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Abstract

We consider semidefinite programs, where all the matrices defining the problem commute.
We show that in this case the semidefinite program can be solved through an ordinary linear
program. As an application, we consider the max-cut problem, where the underlying graph
arises from an association scheme.
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1 Introduction

Semidefinite programs (SDP) have recently turned out to be a powerful tool in many areas of
applied mathematics, notably in combinatorial optimization. We consider the following ‘primal’
form of SDP. For given symmetric matrices M;,j = 0,...,m of order n and a vector b find

SDP-P) max(Mj, X) such that (M;, X)=10b;, j=1,...,m and X >0,
J j

where (A, B) denotes the Frobenius inner product tr AB = }7; ; A;;B;j, and A = 0 imposes the
positive semidefiniteness of A. This is a convex optimization problem. Its dual can be defined to
be
(SDP-D) minb”y such that Z yiM; — My =: Z = 0, and y unconstrained.
j=1

The formulation (SDP-P) contains only equality constraints (in addition to the semidefinite
constraints). Inequality constraints can also be included with the obvious modification that a
dual variable y; to an inequality constraint (M;, X) < b; must be nonnegative.

The duality relations between (SDP-P) and (SDP-D) are more subtle than linear programming
duality. Weak duality, stating that

0<bly—(My,X)=(X,Z)
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for feasible X,y, 7 is easy to see. To insure strong duality, or equivalently the existence of a
feasible X and Z such that (X, Z) = 0, it is customary to assume some constraint qualification to
hold. For example, strong duality holds whenever the primal and the dual have strictly feasible
solutions (i.e. solutions for which X and Z are positive definite).

From a computational point of view, these types of problems can be solved efficiently (to
some prescribed precision) using interior point methods, see [14]. Recent surveys showing the
connection between SDP and combinatorial optimization can be found for instance in [5, 16].

In this note we investigate SDPs where the matrices defining the problem arise from an asso-
ciation scheme. We review their definition and basic properties in the next section. Association
schemes are much studied in algebraic graph theory and in coding theory. The dissertation of
Delsarte [4] was a fundamental step in their study. For coding theory purposes, he was interested
in deriving bounds on the cardinality of the maximum stable set (a stable set is a set of mutually
non-adjacent vertices) for graphs whose incidence matrix arises from an association scheme. He
introduced and developed a beautiful linear programming bound which exploits the strong prop-
erties of association schemes. A few years later, in his study of the Shannon capacity, Lovisz
[9] proposed an upper bound (the so-called theta function) on the size of any stable set for an
arbitrary graph. This theta function can be expressed in many different ways, including as an
SDP. Schrijver [17] then showed that, for association schemes, a refinement of the theta function
(with nonnegativity constraints added to one of the formulations) is equivalent to the LP-bound
of Delsarte. In the context of the maximum cut problem, Karloff [7] and Alon and Sudakov [1]
have also exploited simplifications of SDP for instances that arise from association schemes.

In this note we will derive the following two results.

e SDP over an association scheme, or more generally, SDP where the input matrices commute,
are equivalent to ordinary LP (Section 3).

e SDP over an association scheme allow constraint aggregation for certain types of constraints.
This will be elaborated upon for SDP relaxations of Max-Cut (Section 4). Roughly speak-
ing, in some cases, we can replace a subset of constraints by a single constraint, and still
guarantee that each individual constraint is satisfied.

Notation: We denote by J the matrix of all ones, e denotes the vector of all ones, Diag(v) is
the diagonal matrix with vector v on its diagonal, the vector diag(X) contains the main diagonal
of the matrix X.

2 Association Schemes

A set of [+1 symmetric 0,1-matrices Ay, ..., A; of order n forms a (symmetric) association scheme
A if the following properties hold.

Al. Ay =1,
A2. Zé:O AZ = Ja
A3. there exist pi-cj (0 <4,j,k <) such that A;A; = ng:opfjAk-

The vector space generated by the linear combinations (over the reals) of the matrices A;’s is
known as the Bose-Mesner algebra of the scheme. This algebra is commutative because condition
A3 implies that A;A; is symmetric, hence equal to A;A;. For simplicity, we will denote by A the



set of all linear combinations of the A;’s (as well as the association scheme itself); when we refer
to a matrix M contained in an association scheme A, it simply means that M = ), x;A; for
some x; € R. The above definition of association schemes in fact considers only the symmetric
case, a similar definition can be made without assuming that the matrices A; be symmetric. We
refer to [2] for further results on association schemes.

Association schemes are important structures in algebraic graph theory and in coding the-
ory. The classes of strongly regular graphs, distance reqular graphs and symmetric circulants are
instances of association schemes. In coding theory, the most important association schemes are
the Hamming and Johnson schemes. The Hamming scheme consists of n + 1 matrices of order
2™ whose rows and columns are indexed by n-bit strings. An entry of matrix A; is equal to 1 iff
the corresponding bit strings differ in exactly ¢ positions.

From condition A3 it follows that the A; form a commuting family of matrices, and hence
can be diagonalized simultaneously. In other words, they (as well as any matrix in .4) share a
system of orthonormal eigenvectors. Furthermore, it can be shown that the Bose-Mesner algebra
possesses a basis with very strong properties, see [2]. Namely, there exist symmetric matrices
Ey, ..., E; such that

El. EE; = 6;E;,

E2. >, E =1,

E3. Ey=1J,

E4. {Ey,...,E;} is a basis of A.

Property E4 implies that each of the E; can be expressed through the A;’s and vice versa. Using
standard notation for association schemes, we can thus write

l
A; =Y P,E;. (1)
=0

The matrices E; are idempotent (E? = E; by property E1), and thus have only 0 and 1 as
eigenvalues, and hence are positive semidefinite. In fact, it can be shown that E; can be expressed
as ) ken; qkq,{ where the ¢;’s for £ € B; form an orthonormal basis of the ith common eigenspace
of the A;’s. The fact that E;E; = 0 for 4 # j and condition E2 imply that any eigenvector
v of any of the E;’s corresponds to the eigenvalue 1 for exactly one of the E;’s and to the
eigenvalue 0 for all the others. Hence, the eigenvalues of >, \;E; are the \;’s (with appropriate
multiplicities); there are thus at most [ 4+ 1 distinct eigenvalues. We define y; := tr E;, and since
E; is idempotent p1; = rank(E;). Thus, by (1), the eigenvalues of A; are the P;;’s with multiplicity
wi for 2 = 0,---,1. Observe that, since E; belongs to A, its diagonal elements are constant and
equal to £%, i.e.

diag(E;) = %e. 2)

3 Exploiting Commutativity

Let us suppose now that the input matrices {My, ..., My} for SDP form a commuting family of
matrices, i.e. M;M; = M;M; for all i,j. A well known fact, see e.g. ([11],Theorem 2.3.3), states
that in this case there exists an orthogonal matrix @ = (qi,--..,¢n), such that

Q" M;Q = Diag(a;),



where a; = (aj;) is the (row)vector of eigenvalues of M;. We collect the eigenvalues of M;, j > 1
in the matrix A = (a;;). Hence, using E; := ¢;q} , we have

M; =" ajigig; =Y ajiE;. (3)
5 ;

Observe furthermore that E;E; = §;;F; and therefore, as in the case of association schemes, the
eigenvalues of any matrix of the form >, \; E; are the );’s. Finally, we assume that both (SDP-P)
and (SDP-D) are feasible. No further constraint qualification is necessary.

The key observation is now the slack matrix Z of (SDP-D) must also be contained in the
commutative algebra generated by the E;’s, because

Z = Zy]M] - MO = Z(Z yjaji - C,)EZ
J

j>1 i

(Here we have set ¢ := al, to follow LP notation.) Since the eigenvalues of Z are the entries of
ATy — ¢, we have that
Z » 0 if and only if ATy > c.

In plain words, the semidefiniteness of Z can be expressed by a finite number of inequalities.
Thus (SDP-D) is equivalent to the following linear program (LP-D)

(LP-D) minb’y such that z = ATy — ¢ > 0.

This problem is by assumption feasible. Feasibility of (SDP-P) shows that (SDP-D) is bounded
from below because of weak duality. Hence, (LP-D) has a finite optimum, which is equal to the
optimal value of its dual program (LP-P):

(LP-P) maxc!z such that Az =b, = > 0.
Suppose now that z is optimal for (LP-P) and y, z is optimal for (LP-D). Let us define

X = ZxZEZ and Z = ZzZEz (4)
K3 K3

Then clearly X > 0, Z > 0, because z,z > 0. By construction, Z is feasible for (SDP-D). Since

<Mj7X> = Zaji$i = (Aa:)J = bj’
%

the matrix X is also feasible for (SDP-P). Finally, we note that (X, Z) = 2’z = 0, because of
complementary slackness for  and z. As a consequence, we can solve (SDP-P) by solving the
linear program (LP-P). Summarizing, we have proved the following result.

Theorem 1 Suppose that the matrices defining (SDP-P) commute. Suppose further that both
(SDP-P) and (SDP-D) are feasible. Then these problems have optimal solutions X and Z and
these solutions can be computed through the linear programs (LP-P) and (LP-D) using (4). Strong
duality holds without further constraint qualification.

This theorem reduces SDP over a commuting family of matrices of order n to LP with n
variables. The number m of constraints is unchanged. If, in addition, the matrices are contained
in an association scheme, the columns of A (containing the eigenvalues of the M;’s) can be

4



partitioned into [ 4+ 1 groups of columns such that group k£ (k = 0,---,[) contains uj identical
columns. By keeping only one column for each group, we reduce the number of variables to
! + 1 which can be much smaller than n. For the Hamming scheme for instance, the initial
SDP involves matrices of size 2" x 2", while (LP-P) has only n + 1 variables after suppressing
identical columns. Since we keep only one column for each group (and thus aggregate over each
eigenspace), we need to scale the primal variables by the multiplicity p; and use the E; defined
in Section 2. Therefore, the matrix A in (LP-P) and (LP-D) is now such that M; =3, a;; E; (as
in (3)). In summary, we derive the following:

Corollary 2 Suppose that the matrices defining (SDP-P) are contained in an association scheme
A. Suppose further that both (SDP-P) and (SDP-D) are feasible. Then these problems have
optimal solutions X and Z, which are also contained in A. These solutions can be computed
through the linear programs (LP-P) and (LP-D), where A is such that M; =Y, a;;E; and E; is
defined in Section 2, using

s
X := Z H—ZEZ and Z := ZZZEZ (5)
2

This type of simplification of SDP was already used by Schrijver [17] to show the equivalence
between a stronger variant of the theta function of Lovasz and the LP bound of Delsarte for
graphs G = (V, E) arising from association schemes. We should point out that if we only assume
that the incidence matrix A commutes with J (or with J — A), i.e. that the graph is regular,
then the simplification derived by Schrijver [17] does not apply, see [5] for details. This can be
explained by the fact that an aggregation of constraints is needed to transform the semidefinite
program defining the theta function (or its stronger variant) into the right form; it is only in
the case of association schemes that this aggregation can be performed without changing the
optimum value of the program.

In the next section we explore this contraint aggregation issue in the case of the maximum
cut problem arising from association schemes.

4 Constraint Aggregation and the Maximum Cut Problem

The following quadratic problem in -1,1 variables plays a central role in combinatorial optimiza-
tion:
Zme = max{zl Lz : = € {-1,1}"}.

The matrix L is without loss of generality assumed to be symmetric. This problem is equivalent
to the mazimum cut problem or MAX-CuUT, which asks to partition the vertices of an undirected
edge-weighted graph G = (V, E) with edge weights w;; : (i,j) € E into two sets so as to maximize
the total weight of edges joining the two sets. This problem is well-known to be NP-complete
[12]. To model this problem formally, we represent partitions (S,7') of V' by -1,1 vectors z with
xz; = 1 exactly if i € S. A vector z with all z; € {—1,1} is called a cut vector. If we assume
that w;; = 0 for (i,j) ¢ E, then the MAX-CUT problem is characterized by the weight matrix
W = (w;;). We denote by L := Diag(We) — W the Laplacian of the matrix W. The weight
of the partition, given by the cut vector z, can easily be shown to be ixTLx. For notational
convenience, we drop the factor i from this cost function.

Rewriting 2/ Lz = (L,zx’), we get the following well-known semidefinite relaxations for
Max-Cur, see [13, 3, 6, 10]:

Zme < Zpsd—met = max{(L, X) : diag(X) =e, X = 0,X € MET} (6)



< Zpsq = max{(L, X) : diag(X) = e, X > 0} (7)
< Zpp = max{(L, X) : tr (X) =n,X > 0} = nAmax(L). (8)

The bound zy,, introduced in [13], is in general much weaker than z,s;4. The relaxation
Zpsd—met 18 obtained by tightening 2,4 to include all triangle inequalities. By definition, X € MET
precisely if z;; + x5 + Ty > —1,755 — zi — x5 > —1 holds for all distinct triples (4,7, k).
This relaxation zpsq—met is still tractable because there are only polynomially many, namely
4(’;), constraints defining MET. Currently, this relaxation is still a computational challenge, and
practical implementations have serious difficulties for n = 100.

The relaxation zp.,q has atttracted a lot of attention due to the work of Goemans and
Williamson. They have shown [6] that this semidefinite program approximates z,. quite closely.
They give a randomized algorithm producing a cut whose expected value E[cut] satisfies

Elcut]
- Z «,
Zpsd

where o = %mino<957r 1_2’% > 0.87856 whenever W > 0.This implies that zp,. > azps. Al-
though it is not known whether ELZ can be arbitrarily close to «, Karloff [7] has proved that, for

’ Elcut]
Zpsd
it was shown that the performance guarantee of a can be improved whenever the maximum cut
is known to be a large fraction of the total weight of the edges (see [6] for a precise statement).
Alon and Sudakov [1] generalized Karloff’s result by showing that the improved performance

Elcut
guarantee for Bleut]
Zpsd

graphs arising from the Johnson (association) scheme, can be arbitrarily close to a. In [6],

shown in [6] can also be arbitrarily closely approached, and in this case the

instances they consider arise from the Hamming scheme. Both in [7] and in [1], the following
phenomenon happens. Although they exhibit an optimum solution X* to the semidefinite pro-
gramming relaxation leading to the poor behavior, they also show that z,,q = zm. and in fact
X™ can be expressed as a convex combination of optimum cut matrices.

This suggests to consider instances where L is contained in some association scheme. Thus
let us assume now that the cost matrix W of the underlying MAX-CUT problem comes from
an association scheme A. Poljak and Turzik show that MAX-CUT on a very restricted subset of
symmetric circulants is tractable [15], but its complexity status for association schemes in general
is open. Since L = Diag(We) — W and e is an eigenvector of W (independently of the association
scheme being considered, since it is an eigenvector of J), we can express the Laplacian L as a
linear combination of the A;’s, and get

L= ZajAj = Z(Z ajf)ij)Ei — Z)\zEz (9)
J J ?

i

The numbers A; := }°; a; P;; are the eigenvalues of the Laplacian L.

We note first that the relaxation z;,, can be viewed under the framework of SDP over com-
muting matrices, because I commutes with any L. Furthermore, we get from Corollary 2 that
the optimum solution X can be expressed as

x="8, (10)

Hp

where p = arg max; A;. In fact, we get more from this solution. Because of (2), note that X from
(10) satisfies diag(X) = e. Therefore X is also an optimal solution to the second relaxation 2,4,



and we have that z,,, = 2,,q for Laplacians arising from association schemes. This would not be
surprising if all the constraints z; = 1 of diag(X) = e were contained in A. But clearly they are
not, unless n = 1. But we were able to aggregate them into the single equation (I, X) = n and
apply Corollary 2.

The flexibility of choosing a positive semidefinite matrix generated by elements in the pth
eigenspace was already exploited in [7, 1]. Matrices forming an association scheme have quite a
strong combinatorial structure. This structure can be exploited to find sufficient conditions for
Zme = Zpsq t0 hold. Alon and Sudakov [1] investigate this in the case of the Hamming scheme.
Since the eigenvectors of the A;’s can all be chosen to be —1, 41 vectors, such an eigenvector v
for the eigenvalue ), leads to an optimum rank 1 matrix X = vv! for the SDP relaxation. In
other words, for any MAX-CUT problem arising from the Hamming scheme, we have zp, = 2psq4-
For the Johnson scheme, however, the situation is different. Not every eigenvalue (e.g., the even
ones) has an eigenvector with all entries £1 (although there is a basis of 0, +1 eigenvectors, see
[8]) and, as a result, one cannot guarantee that z,. = zpsq¢ (and this fails even for K3).

We conclude by showing how the triangle inequalities can be aggregated so that Corollary 2
can be applied. A single triangle inequality is not contained in any association scheme. Therefore
we have to find subsets of these constraints, which can be added to form a matrix from A.

Consider a triangle inequality, say gy + Tpc + Toc > —1 where (Aj)ap = 1, (4;)pc = 1 and
(Ag)ac = 1 (the indices 14, j, k are not necessarily distinct). Consider now all the triangles having
the same form, namely sets {a’,b,c'} such that (4;)gy =1, (4j)pe = 1 and (Ak)ye = 1. By
aggregating all these triangle inequalities and using condition A3 (which says that the number of
such triangles containing a given edge (a,c) with (Ag)ec =1 is pfj), we get the inequality

PilAi, X) + pl (A, X) + pli(Ag, X) > —a, (11)

where a = pfj (Ag, J) = p;'-k(Ai, J) = pii(Aj, J). We were thus able to aggregate triangle inequal-
ities into inequalities induced by the association scheme. On the other hand, consider X € A,
ie. X =%, & A, for given reals £, . Since

Tap + Tpe + Toec = Zfr [(Ar)ab + (Ar)bc + (Ar)ac] = gz + fj + €ka

for all triangles of the same form, we have that (11) implies that z, + Zpe + T4 > —1 for
any such triangle. This means that we have not weakened the relaxation by aggregating the
triangle inequalities of the same form into a single constraint. As a consequence of Corollary
2, the resulting semidefinite relaxation, with all triangle inequalities included, can be solved as
an ordinary linear program. Since the aggregation will replace multiples of n constraints by a
single constraint, the resulting LP will have no more than O(n?) inequality constraints, instead
of O(n3) constraints in the original SDP relaxation. The number of resulting inequalities can
also be bounded by O(I3) which can be much smaller as in the case of the Hamming scheme.
Computational experiments with this relaxation for circulants L were carried out by the authors,
and problems of size n &~ 1000 could be handled easily.

The same approach can be used to aggregate the cycle inequalities, saying that > .oz >
—|C| + 2 where C denotes an odd cycle. Indeed, in the case of a cycle, the coefficients after
aggregation can be viewed to be entries of products of A4;’s and hence the coefficient of x4, will
only depend on the value i for which (4;), = 1. However, for more complex inequalities, it is not
clear how to aggregate them without taking into account the specific association scheme being



considered. For certain association schemes, such as the one inducing circulant graphs, this can
be done (by exploiting symmetry).

Finally, it is interesting to note that bisection problems with cardinality constraints on the

partitions S and 7T also fall into this framework. To see this, note that |S| = k translates into
ez = 2k — n. Therefore, we can model |S| = k by (J, X) = (2k — n)%. The matrix J is again
contained in any association scheme.
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