incident to
v and E(S) are the edges whose endpoints are botl.in

Constraints (1), (2) and (4) form the spanning tree polytope

(Edmonds [7]), the convex hull of all spanning treesdn

We solve the relaxation (see Section 2 for details) to obtain

one of its extreme points* with ¢(z*) < OPT(k). Let
E* = {e € E : zf > 0} denote the support af*. The

€

The core of the approach is therefore in deriving the ma-
troid M *, which depends on the extreme pairitor, more
precisely, onE*. For this, we first study properties of any
extreme point. From standard uncrosgirsgguments as
applied to relaxations of many combinatorial optimization
problems (see e.g. [4, 1] for the TSP), one can easily derive
that|E*| < 2n — 1 wheren = |V|. One of the contri-
butions of this paper is to observe that a simple algebraic
argument implies that, for any sét C V, we have that
|E*(U)| < 2|U|—1, whereE*(U) denotes the set of edges
entirely withinU. We can even improve this slightly to

(5)

This property allows us to derive that the supp#art of

z* can be oriented into1* such that the indegree iA*

of any vertex is at most 2. Indeed, by a classical result of
Hakimi [13], such an orientation exists if and only if, for
everyU C V, one hagE*(U)| < 2|U] (this follows eas-

ily from the max flow/min cut theorem or matching theory;

|E*(U) < 2|U| —3foranyU C V.

also there is nothing special about the number '2’, it can
be replaced by). The existence of the orientatioti* can
also be derived by realizing that* can be partitioned into

2 forests, and orienting each of them with all indegrees at
most 1; indeed, Nash-Williams [23] shows that the graph
(V, E*) can be partitioned into 2 forests (regpforests) if
and only if [E*(U)| < 2(|U| — 1) for any set/ C V (resp.
|E*(U)| < p(JU] —1)). (As an aside, the slightly stronger
condition (5) is precisely the independence condition in 2-
dimensional rigidity matroids, see Laman [20].)

Once we have the orientatiod* of £* such that the
indegree of every vertex is at most 2, the construction of
the matroidM* = (E*,Z*) is rather straightforward. We
define it as gartition matroid with independent sets:

I*={F CE*:|[FN&h(v)| <kforallve V},

2Uncrossing is a fundamental technique in combinatoriaihtipation
and many results follow from it, including matroid interten (and many
generalizations of it) or the Lucchesi-Younger theorem.



wheres . (v) denotes the set of edges Bf leavingv in
the orientationd*. This is a partition matroid as the sets
§74.(v) are disjoint. Observe that (ii) follows from the fact
that A* has indegrees at most 2, while (i) follows from the
fact that the convex hull of independent sets of the partitio
matroid M * is simply given by{z : z(57. (v)) < k for all

v € V,z. > 0forall e € E*} and therefore contains in the
set of solutions to (3) and (4).

othertight setsS N T andS U T. A laminarfamily £ is a
family of sets with no pair ofntersectingsets, i.e. for any
two S,T € LwehavethaS CTorT C SorSNT = 0.
Standard uncrossing arguments (see Hurkens et al. [16],
Cornugjols et al. [4], Jain [17], Melkonian and Tardos [22]
for details and illustrations) then show that we can obtain a
laminar subfamily £ of the family 7 and a subset’ of W
such that the systemz = b consisting of

The remainder of this extended abstract is structured as
follows. In Section 2, we provide details of our algorithm, { fCEéE((f)))
X v

proof of Theorem 2 and several remarks. In Section 3, we

generalize our result to the setting in which every vertex is of full rank (and hence uniquely defines). Observe that
jno singleton sets belong thas the corresponding equalities

re vacuous. The rows of arex(E(S)) for S € £ and

x(0(v)) for v € T', all restricted to the suppoB*.

For completeness, Jain’s argument is included below.

rafamilyT C 2V, let span(T) denote the vector space

spanned by (E(S)) for S e 7.

=18 -1
=k

SeL
veT

shows that we can relax these bounds by 2 units and obtai
a spanning tree of cost no worse than optimum. In Sec-
tion 4, we conjecture a property of extreme points of the
relaxation that would imply Conjecture 1. The next two Fo
sections shed some new light on the Held-Karp relaxation
for both the symmetric and asymmetric traveling salesman
problem; these results may prove invaluable in obtaining Theorem 4 ([17]). If £ is a maximal laminar subfamily of
improved approximation algorithms for these problems. Fi- F thenspan(L) = span(F).

nally, the last section deals with the generalization-to

edge-connectivity. Proof. Let £ be a maximal laminar subfamily ¢f and as-

sume thaty(FE(S)) ¢ span(L) for someS € F. If there
are several such sefs choose one that intersects as few
sets of £ as possible. Supposg intersects somé& € L

. , (otherwiseS can be added td, contradicting maximality).
The Uncrossing of Tight Sets. Let =™ be an extreme  rom | emma 3, we have th&tN T andS U T are also inF
pointto (1)—(4). By definitionz* is uniquely determinedby ;4 thaty(E(S)) + x(E(T)) = x(E(SUT)) + x(E(S N
Fhetight constraints i_n the system, those satisfied at equaI-T))_ This means that eithe(E(S U T)) ¢ spah(/l) or
ities. For any equality} = 0, we can remove the edge X(E(SNT)) ¢ span(L). In either case, we have a contra-

e and focus on the remaining suppdst. Let 7 = {S : diction asS U T andS N T intersect fewer sets from (as
z*(E(S)) = |S| — 1} refer to the tight contraints among  , ig laminar). O

(1)-(2), and letW = {v € V : 2*(§(v)) = k} refer to
the tight constraints among (3). For any getC E, let
x(F) € RIFl denote the characteristic vector Bf

Lemma3. If S,T € FandSNT # () thenSNT andSUT
are both inF, and furthermorey(E(S)) + x(E(T)) =
X(ESUT))+x(E(SNT)).

Proof. As S NT # (), we have that:

S| —1+4+|T)—1 [SUT|—1+|SNT|—1
Z*(E(SUT))+z"(E(SNT))
" (E(S)) + 2" (E(T))

IS| = 1+[T| -1,

2 Main result, Details and Proofs

Sizeof aLaminar Family. A laminar family (without the
empty set) on a ground sét of sizen has cardinality at
most2n —1 (by induction orn, and summing over the max-
imal proper subsets df in the family). Furthermore, the
inductive argument shows that this bound is attained only if
bothU and two complementary setsandU \ S are in the
family; S andU \ S are the two maximal proper subsets of
U in the family. If the laminar family has no singleton sets
then the maximum cardinality of such a familyris— 1.

>
>

Everywhere Sparse. The classical argument at this point

is to observe thatE*| = |£| + |T| and since a laminar
and therefore we have equality throughout. This implies family £ with no singleton sets has at mast- 1 sets, we
thatS U T andS N T are also tight and furthermore that have that E*| = |£|+ |T| < n—14n = 2n— 1 and
there are no edgesbetweenS \ 7" andT \ S with 2 > 0. thus is rather sparse. The novelty here is to use a simple
This shows the linear dependeng@Z(S)) + x(E(T)) = algebraic argument to show thamy induced subgraphf
X(ESUT))+x(E(SNT)). O E* is sparse.

Lemma 3 show that ifS and T intersect(i.e. S\ T, Theorem 5. For any setU C V, we have|lE*(U)| <
T\ S andS N T are non-empty) then one can derive two 2|U| — 1.



Proof. Let B be the submatrix ofA consisting of all the ~ TheOrientation of E*. As discussed in the introduction,
columns ofA corresponding to edges iB*(U). SinceA Theorem 5 implies that* can be oriented into the directed
is of full rank, we have thatank(B) = |E*(U)|. We will graph(V, A*) such that the indegree of every vertex4An
now get an upper bound on the (row) rankidby comput- is at most 2. This follows from:

ing the number odistinct non-zergows of B.

Theorem 7 (Hakimi [13]). An undirected graphG =
(V, E) can be oriented into a directed graffv, A) with
indegree of vertex at mosti(v) for everyv € V if and
only if [E*(U)| < >,cpyi(v) forall U C V.

¢ Rows of B corresponding to verticase T are identi-
cally 0ifv ¢ U asé(v) N E*(U) = 0. Thus only|U]|
rows of B corresponding to vertices ifi are non-zero.

e Rows of B corresponding to setS € £ depend only
onSNU (@asE*(U)N E*(S) = E*(SNU)) and This orientation result can be easily derived from
furthermore are identically 0 ifS N U| < 1. Thus the Konig's Theorem for bipartite matchings (in the bipartite
number ofdistinct, non-zergows of B corresponding  graph with £ as one side of the bipartition(v) copies of
to setsS € L is upper bounded by the cardinality of vertexv on the other side, and edges betwéenw) € E
Ly={SNU:8€eLand|SNU|>2}. AsLy is and every copy of, andv), from the max flow/min cut theo-
a laminar family o2¥ with no singleton sets, we have rem or from matroid intersection. Theorem 6 and Hakimi's
that|Ly| < |U| - 1. result actually show that we could choose three vertices

Over both types of rows, we get that the total number of % © andc and impose that they have indegree at most 1
distinct non-zero rows is upper bounded|by + |U| — 1 = (¢(-) = 1) while all the other vertices have indegree at most
2.

2|U| — 1, proving the result. ] . )
There are alternate ways to find the orientation. One

This result can be slightly improved, although this is not s presented now and another one at the end of this sec-

necessary for deriving Theorem 2. tion. Theorem 6 implies that* can be partitioned into two
Theorem 6. For any setU C V, we have|E*(U)| < forests by Nash-Williams’ theorem [23] or [25, Chapter 51]
2|U| - 3. B B (or, once again, by matroid intersection!). We can then ori-

ent each forest to insure that every indegree in any of these
two forests is at most 1, resulting in an orientatidh of
maximum indegree 2. (Here, we can impose that two ver-
tices have indegree 1, or one has indegree 0.)

Proof. We continue the proof of Theorem 5 and use a better
bound for the rank than simply the number of distinct non-
zero rows. First observe that in order to hag& (U)| =
2|U|—-1o0r2|U|—-2 we needto have either (£y| = |U|-1
and|TNU| > |U|—1,or (i) |Ly| > |U|—2andU C T.
There are two linear relations we exploit. First, The Matroid M*. We define the independence system
2 (E*(U)) = Z (6(v) N E*(U)). M* = (E*,I*) by the following independent sets:

vev T*={F CE*:|[FN&.(v)| < kforallve V},
Secondly, for any set C U, we have that
X(E*(U)) + x(E*(S)) — x(E*(U\ S)) where&} (v) denotes the set of (undirected) edgedf
B . leavingw in the orientationd*. As the setg}. (v) are dis-
o st(d(v) NE(U)). (6) joint, this defines a partition matroid. As every vertex has
ve

_ o indegree at most 2 id*, we obtain the following.
This means that we lose one unitin our bound on the rank

whenever all the sets in one of these relations are present. _emma8. Let F' € 7* be an independent set i *. Then
In case (ii), it means that sindé C T', we lose one unit  every vertex has degree at mast 2 in F.
in the rank whenevell € £ and a second unit whenever

two complementary setS andU \ S are also inly. As a If we use an orientationl* in which the indegree of 3
laminar family of2V with no singleton sets, withoudf and vertices is constrained to be at most 1 (as is possible by
without two complementary sets has size at mbst— 3, Hakimi's result) then we obtain that these three vertices
we obtain the claim in case (ii). have degree at most+ 1 in any independent sét € 7*.

On the other hand, for case (u| = |U| — 1 implies Our algorithm uses matroid intersection to find in

thatU € Ly andthereisaset € Ly withU\S € Ly. (6)  polynomial-time (see ’Algorithmic Considerations’ below
implies that at mostS| — 1 of x(6(v) N E*(U)) forv € S for details) the minimmum cost s@twhich is both a base
are linearly independent with alf(E*(T')) for T € Ly, of the graphic matroid/((V, E*)) defined onE* and an

and similarly forS replaced byJ \ S'in (6). This decreases independent set id/*. T is therefore a spanning tree of
the bound on the rank by two units. O maximum degree k + 2.



Analysis. We are now ready to prove Theorem 2. For any
matroid M = (FE,7), the independent set polytopg M)

Proof. Q(k) is a relaxation ofP(k), and henceP(k) C
Q (k). We have shown that for an extreme paifitof Q(k),

is defined as the convex hull of the characteristic vectors ofwe have that* € B(M(V, E*)) N P(M*) C P(k + 2),

independent sets and is given by [7, 6]:

PM)={zeRE: z(F)<r(F)

Te >0

FCFE
e € E},

wherer(F) = max{|U| : U € Z andU C F} is the
rank function of the matroid. Similarly, the convex hull
of characteristic vectors of the basesdf, or base poly-
tope B(M), is given by the face ofP(M) induced by
z(E) <r(E),ie.B(M)=PM)N{z: z(E)=r(E)}.
For example, thespanning tree polytoper base polytope
B(M(V,E*)) of the graphic matroid\/(V, E*) can be
seen to be given by (1), (2) and (4) (withrestricted taE™).
Similarly, the independent set polytop¥ M *) of matroid
M* is given by

PM*)={x: W) <k veV

ec E*.

z(64. 7

ze >0

Observe that* belongs to botB (M (V, E*)) andP(M*)
(as (7) is implied by (3)).

Edmonds [6] shows that the convex hull of independent
sets common to two matroids is precisely the intersection

of their independent set polytopes (and similarly if we take
the base polytopes). This implies that the convex hull of
spanning trees df* that are independent far * is defined

by B(M(V, E*)) N P(M*):

{z: z(E(S)<|S|-1 ScV
2(E(V))=1|V] -1
z(04.(v) <k veV
Te >0 e € E*}.

The characteristic vector of the spanning tféeeturned
by our algorithm is thus an optimum solution to the linear
programmin{) ,ccze : * € B(M(V,E*)) N P(M*)}.

As z* is also a feasible solution to this linear program, we
have thate(T) = > pce < ), cery < OPT(k), and
this completes our proof of Theorem 2.

Polyhedral result.
drally.

Corollary 9. LetQ(k) be the polytope defined by (1), (2),
(3) and (4), and letP?(k) be the convex hull of characteris-
tic vectors of spanning trees of maximum degree at host
Then

Our result can also be restated polyhe-

P(k) € Q(k) € P(k+2).

In other words, any convex combination of spanning

and therefor& (k) = conv({z*}) C P(k + 2). O

Algorithmic Considerations. Optimizing over (1)-(4)
can be done in polynomial time. This can be done, for ex-
ample, by using the ellipsoid algorithm as the separation
problem over (3) is clearly polynomial while the separa-
tion over the base polytope (1), (2) and (4) of the graphic
matroid can be done in strongly polynomial time (for any
matroid, not just the graphic matroid) by an algorithm of
Cunningham [5] (see also [25, Section 40.3]). An alterna-
tive is to derive a compact formaulation of the spanning tree
problem (by bidirecting edges and using a flow reformula-
tion) and using any polynomial-time algorithm for linear
programming. Yet another approach is to use Lagrangean
relaxation.

The orientation of£* with maximum degree at most 2
can be done by finding a maximum matching in a graph
with O(n) vertices wherex = |V| (as|E*| = O(n)) and
O(n) edges, and therefore can be obtaine@{n!-*) time.

For our matroid intersection, we can exploit the fact
that one of the matroids is a partition matroid. Brezovec,
Cornuéjols and Glover [2] present an algorithm for pre-
cisely this case and even specialize it when the other ma-
troid is a graphic matroid. In that setting, the complexity o
their algorithm isO(nm + n’p + np?) wherem = |E*|
andp is the number of sets defining the partition matroid;
in our case (asn O(n) andp O(n)), this gives
O(n3). We can also exploit the fact that our matroids (both
the graphic and the partition matroids) are linear and use
an efficient matroid intersection algorithm for linear ma-
troids due to Gabow and Xu [10]. Their running time is
O(mr+" log(nW)) wherer is the sum of the ranks of the
matroid and¥ is an upper bound on the largest cost; in our
setting, this give® (n? 7" log(nW)). If W is small, we can
also use arecent algorithm of Harvey [14] for the linear case
whose running time i® (mn!-38W), or O(n?3*W) in our
case.

The use of a weighted matroid intersection algorithm is
actually not completely necessary. Indeed, we can simply
return an extreme point d3(M(V, E*)) N P(M*) whose
cost is at mosd __ c.x;. This can be done by decompos-
ing z* as a convex combination of characteristic vectors
of spanning trees which are also independentfih. This
can be done in strongly polynomial time by an algorithm of
Cunningham [5].

The bottleneck for our algorithm is actually to solve the
linear program in order to obtairt. Observe, however, that

trees such that the average degree of any vertex is at mospur algorithm as stated does not negdbut only needs to
k can be viewed as a convex combination of spanning treesknow E* (or a superset of it guaranteed to be orientable with

each having maximum degreek + 2.

maximum indegree 2). We would like to raise the question



of whether a fast “combinatorial” algorithm can be designed implies thatE; must be a forest (as there must be precisely
which only findsE* (and notz*). This is an interesting one edge irE;(S) \Urcs,recE1(T) for everyS € £) and

open question. that (i) implies that every connected componenktkfis ei-
ther a tree or a tree plus an edge (i.e. a unique cycle with
Theorientationrevisited. The orientationd* of E* with ~ trees attached to it). Thus, both andE; can be oriented

all indegrees at most 2 can also be obtained purely alge-such that the indegree of every vertex is 1, and this gives

braically (instead of using for example bipartite matclsing ~ @n orientationA* of E* with indegrees at most 2 for every

This is sketched below for completeness. This is not nec-Vertex.

essary for the bounded degree spanning tree result and can

therefore be skipped. Maximum degree of an MST. Ravi and Singh [24] con-
For a matrixA, row index setl, column index sef/, we sider the problem of minimizing the maximum degree of a

denote byA[I, J] the submatrix induced by the rows in minimum spanning tree (MST) in a weighted graph. Our

and the columns id. approach also applies to their setting. &t be the cost of

an optimum spanning tree (of any maximum degree). Con-

sider the optimum face of the spanning tree polytope; this

face is defined by

Lemma 10. Let A be a nonsingular matrix with row index
set and column index sét] = {1,2---,n}. Then, for

any partition{I, I, - - -, I; } of [n], there exists a partition
{J1,J2,- -+, i} of [n] such thatA[L,, J,] is nonsingular F={zeRF (1) (2),4) and Zce% — ).
forp=1,--- k. -

Proof. The result is an easy consequence of the matroid
union theorem (see [25, Corollary 42.1a]). Another ele-
mentary proof goes as follows. First, by induction, we can
assume that = 2. By the generalized Laplace expansion
(Laplace, 1772), we have that, for ahyC [n], we can ex-
pressdet(A) as:

By binary search, one can find the smallest intdger N

such that' N {z : z(6(v)) < kforallv € V} # (. Clearly

k is a lower bound on the smallest maximum degree of any

MST. Furthermore, fok = k, we know that the optimum of

the linear prograniL P) given in the introduction has value

precisely equal t&* (by definition of C*), and our algo-
Z sign(I, J) det(A[I, J]) det(A[[n]\ I, [n]\ J]), rithm given in Figure 1 outputs a tree of maximum degree

JCIT=I1] <k+2<EkE+2 gnd of cost less or equal ¥*. Thus it

outputs an MST with maximum degree at mbst+ 2.
for suitably definedsign (1, J) € {+1,—1}. Asdet(A) #
0, there must be an index sétwith det(A[I, J]) # 0 and 3 General Upper and Lower Bounds

det(A[[n] \ I, [n] \ J]) # 0, proving the lemma. O

The partition{J, J», - - -, Ji.} can be found efficiently . The approach also works for the case in which we are
as follows. Assume, by induction dp that we have an  given upper and lower bounds on the degree of every vertex
nonsingularmatrix A’ obtained fromA by replacing ev-  in the spanning tree. In the General Minimum Bounded

ery entry of columnj < [ — 1 by O except those corre- Degree Spanning Tree (GMBDST) problem, we are given
sponding to precisely one of tHg's. As the determinantof @ graphG = (V, E), costsc : E — R and degree bounds
A’ is linear as a function of the entries of colurthere v : V. — Nandl : V — N, and the goal is to find a
must be an index such that replacing every entry of col- Spanning tre€l” such thati(v) < dr(v) < wu(v) for all
umnl by 0 except those in th[& gives a nonsingu|ar ma- v € V and of minimum cost. An extension of our algorithm
trix. This completes the inductive step. The final matfix gives:

is block diagonal and its nonsingularity implies that every Theo
block A'(I,, J,] = A[lp, Jp] is nonsingular. This shows
that by simply checking linear independence, we can find a
partition{Jy, J2, - - -, Ji. } as stated in Lemma 10.

We apply Lemma 10 for the MBDST in the following
way. Consider the nonsingular matrik defining the ex-
treme pointz*. Let I; be the index set of the rows of Proof. To derive this, we first solve the LP relaxation to
corresponding to¢(E£(S)) for S € £ and; those corre-  obtain an extreme point* with supportE*.
sponding tox(d(v)) for v € T. Lemma 10 shows thdf™*
can be partitioned intd; and E, such that (i)y(E(S)) Min  c(z) =) ceme
for S € L are linearly independent and (i)(dz, (v)) for e
v € T are linearly independent. It is easy to see that (i) subject to:

rem 11. There exists a polynomial-time algorithm
which outputs a tre& satisfying the weaker degree bounds
l(v) =2 < dp(v) < u(v)+2forall v € V and of cost

at most the cost of the optimum tree satisfying the original
degree bounds.



z(E(S)) <|5]—1 ScVv The analysis follows from the description 8f Indeed,
2(B(V)) = V] -1 x* satisfies all inequalities describidg for (10), we have
that
T = ) ey @ 2 (55 () 2 27 (0(0)) — 2 2 1(v) -
>
2(0(v)) 2 I(v) ve ©) Therefore, the cost ofl’, ¢(T") is upper bounded by
ze >0 ec k.

> eck Cexp and thus by the optimum value. O

Notice that among the tight sets, we need to consider at most

one of (8) or (9) for a given vertex. So, from uncrossing 4 Towardsk + 17?

and Theorems 5 or 6, we derive that can be oriented into

A* so that every vertex indegree is at most 2 (and we could One could try to improve the degree bound frém- 2
again impose that the indegree of 3 vertices be at most 1). to £ + 1 and prove Conjecture 1. One possibility would

Now, we can find a minimum cost spanning tfBean be to prove additional properties of any extreme paiht
(V, E*) satisfying and use a different matroid in place df*. In particular,
if Conjecture 12 below was true (and the orientation could
(v) =2 < [T N3 (v)] < u(v), (10)  pe obtained efficiently!) then this would settle Conjectiire
positively.

for all v € V. For this purpose, we first define a (gen-
eralized partition) matroid/ = (E*,Z) whose bases are Conjecture 12. For any extreme point* to (1)—(4) with
precisely all subgraphs of cardinality— 1 satisfying (10). supportE*, there exists an orientatiod* of £* such that

The independent sets of our matrdifiare Z (1-z5)<1 (11)
—a¥) <
1 = {FCE*:|Fnét.(v) <u(v)forallveV €8 4. (v)
and Zmax(l(v) —2,|FNé&L(v)]) <n-—1}. forallveV.

Whenever there exists an orientation satisfying (11), we

An independent sef’ of cardinalityn — 1 satisfies can get a spanning tree of maximum degkee 1 and of

nol — |F|:Z|Fﬁét(v) cqstatmosOPT( ) by using the matroid/ = (E*,7)
with
< Zmax J—2,FNsL)<n—1  I={FCE":|FNGL ()| < [2"(6].(v))] forallv e V}.

Indeed, for anF’ € Z, we have:
with equality throughout and thus satisfies (10).

We can now find a spanning tréein (V, E*) satisfying [E' N o(v)]
(10) by finding a common base between the graphic ma- = |FNdy.(v)|+[F Nk (v)]
troid on E* and matroidM. Again, this is precisely the <165 ()] + [ (5% (0))]
problem that the algorithm of Brezovec et al. [2] applies . .o -
to, and therefore we can find @ (n?) a spanning tre& of = Z (1 —@g) + 270 (v)) + [27(52- ()]
minimum cost satisfying (10). eCd . (v)
Polyhedrally, the convex hul of characteristic vectors < 1+k+1=Fk+2,

f ing t tisfying (10) is given by:
of spanning trees satisfying (10) is given by the last inequality following from (11), (3) and/| < y+1.

z(E(S)) <|S] -1 Scv As the degreéF'Nd(v)| of v is an integer, it must be at most
z(BE(V)=|V|-1 kE+1.
P={zcRFT: (51 (v) <uv) veV .
2(05.(v) 2 1(v) =2 veV 5 Symmetric TSP and the Subtour Polytope
Te >0 eec B

The approach is quite general and applies to many other
settings where uncrossing can be applied. For example,
consider the subtour polytope of the symmetric traveling
salesman problem:

This can either be proved by using the connection to matroid
intersection discussed above (and the generalized partiti
matroid) or more simply by observing that any extreme
point of P is also an extreme point of the polytope of com-
mon independent sets to a graphic matroid and a partition x(6(S)) > 2 ScV
matroid whose independent sdfssatisfy |[F' N 67 (v)| < SUB = {a; eRIEl: 2(6(v)=2 veV }
b(v) whereb(v) is suitably chosen ifl(v) — 2, u(v)}. Ze >0 ec E



Held and Karp [11, 12] show that any point$/ B can be introduced by Held and Karp [11]. Held and Karp have de-
viewed as a convex combination bitreessuch that every  fined a 1-arborescence (sometimes called directed 1-tree) i
vertex has average degree 21Areeis a spanning tree on  a directed grapliV, A) as a directed subgraph whose undi-
V'\ {1} together with 2 edges incident to vertex 1 (for some rected counterpart is a 1-tree and with indegree equal to 1
fixed vertex 1). The family of 1-trees forms the bases of a at every vertex; so these are the common bases to two ma-
matroid M. troids, the 1-tree matroid/,, and a partition matroid/;,,.

The approach developed here leads to the following re- Held and Karp show that any solution to:
finement:

L : dt(S) >1 ScVv
Theorem 13. Any pointinSU B can be decomposed into a ig5+gv)))) -1 veV
convex combination of 1-trees, each of maximum degree 4ASUB = { z € R4 3:(5_(1))) — 25t (v)) veV
such that every vertex has average degree 2. J, >0 cc A

Again, we believe that the bound of 4 on the degree can
be replaced by a bound of 3. The proof below actually €@n be decomposed as a convex combination of 1-
shows that we can impose the degree of 3 on any 3 vertice@rborescences of average outdegree 1. Hexgnotes the
of V. arc set of our directed graglv, A).

Theorem 13 can be proved in the same way as our Similar to Theorem 5, we can prove the following prop-
MBDST result. First, any extreme point of SUB can  erties of extreme points AASUB.

be uniquely determined by Theorem 15. For any extreme point* of ASU B with sup-

x*(6(S)) =2 SecrL port A*, we have that
zr=0 e¢ E*

. . : . |A*(U)| < 3|U[ -4,
where, is a laminar family as was shown by Cornuéjols et

al. [4]. As mentioned earlier, a laminar family on a ground g, anyU C V.
set of sizen, without the entire set and without two com-
plementary sets (which would give the same equality) hasProof. If S, T are such that*(§+(S)) = z*(§(T)) = 1
at most2n — 3 sets. The same argument as in Theorem 5 with SNT # () andSUT # V thenSNT andSUT also give
(@so(S)NE*(U) =6(SNU) N E*(U)) then shows that tight cuts and furthermore there are no atasith «* > 0
B (U)| < 2|U] - 3 betweenS \ T'andT \ S (in either direction). From the
= ’ standard uncrossing argument, we then get that any extreme

foranyU C V. HenceE* can also be oriented intd* point z* with supportA* can be defined by a cross-free
such that the indegree of any vertex is at most 2. Again family C (i.e. for S,T ¢ C, eitherS C T, orT C S or
we can define a partition matroit/* whose independent SN7T = orSUT = V) of linearly independent tight cuts
setsF satisfy: [F N 6. (v)] < 2forallv € V. Instead (07 (S5)) = 1 as well azn — 1 of the balance constraints
of considering 1-trees, we can considestricted 1-tree§’ (we can discard one of the balance constraints since they are
which are defined to be independentifi. Observe that ~ notall linearly independent).
any restricted 1-tree has maximum degree at most 4. As By adding the balance constraints (6) ovee S, we
2* belongs to the matroid polytope far* (and to the base  can derive that* (67 (S)) = =*(6~(S)) and therefore (by
polytope for)M;), we have that* can be decomposedinto complementing) we can assume that none of the sefs in
a convex combination of restricted 1-trees such that everycontain a given vertex. ThusC is now alaminar familynot
vertex has degree 2 on average, proving Theorem 13. containingV” and not containing two complementary sets,

Algorithmically, we can use matroid intersection to find and therefore has cardinality at m@st — 3. This implies
arestricted 1-tree of minimum cost in polynomial time, and that|A*| < 2n —3+n —1 = 3n — 4, a slightimprovement
this shows: over the bound 08n — 2 in Vempala and Yannakakis [26].

. . : If we restrict our attention to the arcs it (U), our tight
Coroallary 14. For any instance of the symmetric traveling cut equalities again lead to row vectogss (S)) which

salesman problem, one can find in polynomial time a 1-tree are idential toy(5+(S N U)) over A*(U). Similarly for

of maximum degree 4 and O.f (.:OSt less or equalto the S’Ubtourthe balance constraints (6). Therefore, the reader can ob-
bound (and hence of the minimum cost tour).

serve that the same argument as in Theorem 5 shows that
. A*()] < 30| - 4. =
6 Asymmetric TSP
This means thatl* can be “reoriented” int@* such that
The same approach can also be applied to a classical rethe new indegree i®* is at most 3 (in addition, we have
laxation of theasymmetridraveling salesman problem also up to 4 units to play with; for example we can impose that



the indegree of 2 given vertices is at most 1). Reorienting z(6(9)) >1 ScVv
means that an ar@:,v) € A* may now becomev, u) € 2(6(v)) < k vEV
O*. This reorientation gives a way to assign each(at@) 0< 2 <_1 ccE

either tou or v but not both. We now define a new matroid -

M* whose independent sefssatisfy Let z* be an extreme point optimizing the above linear

FOSE (v) N6t <1 12 program. LetE* = {e : 0 < z} < 1} and let

| ()N o5 ()] < (12) E, = {e : z} = 1}. The uncrossing argument shows that
and |E*(U)| < 2|U| — 3 for everyU C V and thereforeb*

|[FNéd.(v)Néy.(v)] <1 (13) can be oriented intel* such that all indegrees are at most

2. (E4, however, can have many edges; in fact it will have
at least(£ — 2)n edges.)

We now define two matroids both on the ground set
E* U Ey. Matroid M; is defined as thel/2]-fold union
(see Chapters 42 and 51 in [25]) of the graphic matroid on
E*UE;. Any spanning sef’ for M; (i.e. a set containing a
base) is thereforél /2|-edge-connected. Furthermore, the
spanning set polytope [25, Corollary 40.2f] fdf,, or the
convex hull of characteristic vectors of spanning sets, can
be shown to contain*, and therefore:* dominates (com-
ponentwise) an elemept of the base polytope aff;.

Matroid M, is a partition matroid similar ta\/* for
MBDST except that we can take all @ ; its collection

Yot independent sets is given by:

for all v € V. This is again a partition matroid (withn
parts now). Observe that any extreme paihtof ASUB
belongs to the independent set polytopeldf. Therefore,
by Edmonds’ polyhedral characterization of matroid inter-
section, we know that* can be viewed as a convex combi-
nation of bases ak/;; which are also independent.id *.

Now consider such a bageof My, which is also inde-
pendent inM*. T is a (weakly) 1-tree (as a base bf;;)
when viewed as undirected, and for every vertewe have
at most 1 outgoing arc from (12), at most 1 incoming arc
from (13) and at most 3 additional arcs (incoming or outgo-
ing) from arcs iy, (v). So the total degree afis at most
5, and its indegree and outdegree are at most 4. In summar
this shows the following.

Theorem 16. Any pointinASU B can be decomposedinto 1 € E*UE1 : |[FNG 4. (v)] < k—op, (v)| forallv € V1.
a convex combination of weakly 1-trees, each having (i)
maximum indegre& 4, (ii) maximum outdegreg 4 and

(iii) maximum total degree< 5, such that every vertex has
on average indegree 1 and outdegree 1. Furthermore, we
can find in polynomial time (through matroid intersection)
a weakly 1-tree of maximum total degree 5 and maxi-
mum indegree and outdegree 4 of cost less or equal to
the Held-Karp bound obtained by optimizing owvesU B.

Any independent set fak/, has degree at most+ 2 and
furthermorer* belongs to its independent set polytope (and
so does any* < z*).

Using matroid intersection, we can find a minimum cost
baseT" of M; which is also independent inf,. Its cost
will be upper bounded by(y*) < ¢(z*), and hence by the
optimum solution. We have thus shown:

Theorem 17. In polynomial time, one can find g/2]-
7 [-edge-connectivity edge-connected subgraph of maximum degreé: + 2
whose cost is at most the cost of the optimlsedge-
The approach can also be applied to the problem of find-connected subgraph of maximum degree at rhost
ing anl-edge-connected subgraphX 2) with maximum
degree at mogt and of minimum cost. However, the results Acknowledgements
are weaker and therefore are only sketched in this section.
We should emphasize that we aret assuming the trian- I would like to thank R. Ravi and Nick Harvey for stimu-
gle inequality (_and not even assuming we hgve a,Compl’Etelating discussions about this topic, Ravi over the lastdifte
graph) or allowing multiple edges in the solution, since-oth y a5 and Nick over the last few months. | also indebted
erwise the splitting off technique of Mader can transform 1, Nick for pointing out a few references and to Joseph

any solution into one with all degrees equal & /+1 with- Cheriyan for suggesting to look at higher edge-connegtivit
outany increase in cost. We are assuming general costs, and

the restriction that an edge can be selected at most once.
A relaxation of the problem is given by the following
linear program:

Min  ¢(z) = Z CeTe

subject to:
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