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Abstract

We consider the minimum cost spanning tree problem un-
der the restriction that all degrees must be at most a given
valuek. We show that we can efficiently find a spanning
tree of maximum degree at mostk + 2 whose cost is at most
the cost of the optimum spanning tree of maximum degree
at mostk. This is almost best possible.

The approach uses a sequence of simple algebraic, poly-
hedral and combinatorial arguments. It illustrates many
techniques and ideas in combinatorial optimization as it
involves polyhedral characterizations, uncrossing, matroid
intersection, and graph orientations (or packing of span-
ning trees). The result generalizes to the setting where ev-
ery vertex has both upper and lower bounds and gives then
a spanning tree which violates the bounds by at most two
units and whose cost is at most the cost of the optimum
tree. It also gives a better understanding of the subtour
relaxation for both the symmetric and asymmetric traveling
salesman problems. The generalization tol-edge-connected
subgraphs is briefly discussed.

1 Introduction

The Minimum Bounded Degree Spanning Tree
(MBDST) problem is given an undirected graph
G = (V, E), costsc : E → R (not necessarily non-
negative) and an integerk ≥ 2, find a spanning tree of
maximum degree at mostk and of minimum cost. For
k = 2, this is the Hamiltonian path problem. The problem
is NP-hard for any givenk. We denote byOPT (k) the
minimum cost of any spanning tree of maximum degree
≤ k.

In 1991, we formulated the conjecture:

Conjecture 1. In polynomial time, one can find a span-
ning tree of maximum degree≤ k + 1 whose cost is at most
OPT (k), the minimum cost of any spanning tree of maxi-
mum degree≤ k.
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The goal of this paper is to prove a weaker version of
this conjecture withk + 1 replaced byk + 2; the original
conjecture remains open.

Theorem 2. The polynomial-time algorithm described in
Figure 1 returns a spanning tree of maximum degree≤ k+2
whose cost is at mostOPT (k).

This improves upon the results of Könemann and Ravi
[18, 19] and of Chaudhuri et al. [3]. The latter one is cur-
rently the best known result and produces in polynomial
time a tree of cost at mostOPT (k) whose maximum de-
gree isbk + 2(b + 1) logb n whereb > 1. Chaudhuri et
al. also give aquasi-polynomialtime algorithm produc-
ing a tree of cost at mostOPT (k) and of maximum de-
greek + O(log n/ log log n). Ravi and Singh [24] consider
a slight variant of MBDST in which the goal is to mini-
mize the maximum degreek∗ of a minimumspanning tree
in a weighted graph. They describe an algorithm to find a
minimum spanning tree of degree at mostk∗ + p wherep
is the number of distinct costs in any minimum spanning
tree. Our result actually implies that we can find a mini-
mum spanning tree of maximum degreek∗ + 2. We should
also point out that Fürer and Raghavachari [9] consider the
version without costs and provide an algorithm returning a
tree of maximum degree at mostk + 1 in a graph with a
tree of maximum degreek; a different algorithm (growing
such a tree starting from a vertex) was also discovered by
the author in 1991 but never published.

As Theorem 2 is surprisingly simple to present and ana-
lyze, we sketch it in this introduction.

Without the degree restrictions, the classical minimum
spanning tree problem (MST) is the prototypical problem
which the greedy algorithm solves exactly in polynomial
time. More generally, the greedy algorithm allows to find
a minimum-cost base(a maximum cardinality independent
set) in any matroidM = (E, I) with ground setE and
family of independent sets1 I. In the case of the MST, the
corresponding matroid is the graphic matroidM(G) whose
independent sets are all forests inG and whose bases are

1For M to be a matroid,I needs to be such that (i)A ∈ I, B ⊆ A

imply that B ∈ I and (ii) A, B ∈ I, |A| > |B| imply that there exists
e ∈ A \ B with B ∪ {e} ∈ I.



all spanning trees inG. One of the fundamental results in
combinatorial optimization is that one can even optimize
efficiently over the sets which are independent intwo ma-
troids (Edmonds [8] and Lawler [21]), or over the common
bases of them, or over the bases of one matroid and the in-
dependent sets of the other. This is known asmatroid inter-
section.

If the edge sets of maximum degree at mostk were the
independent sets of a matroid, we could solve MBDST in
polynomial time by matroid intersection, but of course they
are not. To attack the conjecture, we couldrelax the prob-
lem and try to construct a matroidM ′ whose independent
sets contain all subgraphs of maximum degree at mostk and
also other sets (whose maximum degree is not too large),
and then use matroid intersection to find a spanning tree of
minimum cost which is also independent forM ′. However,
this “matroid relaxation” would fail to prove Conjecture 1
as one can see that, for a general graphG, any such ma-
troid M ′ would also contain independent sets of maximum
degree at least3k/2 (and probably even higher).

1. Solve the LP relaxation(LP ) and obtain an ex-
treme pointx∗ with supportE∗.

2. OrientE∗ into a directed graphA∗ with maxi-
mum indegree at most2.

3. Find a spanning treeT of minimum cost such that
∣

∣T ∩ δ+
A∗(v)

∣

∣ ≤ k for all v ∈ V .

Figure 1. The algorithm for Minimum
Bounded Degree Spanning Trees.

Instead, our approach proceeds as follows (see Figure
1). We start by formulating a classical linear programming
relaxation for the MBDST problem:

Min c(x) =
∑

e

cexe

subject to:

x(E(S)) ≤ |S| − 1 S ⊂ V (1)

(LP ) x(E(V )) = |V | − 1 (2)

x(δ(v)) ≤ k v ∈ V (3)

xe ≥ 0 e ∈ E, (4)

wherex(F ) =
∑

e∈F xe, δ(v) are the edges incident to
v andE(S) are the edges whose endpoints are both inS.
Constraints (1), (2) and (4) form the spanning tree polytope
(Edmonds [7]), the convex hull of all spanning trees inG.
We solve the relaxation (see Section 2 for details) to obtain
one of its extreme pointsx∗ with c(x∗) ≤ OPT (k). Let
E∗ = {e ∈ E : x∗

e > 0} denote the support ofx∗. The

main step is then to construct a matroidM∗ with ground set
E∗ with the following properties:

(i). x∗ can be seen as a convex combination of independent
sets inM∗,

(ii). every independent set inM∗ has maximum degreek+
2.

Using matroid intersection, we can find in polynomial time
a minimum cost spanning treeT which is also independent
in M∗. By (ii), this means thatT has maximum degree
≤ k +2. Furthermore, from the polyhedral characterization
of matroid intersection (Edmonds [6]), one can see that (i)
implies that the cost of the treeT , c(T ) =

∑

e∈T ce, is up-
per bounded bycex

∗
e, which is a lower bound onOPT (k).

The core of the approach is therefore in deriving the ma-
troid M∗, which depends on the extreme pointx∗ or, more
precisely, onE∗. For this, we first study properties of any
extreme point. From standard uncrossing2 arguments as
applied to relaxations of many combinatorial optimization
problems (see e.g. [4, 1] for the TSP), one can easily derive
that |E∗| ≤ 2n − 1 wheren = |V |. One of the contri-
butions of this paper is to observe that a simple algebraic
argument implies that, for any setU ⊆ V , we have that
|E∗(U)| ≤ 2|U |−1, whereE∗(U) denotes the set of edges
entirely withinU . We can even improve this slightly to

|E∗(U) ≤ 2|U | − 3 for anyU ⊆ V. (5)

This property allows us to derive that the supportE∗ of
x∗ can be oriented intoA∗ such that the indegree inA∗

of any vertex is at most 2. Indeed, by a classical result of
Hakimi [13], such an orientation exists if and only if, for
everyU ⊆ V , one has|E∗(U)| ≤ 2|U | (this follows eas-
ily from the max flow/min cut theorem or matching theory;
also there is nothing special about the number ’2’, it can
be replaced byp). The existence of the orientationA∗ can
also be derived by realizing thatE∗ can be partitioned into
2 forests, and orienting each of them with all indegrees at
most 1; indeed, Nash-Williams [23] shows that the graph
(V, E∗) can be partitioned into 2 forests (resp.p forests) if
and only if|E∗(U)| ≤ 2(|U | − 1) for any setU ⊆ V (resp.
|E∗(U)| ≤ p(|U | − 1)). (As an aside, the slightly stronger
condition (5) is precisely the independence condition in 2-
dimensional rigidity matroids, see Laman [20].)

Once we have the orientationA∗ of E∗ such that the
indegree of every vertex is at most 2, the construction of
the matroidM∗ = (E∗, I∗) is rather straightforward. We
define it as apartition matroid with independent sets:

I∗ = {F ⊆ E∗ : |F ∩ δ+
A∗(v)| ≤ k for all v ∈ V },

2Uncrossing is a fundamental technique in combinatorial optimization
and many results follow from it, including matroid intersection (and many
generalizations of it) or the Lucchesi-Younger theorem.



whereδ+
A∗(v) denotes the set of edges ofE∗ leavingv in

the orientationA∗. This is a partition matroid as the sets
δ+
A∗(v) are disjoint. Observe that (ii) follows from the fact

thatA∗ has indegrees at most 2, while (i) follows from the
fact that the convex hull of independent sets of the partition
matroidM∗ is simply given by{x : x(δ+

A∗(v)) ≤ k for all
v ∈ V, xe ≥ 0 for all e ∈ E∗} and therefore contains in the
set of solutions to (3) and (4).

The remainder of this extended abstract is structured as
follows. In Section 2, we provide details of our algorithm,
proof of Theorem 2 and several remarks. In Section 3, we
generalize our result to the setting in which every vertex
has an upper and a lower bound on its degree; Theorem 11
shows that we can relax these bounds by 2 units and obtain
a spanning tree of cost no worse than optimum. In Sec-
tion 4, we conjecture a property of extreme points of the
relaxation that would imply Conjecture 1. The next two
sections shed some new light on the Held-Karp relaxation
for both the symmetric and asymmetric traveling salesman
problem; these results may prove invaluable in obtaining
improved approximation algorithms for these problems. Fi-
nally, the last section deals with the generalization tol-
edge-connectivity.

2 Main result, Details and Proofs

The Uncrossing of Tight Sets. Let x∗ be an extreme
point to (1)–(4). By definition,x∗ is uniquely determined by
the tight constraints in the system, those satisfied at equal-
ities. For any equalityx∗

e = 0, we can remove the edge
e and focus on the remaining supportE∗. Let F = {S :
x∗(E(S)) = |S| − 1} refer to the tight contraints among
(1)-(2), and letW = {v ∈ V : x∗(δ(v)) = k} refer to
the tight constraints among (3). For any setF ⊆ E, let
χ(F ) ∈ R

|E| denote the characteristic vector ofF .

Lemma 3. If S, T ∈ F andS∩T 6= ∅ thenS∩T andS∪T
are both inF , and furthermoreχ(E(S)) + χ(E(T )) =
χ(E(S ∪ T )) + χ(E(S ∩ T )).

Proof. As S ∩ T 6= ∅, we have that:

|S| − 1 + |T | − 1 = |S ∪ T | − 1 + |S ∩ T | − 1

≥ x∗(E(S ∪ T )) + x∗(E(S ∩ T ))

≥ x∗(E(S)) + x∗(E(T ))

= |S| − 1 + |T | − 1,

and therefore we have equality throughout. This implies
that S ∪ T andS ∩ T are also tight and furthermore that
there are no edgese betweenS \ T andT \ S with x∗

e > 0.
This shows the linear dependenceχ(E(S)) + χ(E(T )) =
χ(E(S ∪ T )) + χ(E(S ∩ T )).

Lemma 3 show that ifS and T intersect(i.e. S \ T ,
T \ S andS ∩ T are non-empty) then one can derive two

other tight setsS ∩ T andS ∪ T . A laminar family L is a
family of sets with no pair ofintersectingsets, i.e. for any
two S, T ∈ L we have thatS ⊆ T or T ⊆ S or S ∩ T = ∅.
Standard uncrossing arguments (see Hurkens et al. [16],
Cornuéjols et al. [4], Jain [17], Melkonian and Tardos [22]
for details and illustrations) then show that we can obtain a
laminar subfamilyL of the familyF and a subsetT of W
such that the systemAx = b consisting of

{

x(E(S)) = |S| − 1 S ∈ L
x(δ(v)) = k v ∈ T

is of full rank (and hence uniquely definesx∗). Observe that
no singleton sets belong toL as the corresponding equalities
are vacuous. The rows ofA areχ(E(S)) for S ∈ L and
χ(δ(v)) for v ∈ T , all restricted to the supportE∗.

For completeness, Jain’s argument is included below.
For a familyT ⊆ 2V , let span(T ) denote the vector space
spanned byχ(E(S)) for S ∈ T .

Theorem 4 ([17]). If L is a maximal laminar subfamily of
F thenspan(L) = span(F).

Proof. Let L be a maximal laminar subfamily ofF and as-
sume thatχ(E(S)) /∈ span(L) for someS ∈ F . If there
are several such setsS, choose one that intersects as few
sets ofL as possible. SupposeS intersects someT ∈ L
(otherwiseS can be added toL, contradicting maximality).
From Lemma 3, we have thatS∩T andS∪T are also inF
and thatχ(E(S)) + χ(E(T )) = χ(E(S ∪ T )) + χ(E(S ∩
T )). This means that eitherχ(E(S ∪ T )) /∈ span(L) or
χ(E(S ∩ T )) /∈ span(L). In either case, we have a contra-
diction asS ∪ T andS ∩ T intersect fewer sets fromL (as
L is laminar).

Size of a Laminar Family. A laminar family (without the
empty set) on a ground setU of sizen has cardinality at
most2n−1 (by induction onn, and summing over the max-
imal proper subsets ofU in the family). Furthermore, the
inductive argument shows that this bound is attained only if
bothU and two complementary setsS andU \ S are in the
family; S andU \ S are the two maximal proper subsets of
U in the family. If the laminar family has no singleton sets
then the maximum cardinality of such a family isn − 1.

Everywhere Sparse. The classical argument at this point
is to observe that|E∗| = |L| + |T | and since a laminar
family L with no singleton sets has at mostn − 1 sets, we
have that|E∗| = |L| + |T | ≤ n − 1 + n = 2n − 1 and
thus is rather sparse. The novelty here is to use a simple
algebraic argument to show thatany induced subgraphof
E∗ is sparse.

Theorem 5. For any setU ⊆ V , we have|E∗(U)| ≤
2|U | − 1.



Proof. Let B be the submatrix ofA consisting of all the
columns ofA corresponding to edges inE∗(U). SinceA
is of full rank, we have thatrank(B) = |E∗(U)|. We will
now get an upper bound on the (row) rank ofB by comput-
ing the number ofdistinct non-zerorows ofB.

• Rows ofB corresponding to verticesv ∈ T are identi-
cally 0 if v /∈ U asδ(v) ∩ E∗(U) = ∅. Thus only|U |
rows ofB corresponding to vertices inT are non-zero.

• Rows ofB corresponding to setsS ∈ L depend only
on S ∩ U (as E∗(U) ∩ E∗(S) = E∗(S ∩ U)) and
furthermore are identically 0 if|S ∩ U | ≤ 1. Thus the
number ofdistinct, non-zerorows ofB corresponding
to setsS ∈ L is upper bounded by the cardinality of
LU = {S ∩ U : S ∈ L and|S ∩ U | ≥ 2}. As LU is
a laminar family of2U with no singleton sets, we have
that|LU | ≤ |U | − 1.

Over both types of rows, we get that the total number of
distinct non-zero rows is upper bounded by|U |+ |U |−1 =
2|U | − 1, proving the result.

This result can be slightly improved, although this is not
necessary for deriving Theorem 2.

Theorem 6. For any setU ⊆ V , we have|E∗(U)| ≤
2|U | − 3.

Proof. We continue the proof of Theorem 5 and use a better
bound for the rank than simply the number of distinct non-
zero rows. First observe that in order to have|E∗(U)| =
2|U |−1 or2|U |−2 we need to have either (i)|LU | = |U |−1
and|T ∩ U | ≥ |U | − 1, or (ii) |LU | ≥ |U | − 2 andU ⊆ T .

There are two linear relations we exploit. First,

2χ(E∗(U)) =
∑

v∈U

χ(δ(v) ∩ E∗(U)).

Secondly, for any setS ⊂ U , we have that

χ(E∗(U)) + χ(E∗(S)) − χ(E∗(U \ S))

=
∑

v∈S

χ(δ(v) ∩ E∗(U)). (6)

This means that we lose one unit in our bound on the rank
whenever all the sets in one of these relations are present.

In case (ii), it means that sinceU ⊆ T , we lose one unit
in the rank wheneverU ∈ LU and a second unit whenever
two complementary setsS andU \ S are also inLU . As a
laminar family of2U with no singleton sets, withoutU and
without two complementary sets has size at most|U | − 3,
we obtain the claim in case (ii).

On the other hand, for case (i),|LU | = |U | − 1 implies
thatU ∈ LU and there is a setS ∈ LU with U\S ∈ LU . (6)
implies that at most|S| − 1 of χ(δ(v) ∩ E∗(U)) for v ∈ S
are linearly independent with allχ(E∗(T )) for T ∈ LU ,
and similarly forS replaced byU \S in (6). This decreases
the bound on the rank by two units.

The Orientation of E∗. As discussed in the introduction,
Theorem 5 implies thatE∗ can be oriented into the directed
graph(V, A∗) such that the indegree of every vertex inA∗

is at most 2. This follows from:

Theorem 7 (Hakimi [13]). An undirected graphG =
(V, E) can be oriented into a directed graph(V, A) with
indegree of vertexv at mosti(v) for everyv ∈ V if and
only if |E∗(U)| ≤

∑

i∈U i(v) for all U ⊆ V .

This orientation result can be easily derived from
König’s Theorem for bipartite matchings (in the bipartite
graph withE as one side of the bipartition,i(v) copies of
vertexv on the other side, and edges between(u, v) ∈ E
and every copy ofu andv), from the max flow/min cut theo-
rem or from matroid intersection. Theorem 6 and Hakimi’s
result actually show that we could choose three vertices
a, b and c and impose that they have indegree at most 1
(i(·) = 1) while all the other vertices have indegree at most
2.

There are alternate ways to find the orientation. One
is presented now and another one at the end of this sec-
tion. Theorem 6 implies thatE∗ can be partitioned into two
forests by Nash-Williams’ theorem [23] or [25, Chapter 51]
(or, once again, by matroid intersection!). We can then ori-
ent each forest to insure that every indegree in any of these
two forests is at most 1, resulting in an orientationA∗ of
maximum indegree 2. (Here, we can impose that two ver-
tices have indegree 1, or one has indegree 0.)

The Matroid M∗. We define the independence system
M∗ = (E∗, I∗) by the following independent sets:

I∗ = {F ⊆ E∗ : |F ∩ δ+
A∗(v)| ≤ k for all v ∈ V },

whereδ+
A∗(v) denotes the set of (undirected) edges ofE∗

leavingv in the orientationA∗. As the setsδ+
A∗(v) are dis-

joint, this defines a partition matroid. As every vertex has
indegree at most 2 inA∗, we obtain the following.

Lemma 8. LetF ∈ I∗ be an independent set inM∗. Then
every vertex has degree at mostk + 2 in F .

If we use an orientationA∗ in which the indegree of 3
vertices is constrained to be at most 1 (as is possible by
Hakimi’s result) then we obtain that these three vertices
have degree at mostk + 1 in any independent setF ∈ I∗.

Our algorithm uses matroid intersection to find in
polynomial-time (see ’Algorithmic Considerations’ below
for details) the minimmum cost setT which is both a base
of the graphic matroidM((V, E∗)) defined onE∗ and an
independent set inM∗. T is therefore a spanning tree of
maximum degree≤ k + 2.



Analysis. We are now ready to prove Theorem 2. For any
matroidM = (E, I), the independent set polytopeP (M)
is defined as the convex hull of the characteristic vectors of
independent sets and is given by [7, 6]:

P (M) = {x ∈ R
E : x(F ) ≤ r(F ) F ⊆ E

xe ≥ 0 e ∈ E},

wherer(F ) = max{|U | : U ∈ I and U ⊆ F} is the
rank function of the matroid. Similarly, the convex hull
of characteristic vectors of the bases ofM , or base poly-
tope B(M), is given by the face ofP (M) induced by
x(E) ≤ r(E), i.e. B(M) = P (M) ∩ {x : x(E) = r(E)}.
For example, thespanning tree polytopeor base polytope
B(M(V, E∗)) of the graphic matroidM(V, E∗) can be
seen to be given by (1), (2) and (4) (withx restricted toE∗).
Similarly, the independent set polytopeP (M∗) of matroid
M∗ is given by

P (M∗) = {x : x(δ+
A∗(v)) ≤ k v ∈ V (7)

xe ≥ 0 e ∈ E∗.

Observe thatx∗ belongs to bothB(M(V, E∗)) andP (M∗)
(as (7) is implied by (3)).

Edmonds [6] shows that the convex hull of independent
sets common to two matroids is precisely the intersection
of their independent set polytopes (and similarly if we take
the base polytopes). This implies that the convex hull of
spanning trees ofE∗ that are independent forM∗ is defined
by B(M(V, E∗)) ∩ P (M∗):

{x : x(E(S)) ≤ |S| − 1 S ⊂ V
x(E(V )) = |V | − 1
x(δ+

A∗(v)) ≤ k v ∈ V
xe ≥ 0 e ∈ E∗}.

The characteristic vector of the spanning treeT returned
by our algorithm is thus an optimum solution to the linear
programmin{

∑

e cexe : x ∈ B(M(V, E∗)) ∩ P (M∗)}.
As x∗ is also a feasible solution to this linear program, we
have thatc(T ) =

∑

e∈T ce ≤
∑

e cex
∗
e ≤ OPT (k), and

this completes our proof of Theorem 2.

Polyhedral result. Our result can also be restated polyhe-
drally.

Corollary 9. Let Q(k) be the polytope defined by (1), (2),
(3) and (4), and letP (k) be the convex hull of characteris-
tic vectors of spanning trees of maximum degree at mostk.
Then

P (k) ⊆ Q(k) ⊆ P (k + 2).

In other words, any convex combination of spanning
trees such that the average degree of any vertex is at most
k can be viewed as a convex combination of spanning trees
each having maximum degree≤ k + 2.

Proof. Q(k) is a relaxation ofP (k), and henceP (k) ⊆
Q(k). We have shown that for an extreme pointx∗ of Q(k),
we have thatx∗ ∈ B(M(V, E∗)) ∩ P (M∗) ⊆ P (k + 2),
and thereforeQ(k) = conv({x∗}) ⊆ P (k + 2).

Algorithmic Considerations. Optimizing over (1)-(4)
can be done in polynomial time. This can be done, for ex-
ample, by using the ellipsoid algorithm as the separation
problem over (3) is clearly polynomial while the separa-
tion over the base polytope (1), (2) and (4) of the graphic
matroid can be done in strongly polynomial time (for any
matroid, not just the graphic matroid) by an algorithm of
Cunningham [5] (see also [25, Section 40.3]). An alterna-
tive is to derive a compact formaulation of the spanning tree
problem (by bidirecting edges and using a flow reformula-
tion) and using any polynomial-time algorithm for linear
programming. Yet another approach is to use Lagrangean
relaxation.

The orientation ofE∗ with maximum degree at most 2
can be done by finding a maximum matching in a graph
with O(n) vertices wheren = |V | (as |E∗| = O(n)) and
O(n) edges, and therefore can be obtained inO(n1.5) time.

For our matroid intersection, we can exploit the fact
that one of the matroids is a partition matroid. Brezovec,
Cornuéjols and Glover [2] present an algorithm for pre-
cisely this case and even specialize it when the other ma-
troid is a graphic matroid. In that setting, the complexity of
their algorithm isO(nm + n2p + np2) wherem = |E∗|
andp is the number of sets defining the partition matroid;
in our case (asm = O(n) and p = O(n)), this gives
O(n3). We can also exploit the fact that our matroids (both
the graphic and the partition matroids) are linear and use
an efficient matroid intersection algorithm for linear ma-
troids due to Gabow and Xu [10]. Their running time is
O(mr1.77 log(nW )) wherer is the sum of the ranks of the
matroid andW is an upper bound on the largest cost; in our
setting, this givesO(n2.77 log(nW )). If W is small, we can
also use a recent algorithm of Harvey [14] for the linear case
whose running time isO(mn1.38W ), or O(n2.38W ) in our
case.

The use of a weighted matroid intersection algorithm is
actually not completely necessary. Indeed, we can simply
return an extreme point ofB(M(V, E∗)) ∩ P (M∗) whose
cost is at most

∑

e cex
∗
e . This can be done by decompos-

ing x∗ as a convex combination of characteristic vectors
of spanning trees which are also independent inM∗. This
can be done in strongly polynomial time by an algorithm of
Cunningham [5].

The bottleneck for our algorithm is actually to solve the
linear program in order to obtainx∗. Observe, however, that
our algorithm as stated does not needx∗ but only needs to
knowE∗ (or a superset of it guaranteed to be orientable with
maximum indegree 2). We would like to raise the question



of whether a fast “combinatorial” algorithm can be designed
which only findsE∗ (and notx∗). This is an interesting
open question.

The orientation revisited. The orientationA∗ of E∗ with
all indegrees at most 2 can also be obtained purely alge-
braically (instead of using for example bipartite matchings).
This is sketched below for completeness. This is not nec-
essary for the bounded degree spanning tree result and can
therefore be skipped.

For a matrixA, row index setI, column index setJ , we
denote byA[I, J ] the submatrix induced by the rows inI
and the columns inJ .

Lemma 10. LetA be a nonsingular matrix with row index
set and column index set[n] = {1, 2 · · · , n}. Then, for
any partition{I1, I2, · · · , Ik} of [n], there exists a partition
{J1, J2, · · · , Jk} of [n] such thatA[Ip, Jp] is nonsingular
for p = 1, · · · , k.

Proof. The result is an easy consequence of the matroid
union theorem (see [25, Corollary 42.1a]). Another ele-
mentary proof goes as follows. First, by induction, we can
assume thatk = 2. By the generalized Laplace expansion
(Laplace, 1772), we have that, for anyI ⊂ [n], we can ex-
pressdet(A) as:

∑

J⊆[n]:|J|=|I|

sign(I, J) det(A[I, J ]) det(A[[n]\I, [n]\J ]),

for suitably definedsign(I, J) ∈ {+1,−1}. As det(A) 6=
0, there must be an index setJ with det(A[I, J ]) 6= 0 and
det(A[[n] \ I, [n] \ J ]) 6= 0, proving the lemma.

The partition{J1, J2, · · · , Jk} can be found efficiently
as follows. Assume, by induction onl, that we have an
nonsingularmatrix A′ obtained fromA by replacing ev-
ery entry of columnj ≤ l − 1 by 0 except those corre-
sponding to precisely one of theIp’s. As the determinant of
A′ is linear as a function of the entries of columnl, there
must be an indexp such that replacing every entry of col-
umn l by 0 except those in thisIp gives a nonsingular ma-
trix. This completes the inductive step. The final matrixA′

is block diagonal and its nonsingularity implies that every
block A′[Ip, Jp] = A[Ip, Jp] is nonsingular. This shows
that by simply checking linear independence, we can find a
partition{J1, J2, · · · , Jk} as stated in Lemma 10.

We apply Lemma 10 for the MBDST in the following
way. Consider the nonsingular matrixA defining the ex-
treme pointx∗. Let I1 be the index set of the rows ofA
corresponding toχ(E(S)) for S ∈ L andI2 those corre-
sponding toχ(δ(v)) for v ∈ T . Lemma 10 shows thatE∗

can be partitioned intoE1 andE2 such that (i)χ(E1(S))
for S ∈ L are linearly independent and (ii)χ(δE2

(v)) for
v ∈ T are linearly independent. It is easy to see that (i)

implies thatE1 must be a forest (as there must be precisely
one edge inE1(S)\∪T⊂S,T∈LE1(T ) for everyS ∈ L) and
that (ii) implies that every connected component ofE2 is ei-
ther a tree or a tree plus an edge (i.e. a unique cycle with
trees attached to it). Thus, bothE1 andE2 can be oriented
such that the indegree of every vertex is 1, and this gives
an orientationA∗ of E∗ with indegrees at most 2 for every
vertex.

Maximum degree of an MST. Ravi and Singh [24] con-
sider the problem of minimizing the maximum degree of a
minimum spanning tree (MST) in a weighted graph. Our
approach also applies to their setting. LetC∗ be the cost of
an optimum spanning tree (of any maximum degree). Con-
sider the optimum face of the spanning tree polytope; this
face is defined by

F = {x ∈ R
|E| : (1), (2), (4) and

∑

e

cexe = C∗}.

By binary search, one can find the smallest integerk̂ ∈ N

such thatF ∩{x : x(δ(v)) ≤ k̂ for all v ∈ V } 6= ∅. Clearly
k̂ is a lower bound on the smallest maximum degree of any
MST. Furthermore, fork = k̂, we know that the optimum of
the linear program(LP ) given in the introduction has value
precisely equal toC∗ (by definition ofC∗), and our algo-
rithm given in Figure 1 outputs a tree of maximum degree
≤ k̂ + 2 ≤ k∗ + 2 and of cost less or equal toC∗. Thus it
outputs an MST with maximum degree at mostk∗ + 2.

3 General Upper and Lower Bounds

The approach also works for the case in which we are
given upper and lower bounds on the degree of every vertex
in the spanning tree. In the General Minimum Bounded
Degree Spanning Tree (GMBDST) problem, we are given
a graphG = (V, E), costsc : E → R and degree bounds
u : V → N and l : V → N, and the goal is to find a
spanning treeT such thatl(v) ≤ dT (v) ≤ u(v) for all
v ∈ V and of minimum cost. An extension of our algorithm
gives:

Theorem 11. There exists a polynomial-time algorithm
which outputs a treeT satisfying the weaker degree bounds
l(v) − 2 ≤ dT (v) ≤ u(v) + 2 for all v ∈ V and of cost
at most the cost of the optimum tree satisfying the original
degree bounds.

Proof. To derive this, we first solve the LP relaxation to
obtain an extreme pointx∗ with supportE∗.

Min c(x) =
∑

e

cexe

subject to:



x(E(S)) ≤ |S| − 1 S ⊂ V

x(E(V )) = |V | − 1

x(δ(v)) ≤ u(v) v ∈ V (8)

x(δ(v)) ≥ l(v) v ∈ V (9)

xe ≥ 0 e ∈ E.

Notice that among the tight sets, we need to consider at most
one of (8) or (9) for a given vertexv. So, from uncrossing
and Theorems 5 or 6, we derive thatE∗ can be oriented into
A∗ so that every vertex indegree is at most 2 (and we could
again impose that the indegree of 3 vertices be at most 1).

Now, we can find a minimum cost spanning treeT in
(V, E∗) satisfying

l(v) − 2 ≤ |T ∩ δ+
A∗(v)| ≤ u(v), (10)

for all v ∈ V . For this purpose, we first define a (gen-
eralized partition) matroidM̂ = (E∗, Î) whose bases are
precisely all subgraphs of cardinalityn − 1 satisfying (10).
The independent sets of our matroid̂M are

Î = {F ⊆ E∗ : |F ∩ δ+
A∗(v)| ≤ u(v) for all v ∈ V

and
∑

v

max(l(v) − 2, |F ∩ δ+
A∗(v)|) ≤ n − 1}.

An independent setF of cardinalityn − 1 satisfies

n − 1 = |F | =
∑

v

|F ∩ δ+
A∗(v)|

≤
∑

v

max(l(v) − 2, |F ∩ δ+
A∗(v)|) ≤ n − 1

with equality throughout and thus satisfies (10).
We can now find a spanning treeT in (V, E∗) satisfying

(10) by finding a common base between the graphic ma-
troid on E∗ and matroidM̂ . Again, this is precisely the
problem that the algorithm of Brezovec et al. [2] applies
to, and therefore we can find inO(n3) a spanning treeT of
minimum cost satisfying (10).

Polyhedrally, the convex hullP of characteristic vectors
of spanning trees satisfying (10) is given by:

P =























x ∈ R
|E∗| :

x(E(S)) ≤ |S| − 1 S ⊂ V
x(E(V )) = |V | − 1
x(δ+

A∗(v)) ≤ u(v) v ∈ V
x(δ+

A∗(v)) ≥ l(v) − 2 v ∈ V
xe ≥ 0 e ∈ E∗























.

This can either be proved by using the connection to matroid
intersection discussed above (and the generalized partition
matroid) or more simply by observing that any extreme
point ofP is also an extreme point of the polytope of com-
mon independent sets to a graphic matroid and a partition
matroid whose independent setsF satisfy |F ∩ δ+(v)| ≤
b(v) whereb(v) is suitably chosen in{l(v) − 2, u(v)}.

The analysis follows from the description ofP . Indeed,
x∗ satisfies all inequalities describingP ; for (10), we have
that

x∗(δ+
A∗(v)) ≥ x∗(δ(v)) − 2 ≥ l(v) − 2.

Therefore, the cost ofT , c(T ) is upper bounded by
∑

e∈E cex
∗
e and thus by the optimum value.

4 Towards k + 1?

One could try to improve the degree bound fromk + 2
to k + 1 and prove Conjecture 1. One possibility would
be to prove additional properties of any extreme pointx∗

and use a different matroid in place ofM∗. In particular,
if Conjecture 12 below was true (and the orientation could
be obtained efficiently!) then this would settle Conjecture1
positively.

Conjecture 12. For any extreme pointx∗ to (1)–(4) with
supportE∗, there exists an orientationA∗ of E∗ such that

∑

e∈δ
−

A∗
(v)

(1 − x∗
e) ≤ 1 (11)

for all v ∈ V .

Whenever there exists an orientation satisfying (11), we
can get a spanning tree of maximum degreek + 1 and of
cost at mostOPT (k) by using the matroidM̃ = (E∗, Ĩ)
with

Ĩ = {F ⊆ E∗ : |F∩δ+
A∗(v)| ≤ ⌈x∗(δ+

A∗(v))⌉ for all v ∈ V }.

Indeed, for anF ∈ Ĩ, we have:

|F ∩ δ(v)|

= |F ∩ δ−A∗(v)| + |F ∩ δ+
A∗(v)|

≤ |δ−A∗(v)| + ⌈x∗(δ+
A∗(v))⌉

=
∑

e∈δ
−

A∗
(v)

(1 − x∗
e) + x∗(δ−A∗(v)) + ⌈x∗(δ+

A∗(v))⌉

< 1 + k + 1 = k + 2,

the last inequality following from (11), (3) and⌈y⌉ < y+1.
As the degree|F ∩δ(v)| of v is an integer, it must be at most
k + 1.

5 Symmetric TSP and the Subtour Polytope

The approach is quite general and applies to many other
settings where uncrossing can be applied. For example,
consider the subtour polytope of the symmetric traveling
salesman problem:

SUB =







x ∈ R
|E| :

x(δ(S)) ≥ 2 S ⊂ V
x(δ(v)) = 2 v ∈ V
xe ≥ 0 e ∈ E







.



Held and Karp [11, 12] show that any point inSUB can be
viewed as a convex combination of1-treessuch that every
vertex has average degree 2. A1-treeis a spanning tree on
V \{1} together with 2 edges incident to vertex 1 (for some
fixed vertex 1). The family of 1-trees forms the bases of a
matroidM1t.

The approach developed here leads to the following re-
finement:

Theorem 13. Any point inSUB can be decomposed into a
convex combination of 1-trees, each of maximum degree 4,
such that every vertex has average degree 2.

Again, we believe that the bound of 4 on the degree can
be replaced by a bound of 3. The proof below actually
shows that we can impose the degree of 3 on any 3 vertices
of V .

Theorem 13 can be proved in the same way as our
MBDST result. First, any extreme pointx∗ of SUB can
be uniquely determined by

{

x∗(δ(S)) = 2 S ∈ L
x∗

e = 0 e /∈ E∗

whereL is a laminar family as was shown by Cornuéjols et
al. [4]. As mentioned earlier, a laminar family on a ground
set of sizen, without the entire set and without two com-
plementary sets (which would give the same equality) has
at most2n − 3 sets. The same argument as in Theorem 5
(asδ(S) ∩ E∗(U) = δ(S ∩ U) ∩ E∗(U)) then shows that

|E∗(U)| ≤ 2|U | − 3,

for any U ⊆ V . HenceE∗ can also be oriented intoA∗

such that the indegree of any vertex is at most 2. Again
we can define a partition matroidM∗ whose independent
setsF satisfy: |F ∩ δ+

A∗(v)| ≤ 2 for all v ∈ V . Instead
of considering 1-trees, we can considerrestricted 1-treesT
which are defined to be independent inM∗. Observe that
any restricted 1-tree has maximum degree at most 4. As
x∗ belongs to the matroid polytope forM∗ (and to the base
polytope forM1t), we have thatx∗ can be decomposed into
a convex combination of restricted 1-trees such that every
vertex has degree 2 on average, proving Theorem 13.

Algorithmically, we can use matroid intersection to find
a restricted 1-tree of minimum cost in polynomial time, and
this shows:

Corollary 14. For any instance of the symmetric traveling
salesman problem, one can find in polynomial time a 1-tree
of maximum degree 4 and of cost less or equal to the subtour
bound (and hence of the minimum cost tour).

6 Asymmetric TSP

The same approach can also be applied to a classical re-
laxation of theasymmetrictraveling salesman problem also

introduced by Held and Karp [11]. Held and Karp have de-
fined a 1-arborescence (sometimes called directed 1-tree) in
a directed graph(V, A) as a directed subgraph whose undi-
rected counterpart is a 1-tree and with indegree equal to 1
at every vertex; so these are the common bases to two ma-
troids, the 1-tree matroidM1t and a partition matroidMin.
Held and Karp show that any solution to:

ASUB =















x ∈ R
|A| :

x(δ+(S)) ≥ 1 S ⊂ V
x(δ+(v)) = 1 v ∈ V
x(δ−(v)) = x(δ+(v)) v ∈ V
xe ≥ 0 e ∈ A















can be decomposed as a convex combination of 1-
arborescences of average outdegree 1. Here,A denotes the
arc set of our directed graph(V, A).

Similar to Theorem 5, we can prove the following prop-
erties of extreme points ofASUB.

Theorem 15. For any extreme pointx∗ ofASUB with sup-
port A∗, we have that

|A∗(U)| ≤ 3|U | − 4,

for anyU ⊆ V .

Proof. If S, T are such thatx∗(δ+(S)) = x∗(δ(T )) = 1
with S∩T 6= ∅ andS∪T 6= V thenS∩T andS∪T also give
tight cuts and furthermore there are no arcse with x∗

e > 0
betweenS \ T andT \ S (in either direction). From the
standard uncrossing argument, we then get that any extreme
point x∗ with supportA∗ can be defined by a cross-free
family C (i.e. for S, T ∈ C, eitherS ⊆ T , or T ⊆ S or
S ∩T = ∅ or S ∪T = V ) of linearly independent tight cuts
x∗(δ+(S)) = 1 as well asn − 1 of the balance constraints
(we can discard one of the balance constraints since they are
not all linearly independent).

By adding the balance constraints (6) overv ∈ S, we
can derive thatx∗(δ+(S)) = x∗(δ−(S)) and therefore (by
complementing) we can assume that none of the sets inC
contain a given vertexr. ThusC is now alaminar familynot
containingV and not containing two complementary sets,
and therefore has cardinality at most2n − 3. This implies
that|A∗| ≤ 2n− 3+n− 1 = 3n− 4, a slight improvement
over the bound of3n − 2 in Vempala and Yannakakis [26].

If we restrict our attention to the arcs inA∗(U), our tight
cut equalities again lead to row vectorsχ(δ+(S)) which
are idential toχ(δ+(S ∩ U)) over A∗(U). Similarly for
the balance constraints (6). Therefore, the reader can ob-
serve that the same argument as in Theorem 5 shows that
|A∗(U)| ≤ 3|U | − 4.

This means thatA∗ can be “reoriented” intoO∗ such that
the new indegree inO∗ is at most 3 (in addition, we have
up to 4 units to play with; for example we can impose that



the indegree of 2 given vertices is at most 1). Reorienting
means that an arc(u, v) ∈ A∗ may now become(v, u) ∈
O∗. This reorientation gives a way to assign each arc(u, v)
either tou or v but not both. We now define a new matroid
M∗ whose independent setsF satisfy

|F ∩ δ+
O∗(v) ∩ δ+

A∗(v)| ≤ 1 (12)

and
|F ∩ δ+

O∗(v) ∩ δ−A∗(v)| ≤ 1 (13)

for all v ∈ V . This is again a partition matroid (with2n
parts now). Observe that any extreme pointx∗ of ASUB
belongs to the independent set polytope ofM∗. Therefore,
by Edmonds’ polyhedral characterization of matroid inter-
section, we know thatx∗ can be viewed as a convex combi-
nation of bases ofM1t which are also independent inM∗.

Now consider such a baseT of M1t which is also inde-
pendent inM∗. T is a (weakly) 1-tree (as a base ofM1t)
when viewed as undirected, and for every vertexv, we have
at most 1 outgoing arc from (12), at most 1 incoming arc
from (13) and at most 3 additional arcs (incoming or outgo-
ing) from arcs inδ−O∗(v). So the total degree ofv is at most
5, and its indegree and outdegree are at most 4. In summary,
this shows the following.

Theorem 16. Any point inASUB can be decomposed into
a convex combination of weakly 1-trees, each having (i)
maximum indegree≤ 4, (ii) maximum outdegree≤ 4 and
(iii) maximum total degree≤ 5, such that every vertex has
on average indegree 1 and outdegree 1. Furthermore, we
can find in polynomial time (through matroid intersection)
a weakly 1-tree of maximum total degree≤ 5 and maxi-
mum indegree and outdegree≤ 4 of cost less or equal to
the Held-Karp bound obtained by optimizing overASUB.

7 l-edge-connectivity

The approach can also be applied to the problem of find-
ing an l-edge-connected subgraph (l ≥ 2) with maximum
degree at mostk and of minimum cost. However, the results
are weaker and therefore are only sketched in this section.
We should emphasize that we arenot assuming the trian-
gle inequality (and not even assuming we have a complete
graph) or allowing multiple edges in the solution, since oth-
erwise the splitting off technique of Mader can transform
any solution into one with all degrees equal tol or l+1 with-
out any increase in cost. We are assuming general costs, and
the restriction that an edge can be selected at most once.

A relaxation of the problem is given by the following
linear program:

Min c(x) =
∑

e

cexe

subject to:

x(δ(S)) ≥ l S ⊂ V

x(δ(v)) ≤ k v ∈ V

0 ≤ xe ≤ 1 e ∈ E.

Let x∗ be an extreme point optimizing the above linear
program. LetE∗ = {e : 0 < x∗

e < 1} and let
E1 = {e : x∗

e = 1}. The uncrossing argument shows that
|E∗(U)| ≤ 2|U | − 3 for everyU ⊆ V and thereforeE∗

can be oriented intoA∗ such that all indegrees are at most
2. (E1, however, can have many edges; in fact it will have
at least( l

2 − 2)n edges.)
We now define two matroids both on the ground set

E∗ ∪ E1. Matroid M1 is defined as the⌊l/2⌋-fold union
(see Chapters 42 and 51 in [25]) of the graphic matroid on
E∗∪E1. Any spanning setF for M1 (i.e. a set containing a
base) is therefore⌊l/2⌋-edge-connected. Furthermore, the
spanning set polytope [25, Corollary 40.2f] forM1, or the
convex hull of characteristic vectors of spanning sets, can
be shown to containx∗, and thereforex∗ dominates (com-
ponentwise) an elementy∗ of the base polytope ofM1.

Matroid M2 is a partition matroid similar toM∗ for
MBDST except that we can take all ofE1; its collection
of independent sets is given by:

{F ⊆ E∗∪E1 : |F∩δ+
A∗(v)| ≤ k−|δE1

(v)| for all v ∈ V }.

Any independent set forM2 has degree at mostk + 2 and
furthermorex∗ belongs to its independent set polytope (and
so does anyy∗ ≤ x∗).

Using matroid intersection, we can find a minimum cost
baseT of M1 which is also independent inM2. Its cost
will be upper bounded byc(y∗) ≤ c(x∗), and hence by the
optimum solution. We have thus shown:

Theorem 17. In polynomial time, one can find a⌊l/2⌋-
edge-connected subgraph of maximum degree≤ k + 2
whose cost is at most the cost of the optimuml-edge-
connected subgraph of maximum degree at mostk.

Acknowledgements

I would like to thank R. Ravi and Nick Harvey for stimu-
lating discussions about this topic, Ravi over the last fifteen
years and Nick over the last few months. I also indebted
to Nick for pointing out a few references and to Joseph
Cheriyan for suggesting to look at higher edge-connectivity.



References

[1] S. Boyd and W.R. Pulleyblank, “Optimizing over
the Subtour Polytope of the Travelling Salesman
Problem”,Mathematical Programming, 49, 163–187
(1991).
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