
Approximating Submodular Functions Everywhere

Michel X. Goemans∗ Nicholas J. A. Harvey†

Satoru Iwata‡ Vahab Mirrokni§

Abstract

Submodular functions are a key concept in combina-
torial optimization. Algorithms that involve submod-
ular functions usually assume that they are given by
a (value) oracle. Many interesting problems involving
submodular functions can be solved using only polyno-
mially many queries to the oracle, e.g., exact minimiza-
tion or approximate maximization.

In this paper, we consider the problem of approxi-
mating a non-negative, monotone, submodular function
f on a ground set of size n everywhere, after only poly(n)
oracle queries. Our main result is a deterministic algo-
rithm that makes poly(n) oracle queries and derives a
function f̂ such that, for every set S, f̂(S) approxi-
mates f(S) within a factor α(n), where α(n) =

√
n + 1

for rank functions of matroids and α(n) = O(
√

n log n)
for general monotone submodular functions. Our result
is based on approximately finding a maximum volume
inscribed ellipsoid in a symmetrized polymatroid, and
the analysis involves various properties of submodular
functions and polymatroids.

Our algorithm is tight up to logarithmic factors.
Indeed, we show that no algorithm can achieve a factor
better than Ω(

√
n/ log n), even for rank functions of a

matroid.

1 Introduction

Let f : 2[n] →R+ be a function where [n] = {1, 2, · · · , n}.
The function f is called submodular if

f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T),

for all S, T ⊆ [n]. Additionally, f is called monotone
if f(Y) ≤ f(Z) whenever Y ⊆ Z. An equivalent
definition of submodularity is the property of decreasing
marginal values: For any Y ⊆ Z ⊆ [n] and x ∈ [n] \Z,
f(Z ∪ {x}) − f(Z) ≤ f(Y ∪ {x}) − f(Y). This can
be deduced from the first definition by substituting

∗MIT Department of Mathematics. goemans@math.mit.edu.
Supported by NSF contracts CCF-0515221 and CCF-0829878 and
by ONR grant N00014-05-1-0148.

†Microsoft Research New England Lab, Cambridge, MA.
nharvey@microsoft.com.

‡RIMS, Kyoto University, Kyoto 606-8502, Japan.
iwata@kurims.kyoto-u.ac.jp. Supported by the Kayamori
Foundation of Information Science Advancement.

§Google Research, New York, NY. mirrokni@gmail.com.

S = Y ∪ {x} and T = Z; the reverse implication also
holds [28, §44.1]. We assume a value oracle access to the
submodular function; i.e., for a given set S, an algorithm
can query an oracle to find its value f(S).

Background. Submodular functions are a key con-
cept in operations research and combinatorial optimiza-
tion, see for example the books [10, 28, 26]; the term
‘submodular’ has over 500 occurrences in Schrijver’s 3-
volume book on combinatorial optimization [28]. Sub-
modular functions are often considered as a discrete
analogue to convex functions; see [23]. Many combina-
torial optimization problems can be formulated in terms
of submodular functions.

Both minimizing and maximizing submodular func-
tions, possibly under some extra constraints, have been
considered extensively in the literature. Minimizing
submodular functions can be performed efficiently with
polynomially many oracle calls, either by the ellip-
soid algorithm (see [12]) or through combinatorial al-
gorithms that have been obtained in the last decade
[29, 14, 15]. Unlike submodular function minimization,
the problem of maximizing submodular functions is an
NP-hard problem since it generalizes many NP-hard
problems such as the maximum cut problem. In many
settings, constant-factor approximation algorithms have
been developed for this problem. Let us only mention
that a 2

5 -approximation has been developed for max-
imizing any non-negative, non-monotone submodular
function [9], and that a (1 − 1/e)-approximation al-
gorithm has been derived for maximizing a monotone
submodular function subject to a cardinality constraint
[27], or an arbitrary matroid constraint [34]. Approx-
imation algorithms for submodular analogues of sev-
eral other well-known optimization problems have been
studied, e.g., [35, 32].

Submodular functions have been of recent interest
due to their applications in combinatorial auctions, par-
ticularly the submodular welfare problem [21, 18, 6].
This problem requires partitioning a set of items among
a set of players in order to maximize their total utility.
In this context, it is natural to assume that the play-
ers’ utility functions are submodular, as this captures
a realistic notion of diminishing returns. Under this
submodularity assumption, efficient approximation al-
gorithms have recently been developed for this problem
[6, 34].

Contributions. The extensive literature on submod-
ular functions motivates us to investigate other fun-
damental questions concerning their structure. How
much information is contained in a submodular func-
tion? How much of that information can be obtained
in just a few value oracle queries? Can an auctioneer
efficiently estimate a player’s utility function if it is sub-
modular? To address these questions, we consider the
problem of approximating a submodular function f ev-
erywhere while performing only a polynomial number
of queries. More precisely, the problem we study is:

Problem 1. Can one make nO(1) queries to
f and construct a function f̂ (not necessarily
submodular) which is an approximation of f ,
in the sense that f̂(S) ≤ f(S) ≤ g(n) · f̂(S)
for all S ⊆ [n]. For what functions g : N → R
is this possible?

For some submodular functions this problem can be
solved exactly (i.e., with g(n) = 1). As an example,
for graph cut functions, it is easy to see that one
can completely reconstruct the graph in O(n2) queries.
For more general submodular functions, we prove the
following results.
• When f is a rank function of a matroid, we can

compute a function f̂ after a polynomial number
of queries giving an approximation factor g(n) =√

n + 1. Moreover, f̂ is submodular and has a
particularly simple form: f̂(S) =

√∑
i∈S ci for

some c ∈ Rn
+.

• When f is a general monotone submodular func-
tion, we can compute a submodular function f̂ after
a polynomial number of queries giving an approxi-
mation factor g(n) = O(

√
n log n).

• On the other hand, we show that any algorithm per-
forming a polynomial number of queries must sat-
isfy g(n) = Ω(

√
n/ log n), even if f is the rank func-

tion of a matroid. If f is not necessarily monotone,
we obtain the lower bound g(n) = Ω(

√
n/ log n).

Related work. The lower bound mentioned above
was previously described in an unpublished manuscript
by M. Goemans, N. Harvey, R. Kleinberg and V.
Mirrokni. This manuscript also gave a non-adaptive
algorithm that solves Problem 1 when f is monotone
with g(n) = n/(c log n) for any constant c; furthermore,
this is optimal (amongst non-adaptive algorithms).

A subsequent paper of Svitkina and Fleischer [32]
considers several new optimization problems on sub-
modular functions, as well as Problem 1. They give
a randomized algorithm for Problem 1 that applies to a
restricted class of submodular functions. Specifically, if
there exists R ⊆ [n] such that, for every S ⊆ [n], the

value f(S) depends only on |S∩R| and |S∩R̄|, then they
can approximate f everywhere with g(n) = 2

√
n. Addi-

tionally, Svitkina and Fleischer adjusted the parameters
of our lower bound construction, yielding an improved
Ω(

√
n/ log n) lower bound for Problem 1. They also

show that this construction yields nearly-optimal lower
bounds for several other problems that they consider.

Not only is our lower bound applicable to other sub-
modular problems, but our algorithm is too. For exam-
ple, it gives a deterministic O(

√
n log n)-approximation

algorithm for the non-uniform submodular load balanc-
ing problem considered by Svitkina and Fleischer [32],
by reducing it to load balancing on unrelated machines.
This nearly matches the accuracy of their randomized
O(
√

n log n)-approximation algorithm. As another ex-
ample, we can reduce the submodular max-min fairness
problem [11, 19] to the Santa Claus max-min fair alloca-
tion problem [2]. This yields an O(n

1
2 m

1
4 log n log

3
2 m)-

approximation algorithm for the former problem where
m is the number of buyers and n is the number of
items. The existing algorithms for this problem ob-
tain a (n−m + 1)-approximation [11] and a (2m− 1)-
approximation [19]. These applications are discussed in
Section 7.

Techniques. Our approximation results are based
on ellipsoidal approximations to a centrally symmetric
convex body K. An ellipsoid E constitutes a λ-
ellipsoidal approximation of K if E ⊆ K ⊆ λE. John’s
theorem [16, p203] says that there always exists a

√
n-

ellipsoidal approximation. We will elaborate on this fact
in the following section.

One may also consider ellipsoidal approximations
with an algorithmic view. When the body K is given
by a separation oracle, it is known how to construct a√

n(n + 1)-ellipsoidal approximation, using only a poly-
nomial number of separation oracle calls. Details are in
Grötschel, Lovász and Schrijver [12, p124]. Unfortu-
nately, this general result is too weak for our purposes.

In our case, the convex body K is a symmetrized
version of the polymatroid Pf associated with the mono-
tone submodular function f , and we can exploit symme-
tries of this convex body. We show that a (

√
n + 1/α)-

ellipsoidal approximation is achievable for α ≤ 1, pro-
vided one can design a α2-approximation algorithm
for the problem of maximizing a convex, separable,
quadratic function over Pf . When f is the rank func-
tion of a matroid, this quadratic maximization problem
can be solved easily and exactly in polynomial time (us-
ing the greedy algorithm), and this gives our

√
n + 1-

approximation for rank functions of matroids. For gen-
eral monotone submodular functions, the problem of
maximizing (the square root of) a convex, separable,

quadratic function over a polymatroid Pf is equivalent
to the Euclidean norm maximization problem (finding
a vector of largest Euclidean norm) over a scaling of
the polymatroid Pf . To tackle this latter problem, we
proceed in two steps. We first show that a classical
greedy algorithm provides a (1−1/e)-approximation al-
gorithm for the maximum Euclidean norm problem over
a (unscaled) polymatroid Pg; the analysis relies on the
Nemhauser et al. [27] analysis of the greedy algorithm
for maximizing a submodular function over a cardinality
constraint. We then show that any scaled polymatroid
Q can be approximated by a polymatroid Pg at a loss
of a factor O(log n) (modulo a reasonable condition on
the scaling): 1

O(log n)Pg ⊆ Q ⊆ Pg. This step involves
properties of submodular functions (e.g., Lovász exten-
sions) and polymatroids. Putting these pieces together,
we get a O(

√
n log n)-approximation for any monotone

submodular function everywhere.

2 Ellipsoidal Approximations

In this section, we state and review facts about ellip-
soids, we discuss approximations of convex bodies by
inscribed and circumscribed ellipsoids, and we build an
algorithmic framework that we need for our approxi-
mation result. We focus on centrally symmetric convex
bodies; in this case, one can exploit polarity to easily
switch between inscribed and circumscribed ellipsoids.

In this paper, all matrices that we discuss are n×n,
real and symmetric. If a matrix A is positive definite
we write A Â 0, and if A is positive semi-definite we
write A < 0. Let A Â 0 and let A1/2 be its (unique)
symmetric, positive definite square root: A = A1/2A1/2.
We define the ellipsoidal norm ‖·‖A in Rn by ‖x‖A =√

xT Ax. Let Bn denote the (closed, Euclidean) unit ball
{x ∈ Rn : ‖x‖ ≤ 1}, and let Vn denote its volume. Given
A Â 0, let E(A) denote the ellipsoid (centered at the
origin)

E(A) = {x ∈ Rn : xT Ax ≤ 1 } = {x : ‖x‖A ≤ 1 }.
It is the image of the unit ball by a linear map: E(A) =
A−1/2 (Bn). The volume of E(A) is Vn/ det(A1/2).
Given c ∈ Rn, we have that

max{ cTx : x ∈ E(A) } =
√

cT A−1c = ‖c‖A−1 .

Minimum volume circumscribed ellipsoid. Let
K be a centrally symmetric (x ∈ K iff −x ∈ K) convex
body (compact convex set with non-empty interior) in
Rn. The minimum volume ellipsoid circumscribing K
(i.e. containing K) is often referred to as the Löwner
ellipsoid and can be formulated as a semi-infinite pro-
gram:

(2.1)
min{− log det(A) : ‖x‖2A ≤ 1 ∀x ∈ K

A Â 0 }

where the variables are the symmetric matrix A. Ob-
serve that the constraints are linear in A: ‖x‖2A =
xT Ax ≤ 1. One of the main reasons for taking the log
of the volume of the ellipsoid in the objective function is
that the determinant of a matrix is strictly log-concave
over positive definite matrices.

Lemma 1. (Fan [8]1) Let A,B Â 0, A 6= B, and 0 <
λ < 1. Then

log det
(
λA+(1−λ)B

)
> λ log det A + (1−λ) log det B.

The program (2.1) has therefore a strictly convex
objective function (in A) and an infinite number of
linear inequalities (in A), and is thus a “nice” convex
program. In particular, we can solve the program
efficiently provided we can separate over the constraints
‖x‖2A ≤ 1. If the convex body K is polyhedral then
we only need to write the constraints ‖x‖2A ≤ 1 for
its vertices since the maximization of a convex function
xT Ax (in x) over a polyhedral set K is always attained
by a vertex. A case of particular interest is when K
is defined as the convex hull of a given set of points
[17, 20]; this case relates to optimal design problems in
statistics.

The strict log-concavity of the determinant shows
that the program (2.1) has a unique optimum solution,
since a strict convex combination of any two distinct
optimum solutions would give a strictly better solu-
tion. This shows that the minimum volume ellipsoid
is unique, a result which is attributed to Löwner, and
also follows from John’s proof [16].

Maximum volume inscribed ellipsoid. Using po-
larity, we can derive a similar formulation for the maxi-
mum volume ellipsoid inscribed in K (contained within
K). For a convex body K, its polar K∗ is defined as
{c ∈ Rn : cT x ≤ 1 for all x ∈ K}. Observe that the po-
lar of Bn is Bn itself, and, more generally, the polar of
E(A) is E(A−1). Furthermore, for two convex bodies K
and L, we have that L ⊆K iff K∗ ⊆ L∗. Thus, the max-
imum volume ellipsoid E(A) inscribed in K corresponds
to the minimum volume ellipsoid E(A−1) circumscrib-
ing K∗. The maximum volume inscribed ellipsoid is of-
ten called the John ellipsoid, although this attribution
is somewhat inaccurate since John [16] actually consid-
ers only circumscribed ellipsoids. However, as remarked
above, circumscribed and inscribed ellipsoids are inter-
changeable notions in the centrally symmetric case, so
the inaccuracy is forgivable. The John ellipsoid E(A)
can be formulated by the following convex semi-infinite

1Fan does not actually state the strict inequality, although his
proof does show that it holds.

program polar to (2.1), which maximizes a concave func-
tion over a convex set.

max{ log det(A−1) : ‖c‖2A−1 ≤ 1 ∀c ∈ K∗

A−1 Â 0 }
Again, if K is polyhedral, we only need to write the
constraint ‖c‖2A−1 ≤ 1 for c such that cT x ≤ 1 defines
a facet of K.

John’s theorem. John’s theorem, well-known in the
theory of Banach spaces, says that K is contained in√

n·E(A), where E(A) is the maximum volume ellipsoid
inscribed in K; in other words, ‖x‖A ≤

√
n for all x ∈K.

In terms of Banach spaces, this says that the (Banach-
Mazur) distance between any n-dimensional Banach
space (whose unit ball is K) and the n-dimensional
Hilbert space ln2 is at most

√
n.

E(A)
−z

z
John’s theorem

can be proved in sev-
eral ways. See, for
example, Ball [4] or
Matoušek [24, §13.4].
We adopt a more algo-
rithmic argument. Suppose there is an element z ∈ K
with ‖z‖A >

√
n. Then the following lemma gives an

explicit construction of an ellipsoid of strictly larger
volume that is contained in the convex hull of E(A),
z and −z, as illustrated in the figure. The resulting
ellipsoid is larger since kn(l) > 1 for l > n. This proves
John’s theorem.

Lemma 2. For A Â 0 and z ∈ Rn with l = ‖z‖2A ≥ n,
let

L(A, z) =
n

l

l − 1
n− 1

A +
n

l2

(
1− l − 1

n− 1

)
AzzT A.

Then L(A, z) is positive definite, the ellipsoid
E(L(A, z)) is contained in conv{E(A), {z,−z}},
and its volume vol(E(L(A, z)) equals kn(l) · vol(E(A))
where

kn(l) =

√(
l

n

)n (
n− 1
l − 1

)n−1

.

In this extended abstract, most proofs are deferred
to the full version. Actually, the lemma also follows
from existing results by considering the polar statement,
which says there exists an ellipsoid E(B−1) containing

(2.2) E(A−1) ∩ {
x : −1 ≤ zT x ≤ 1

}

such that vol(E(B−1)) < vol(E(A−1)), assuming
‖z‖A >

√
n. See, for example, Grötschel, Lovász

and Schrijver [12, p72], Bland, Goldfarb and Todd
[5, p1056], and Todd [33]. In fact, Todd derives

an expression for the minimum volume ellipsoid con-
taining (2.2), which is precisely B = L(A, z). This
shows that E(L(A, z)) is indeed the John ellipsoid for
conv{E(A), {z,−z}}.

3 Algorithm for Axis-Aligned Convex Bodies

In this section, we consider the question of constructing
ellipsoidal approximations efficiently, we show how to
exploit symmetries of the convex body, and we relate
ellipsoidal approximations to the problem of approxi-
mating a submodular function everywhere.

We say that E(A) is a λ-ellipsoidal approximation
to K if E(A) ⊆ K and K ⊆ λE(A). The John ellipsoid
is therefore a

√
n-ellipsoidal approximation to a convex

body K, and so is 1/
√

n times the Löwner ellipsoid.
These are existential results. Algorithmically, the sit-
uation very much depends on how the convex body is
given. If it is a polyhedral set given explicitly as the
intersection of halfspaces then the convex program for
the John’s ellipsoid given above has one constraint for
each given inequality and can be solved approximately,
to within any desired accuracy. This gives an alter-
nate way to derive the result of Grötschel, Lovász and
Schrijver giving in polynomial-time a

√
n + 1-ellipsoidal

approximation to a symmetric convex body K given ex-
plicitly by a system of linear inequalities. However, if K
is given by a separation oracle and comes with the as-
sumption of being well-bounded2 then the best (known)
algorithmic result is a polynomial-time algorithm giving
only a

√
n(n + 1)-ellipsoidal approximation (Grötschel,

Lovász, Schrijver [12], Theorem 4.6.3), and this will be
too weak for our purpose. In fact, as was pointed out
to us by José Soto, no algorithm, even randomized, can
produce an approximation better than Õ(n) for general
centrally symmetric convex bodies.

The proof given above of John’s theorem can be
made algorithmic if we have an α-approximation algo-
rithm (α ≤ 1) for maximizing ‖x‖A over x ∈ K and
we are willing to settle for a

√
n + 1/α-ellipsoidal ap-

proximation. In fact, we only need an α-approximate
decision procedure which, given A Â 0 with E(A) ⊆ K,
either returns an x ∈ K with ‖x‖A >

√
n + 1 or guar-

antees that every x ∈ K satisfies ‖x‖A ≤ √
n + 1/α.

Assume we are given an ellipsoid E0 ⊆ K such that
K ⊆ pE0 (p is for example R/r in the definition of well-
boundedness, and for our application, we will be able
to use p = n). Iteratively, we find larger and larger
(multiplicatively in volume) ellipsoids guaranteed to be
within K. Given an ellipsoid Ej = E(Aj) at iteration j,

2As part of the input of this centrally symmetric convex body,
we get R ≥ r > 0 such that B(0, r) ⊆ K ⊆ B(0, R), and the
running time can thus involve log(R/r) polynomially.

suppose we run our α-approximate decision procedure
for maximizing ‖x‖A over K. Either (i) it returns a vec-
tor z ∈ K with ‖z‖Aj >

√
n + 1 or (ii) it guarantees

that no x ∈ K satisfies ‖x‖Aj
>
√

n + 1/α. In case of
(ii), we have a

√
n + 1/α-ellipsoidal approximation. In

case of (i), we can use Lemma 2 to find a larger ellipsoid
Ej+1 = E(Aj+1) also contained within K, and we can
iterate. Our choice of the threshold

√
n + 1 for the norm

guarantees that vol(Ej+1)/vol(Ej) ≥ 1+ 1
4n2 −O(1/n3),

as stated in the lemma below. This increase in vol-
ume (and the fact that K ⊆ pE0) guarantees that
the number of iterations of this algorithm is at most
O(n2 log(pn)) = O(n3 log p). One can get a smaller num-
ber of iterations with a higher threshold for the norm,
see the Lemma below.

Lemma 3. For the function kn(l) given in Lemma 2,
we have
• kn(n + 1) = 1 + 1

4n2 −O(1/n3),

• kn(2n) =
√

2e−1/4 − o(1) > 1.

Ellipsoidal approximations for symmetrized
polymatroids. Before we proceed, we describe the
relationship between the problem of approximating a
submodular function everywhere and these ellipsoidal
approximations of centrally symmetric convex bodies.

For a monotone, submodular function f : 2[n] → R
with f(∅) = 0, its polymatroid Pf ⊆ Rn is defined by:

P (f) =

{
x(S) ≤ f(S), ∀S ⊆ [n]
x ≥ 0

}

where x(S) =
∑

i∈S xi. To make it centrally symmetric,
let S(Q) = {x ∈ Rn : |x| ∈ Q }, where |x| denotes
component-wise absolute value. It is easy to see that, if
f({i}) > 0 for all i then S(Pf) is a centrally symmetric
convex body. (If there exists an index i with f({i}) =
0, we can simply get rid of it as monotonicity and
submodularity imply that f(S) = f(S − i) for all S
with i ∈ S.) Suppose now that E(A) is a λ-ellipsoidal
approximation to S(Pf). This implies that, for any
c ∈ Rn,

‖c‖A−1 = max{cT x : x ∈ E(A)}
≤ max{cT x : x ∈ S(Pf)}
≤ λ max{cT x : x ∈ E(A)} = λ‖c‖A−1 .

In particular, taking c = 1S (the indicator vector for S)
for any S ⊆ [n], we get that

‖1S‖A−1 ≤ f(S) ≤ λ‖1S‖A−1 ,

where we have used the fact that max{1T
Sx : x ∈ Pf} =

f(S). Thus the function f̂ defined by f̂(S) = ‖1S‖A−1

provides a λ-approximation to f(S) everywhere. In
summary, a λ-ellipsoidal approximation to S(Pf) gives
a λ-approximation to f(·) everywhere.

Symmetry invariance. However, to be able to get
a good ellipsoidal approximation, we need to exploit
the symmetries of S(Pf). Observe that if a centrally
symmetric convex body K is invariant under a linear
transformation T (i.e. T (K) = K) then, by uniqueness,
the maximum volume inscribed ellipsoid E should also
be invariant under T . More generally, define the
automorphism group of K by Aut(K) = {T (x) = Cx :
T (K) = K}. Then the maximum volume ellipsoid E
inscribed in K satisfies T (E) = E for all T ∈ Aut(K),
see for example [13]. In our case, Aut(S(Pf)) contains
all transformations T of the form T (x) = Cx where C is
a diagonal ±1 matrix. We call such convex bodies axis
aligned. This means that the maximum volume ellipsoid
E(A) inscribed in S(Pf) is also axis aligned, implying
that A is a diagonal matrix.

Algorithm for axis-aligned convex bodies. Un-
fortunately, the algorithmic version of John’s theorem
presented above does not maintain axis-aligned ellip-
soids. Indeed, for a diagonal matrix A, Lemma 2
does not produce an axis-aligned ellipsoid E(L(A, z)).
However, we can use the following proposition to
map E(L(A, z)) to an ellipsoid of no smaller volume
(which shows that the maximum volume ellipsoid is axis
aligned). We need some notation. For a vector a ∈ Rn,
let Diag(a) be the diagonal matrix with main diagonal
a; for a matrix A ∈ Rn×n, let diag(A) ∈ Rn be its main
diagonal.

Proposition 3.1. Let K be an axis-aligned convex
body, and let E(A) be an ellipsoid inscribed in K.
Then the ellipsoid E(B) defined by the diagonal matrix
B = (Diag(diag(A−1)))−1 satisfies (i) E(B) ⊆ K and
(ii) vol(E(B)) ≥ vol(E(A)).

(ii) is a restatement of Hadamard’s inequality (ap-
plied to A−1) which says that for a positive definite ma-
trix C, det(C) ≤ ∏n

i=1 cii. To prove (i), one can show
that E(B) ⊆ conv{T (E(A)) : T ∈ Aut(K)}.

Proposition 3.1 shows that, for an axis-aligned
convex body such as S(Pf), we can maintain throughout
the algorithm axis-aligned ellipsoids. This has two
important consequences. First, this means that we only
need an α-approximate decision procedure for the case
when A is diagonal. To emphasize this, we rename
A by D. Recall that such a procedure, when given a
D Â 0 with E(D) ⊆ S(Pf), either outputs a vector
x ∈ S(Pf) with ‖x‖D >

√
n + 1 or guarantees that

‖x‖D ≤ √
n + 1/α for all x ∈ S(Pf). In section 4, we

show that, for rank functions of matroids, max{‖x‖D :

Algorithm Axis-Aligned-Ellipsoidal-Approx
. Let E0 = E(D0) be an axis-aligned ellipsoid inscribed in S(Pf). One can choose D0 = Diag(v) where

vi = n/f({i})2 for i ∈ [n].
. j ← 0.
. While Max-Norm(D) returns a vector z with ‖z‖Dj

>
√

n + 1 do
. B ← L(Dj , z)
. Dj+1 ← (Diag(diag(B−1)))−1

. j ← j + 1
. Return the function f̂ given by f̂(S) =

√∑
i∈S pi where p = diag(D−1

j).

Figure 1: The algorithm for constructing a function f̂ which is a
√

n + 1/α-approximation to f .

x ∈ S(Pf)} can be solved exactly (thus α = 1) and
efficiently (in polynomial time and with polynomially
many oracle calls), while in Section 5, we describe
an efficient 1/O(log n)-decision procedure for general
monotone submodular functions. Secondly, the function
f̂ we construct based on an ellipsoidal approximation
takes a particularly simple form when the ellipsoid
E(D) is given by a diagonal matrix D. In this case,
f̂(S) = ‖1S‖D−1 reduces to:

f̂(S) =
√∑

i∈S

pi,

where pi = 1/Dii for i ∈ [n]. Observe that this
approximation f̂ is actually submodular (while this was
not necessarily the case for non axis-aligned ellipsoids).

Summarizing, Figure 1 gives our algorithm for
constructing a

√
n + 1/α-ellipsoidal approximation of

S(Pf) and thus a
√

n + 1/α-approximation to f ev-
erywhere, given an α-approximate decision procedure
Max-Norm(D) for maximizing ‖x‖D over S(Pf) (or
equivalently over Pf , by symmetry) for a positive defi-
nite diagonal matrix D (i.e. dii > 0).

One can easily check that the ellipsoid E0 = E(D0)
given in the algorithm is an n-ellipsoidal approximation:
it satisfies E0 ⊆ S(Pf) and S(Pf) ⊆ nE0.

Theorem 4. If Max-Norm(D) is an α-approximate
decision procedure for max{‖x‖D : x ∈ Pf} then Axis-
Aligned-Ellipsoidal-Approx outputs a

√
n + 1/α-

approximation to f everywhere after at most O(n3 log n)
iterations.

4 Matroid Rank Functions

Let M = ([n], I) be a matroid and I its family of
independent sets. Let f(·) be its rank function: f(S) =
max{|U | : U ⊆ S,U ∈ I} for S ⊆ [n]. f is monotone
and submodular and the corresponding polymatroid Pf

is precisely the convex hull of characteristic vectors of
independent sets (Edmonds [7]).

For a matroid rank function f , the problem
max{‖x‖D : x ∈ Pf} can be solved exactly in
polynomial-time and with a polynomial number of or-
acle calls, when D is a positive definite, diagonal ma-
trix. Indeed, maximizing ‖x‖D is equivalent to max-
imizing its square: max

{∑
i dix

2
i : x ∈ Pf

}
, where

d = diag(D). This is the maximization of a convex
function over a polyhedral set, and therefore the maxi-
mum is attained at one of the vertices. But any ver-
tex x of Pf is a 0 − 1 vector [7] and thus satisfies
x2

i = xi. The problem is thus equivalent to maximizing
the linear function

∑
i dixi over Pf which can be solved

in polynomial-time by the greedy algorithm for find-
ing a maximum weight independent set in a matroid.
Therefore, Axis-Aligned-Ellipsoidal-Approx gives
a
√

n + 1-approximation everywhere for rank functions
of matroids.

We should emphasize that the simple approach of
linearizing x2

i by xi would have failed if our ellipsoids
were not axis aligned, i.e., if D were not diagonal. In
fact, the quadratic spanning tree problem, defined as
max{‖x‖D : x ∈ Pf} where Pf is a graphic matroid
polytope and D is a symmetric, non-diagonal matrix, is
NP-hard as it includes the Hamiltonian path problem
as a special case [3]. We remark that NP-hardness holds
even if D is positive definite.

5 General Monotone Submodular Functions

In this section, we present a 1/O(log n)-approximate
decision procedure for max{‖x‖D : x ∈ Pf} for a general
monotone submodular function f . Taking squares, we
rewrite the problem as:

(5.3) max

{
n∑

i=1

c2
i x

2
i : x ∈ Pf

}
,

where we let c = diag(D1/2). Assuming that the
ellipsoid E(D) is inscribed in S(Pf), we will either find
an x ∈ Pf for which

∑n
i=1 c2

i x
2
i > n + 1 or guarantee

that no x ∈ Pf gives a value greater than (n + 1)/α2,

where α = 1/O(log n).
We first consider the case in which all ci = 1, and

derive a (1 − 1/e)2-approximation algorithm for (5.3).
Consider the following greedy algorithm. Let T0 = ∅,
and for every k = 1, · · · , n, let

Tk = arg max
S=Tk−1∪{j}, j /∈Tk−1

f(S),

that is, we repeatedly add the element which gives the
largest increase in the submodular function value. Let
x̂ ∈ Pf be the vector defined by x̂(Tk) = f(Tk) for
1 ≤ k ≤ n; the fact that x̂ is in Pf is a fundamental
property of polymatroids. We claim that x̂ provides a
(1− 1/e)2-approximation for (5.3) when all ci’s are 1.

Lemma 5. For the solution x̂ constructed above, we
have

n∑

i=1

x̂2
i ≥

(
1− 1

e

)2

max

{
n∑

i=1

x2
i : x ∈ Pf

}
.

Proof. Nemhauser, Wolsey and Fisher [27] show that,
for every k ∈ [n], we have

f(Tk) ≥
(

1− 1
e

)
max

S:|S|=k
f(S).

Let h(k) = f(Tk) for k ∈ [n]; because of our greedy choice
and submodularity of f , h(·) is concave. Define the
monotone submodular function ` by `(S) = e

e−1h(|S|).
The fact that ` is submodular comes from the concavity
of h. Observe that, for every S, f(S) ≤ `(S), and
therefore, Pf ⊆ P` and

max

{
n∑

i=1

x2
i : x ∈ Pf

}
≤ max

{
n∑

i=1

x2
i : x ∈ P`

}
.

By convexity of the objective function, the maximum
over P` is attained at a vertex. But all vertices of
P` are permutations of the coordinates of e

e−1 x̂ (or are
dominated by such vertices), and thus

max

{
n∑

i=1

x2
i : x ∈ Pf

}
≤

(
e

e− 1

)2
(

n∑

i=1

x̂2
i

)
.

¤
We now deal with the case when the ci’s are

arbitrary. First our guarantee that the ellipsoid E(D)
is within S(Pf) means that f({i})ei (where ei is the ith
unit vector) is not in the interior of E(D), i.e. we must
have cif({i}) ≥ 1 for all i ∈ [n]. We can also assume
that cif({i}) ≤ √n + 1. If not, x = f({i})ei constitutes
a vector in Pf with

∑
j c2

jx
2
j > n+1. Thus, for all i ∈ [n],

we can assume that 1 ≤ cif({i}) ≤ √
n + 1.

To reduce to the case with ci = 1 for all i, consider
the linear transformation T : Rn → Rn : x → y =
(c1x1, · · · , cnxn). The problem max{∑i c2

i x
2
i : x ∈ Pf}

is equivalent to max{∑i y2
i : y ∈ T (Pf)}. Unfortunately,

T (Pf) is not a polymatroid, but it is contained in the
polymatroid Pg defined by:

g(S) = max

{∑

i∈S

yi : y ∈ T (Pf)

}

= max

{∑

i∈S

cixi : x ∈ Pf

}
.

The fact that g is submodular can be derived either
from first principles (exploiting the correctness of the
greedy algorithm) or as follows. The Lovász extension
f̂ of f is defined as f : Rn → R : w → max{wT x :
x ∈ Pf} (see Lovász [23] or [10]). It is L-convex, see
Murota [25, Prop. 7.25], meaning that, for w1, w2 ∈ Rn,
f̂(w1) + f̂(w2) ≥ f̂(w1 ∨ w2) + f̂(w1 ∧ w2), where ∨
(resp. ∧) denotes component-wise max (resp. min). The
submodularity of g now follows from the L-convexity of
f̂ by taking vectors w obtained from c by zeroing out
some coordinates.

We can approximately (within a factor (1 − 1/e)2)
compute max{∑i y2

i : y ∈ Pg}, or equivalently approx-
imate max{∑i c2

i x
2
i : x ∈ T−1(Pg)}. The question is

how much “bigger” is T−1(Pg) compared to Pf? To an-
swer this question, we perform another polymatroidal
approximation, this time of T−1(Pg) and define the sub-
modular function h by:

h(S) = max

{ ∑

i∈S

xi : x ∈ T−1(Pg)

}

= max

{ ∑

i∈S

1
ci

yi : y ∈ Pg

}
.

Again, h(·) is submodular and we can easily obtain
a closed form expression for it, see Lemma 8. We
have thus sandwiched T−1(Pg) between Pf and Ph:
Pf ⊆ T−1(Pg) ⊆ Ph. To show that all these polytopes
are close to each other, we show the following theorem
whose proof is deferred to the full version:

Theorem 6. Suppose that for all i ∈ [n], we have
1 ≤ cif({i}) ≤ √

n + 1. Then, for all S ⊆ [n], h(S) ≤(
2 + 3

2 ln(n)
)
f(S).

Our algorithm is now the following. Using the
(1 − 1/e)2-approximation algorithm applied to Pg, we
find a vector x̂ ∈ T−1(Pg) such that

∑

i

c2
i x̂

2
i ≥

(
1− 1

e

)2

max

{∑

i

c2
i x

2
i : x ∈ T−1(Pg)

}
.

Now, by Theorem 6, we know that x̃ = x̂/O(log n) is in
Pf . Therefore, we have that

∑

i

c2
i x̃

2
i =

1
O(log2(n))

∑

i

c2
i x̂

2
i

≥ 1
O(log2(n))

max
{∑

i c2
i x

2
i : x ∈ T−1(Pg)

}

≥ 1
O(log2(n))

max
{∑

i c2
i x

2
i : x ∈ Pf

}
,

giving us the required approximation guarantee.
The lemmas below give a closed form expression

for g(·) and h(·); their proofs are used in the proof of
Theorem 6. They follow from the fact that the greedy
algorithm can be used to maximize a linear function
over a polymatroid. Both lemmas apply to any set S
after renumbering its indices. For any i and j, we define
[i, j] = {k ∈N : i≤ k ≤ j} and f(i, j) = f([i, j]). Observe
that f(i, j) = 0 for i > j.

Lemma 7. For S = [k] with c1 ≤ c2 ≤ · · · ≤ ck, we
have g(S) =

∑k
i=1 ci [f(i, k)− f(i + 1, k)] .

Lemma 8. For S = [k] with c1 ≤ · · · ≤ ck, we have:

h(S) =
∑

i,j : 1≤i≤j≤k

ci

cj
·
(
f(i, j)− f(i + 1, j)

−f(i, j − 1) + f(i + 1, j − 1)
)

=
∑

l,m : 1≤l≤m≤k

(cl − cl−1)
(

1
cm

− 1
cm+1

)
f(l, m).

6 Lower Bound

In this section, we show that approximating a submod-
ular function everywhere requires an approximation ra-
tio of Ω

(√
n/ log n

)
, even when restricting f to be a

matroid rank function (and hence monotone). For non-
monotone submodular functions, we show that the ap-
proximation ratio must be Ω

(√
n/ log n

)
.

The argument has two steps:
• Step 1. Construct a family of submodular func-

tions parameterized by natural numbers α > β and
a set R ⊆ [n] which is unknown to the algorithm.

• Step 2. Use discrepancy arguments to determine
whether a sequence of queries can determine R.
This analysis leads to a choice of α and β.

Step 1. Let U be the uniform rank-α matroid on [n];
its rank function is

rU(S) = min {|S|, α} .

Now let R ⊆ [n] be arbitrary such that |R| = α. We
define a matroid MR by letting its independent sets be

IMR
= { I ⊆ [n] : |I| ≤ α and |I ∩R| ≤ β } .

This matroid can be viewed as a partition matroid,
truncated to rank α. One can check that its rank
function is

rMR
(S) = min

{|S|, β + |S ∩ R̄|, α}
.

Now we consider when rU(S) 6= rMR
(S). By the

equations above, it is clear that this holds iff

(6.4) β + |S ∩ R̄| < min {|S|, α} .

Case 1: |S| ≤ α. Eq. (6.4) holds iff β + |S ∩ R̄| < |S|,
which holds iff β < |S ∩ R|. That inequality together
with |S| ≤ α implies that |S ∩ R̄| < α− β.
Case 2: |S| > α. Eq. (6.4) holds iff β + |S ∩ R̄| < α.
That inequality implies that |S∩R| > β+(|S|−α) > β.

Our family of monotone functions is

F = { rMR
: R ⊆ [n], |R| = α } ∪ {rU} .

Our family of non-monotone functions is

F ′ = { rMR
+ h : R ⊆ [n], |R| = α } ∪ {rU + h} ,

where h is the function defined by h(S) = −|S|/2.

Step 2 (Non-monotone case). Consider any algo-
rithm which is given a function f ∈ F ′, performs a se-
quence of queries f(S1), . . . , f(Sk), and must distinguish
whether f = rU + h or f = rMR

+ h (for some R). For
the sake of distinguishing these possibilities, the added
function h is clearly irrelevant; it only affects the ap-
proximation ratio. By our discussion above, the algo-
rithm can distinguish rMR from rU only if one of the
following two cases occurs.
Case 1: ∃i such that |Si| ≤ α and |Si ∩R| > β.
Case 2: ∃i such that |Si| > α and β + |Si ∩ R̄| < α.

As argued above, if either of these cases hold then
we have both |Si ∩R| > β and |Si ∩ R̄| < α− β. Thus

(6.5) |Si ∩R| − |Si ∩ R̄| > 2β − α.

Now consider the family of sets A = {S1, . . . , Sk, [n]}. A
standard result [1, Theorem 12.1.1] on the discrepancy
of A shows that there exists an R such that

∣∣ |Si ∩R| − |Si ∩ R̄| ∣∣ ≤ ε ∀i(6.6a) ∣∣ |[n] ∩R| − |[n] ∩ R̄|
∣∣ ≤ ε,(6.6b)

where ε =
√

2n ln(2k). Eq. (6.6b) implies that |R| =
n/2+ ε′, where |ε′| ≤ ε/2. By definition, α = |R|. So if
we choose β = n/4+ ε then 2β−α > ε. Thus Eq. (6.5)
cannot hold, since it would contradict Eq. (6.6a). This
shows that the algorithm cannot distinguish f = rMR

+h
from f ′ = rU + h.

The approximation ratio of the algorithm is at most
f ′(R)/f(R). We have f ′(R) = |R| − |R|/2 = |R|/2
and f(R) = β − |R|/2 ≤ (n/4 + ε)− (n/2− ε)/2 < 2ε.
This shows that no deterministic algorithm can achieve
approximation ratio better than

f ′(R)
f(R)

=
|R|
4ε

≥ n/2− ε

4ε
= Ω(

√
n/ log k)

Since k = nO(1), this proves the claimed result. If
k = O(n) then the lower bound improves to Ω(

√
n) via

a result of Spencer [30].
The construction of the set R in [1, Theorem 12.1.1]

is probabilistic: choosing R uniformly at random works
with high probability, regardless of the algorithm’s
queries S1, . . . , Sk. This implies that the lower bound
also applies to randomized algorithms.

Step 2 (Monotone case). In this case, we pick α ≈√
n and β = Ω(ln k). The argument is similar to the non-

monotone case except that we cannot apply standard
discrepancy results since they do not construct R with
|R| = α ≈ √

n. Instead, we derive analogous results
using Chernoff bounds. We construct R by picking each
element independently with probability 1/

√
n. With

high probability |R| = Θ(
√

n). We must now bound
the probability that the algorithm succeeds.
Case 1: Given |Si| ≤ α, what is Pr [|Si ∩R| > β]? We
have E [|R ∩ Si|] = |Si|/

√
n = O(1). Chernoff bounds

show that Pr [|R ∩ Si| > β] ≤ exp(−β/2) = 1/k2.
Case 2: Given |Si|> α, what is Pr

[
β + |Si ∩ R̄| < α

]
?

As observed above, this event is equivalent to |Si∩R| >
β + (|Si| − α) =: ξ. Let µ = E

[|Si ∩ R̄|] = |Si|/
√

n.
Note that

ξ

µ
=

log n

|Si|/
√

n
+
√

n ·
(
1− α

|Si|
)
,

which is Ω(log n) for any value of |Si|. A Chernoff bound
then shows that Pr [|Si ∩R| > ξ] < exp(−ξ/2) ≤ 1/k2.

A union bound shows that none of these events oc-
cur with high probability, and thus the algorithm fails
to distinguish rMR from rU. The approximation ra-
tio of the algorithm is at most f ′(R)/f(R) = α/β =
Ω(
√

n/ log k). This lower bound also applies to ran-
domized algorithms, by the same reasoning as in the
non-monotone case. Since k = nO(1), this proves the
desired result.

7 Applications

7.1 Submodular Load Balancing
Let f1, . . . , fm be monotone submodular functions on
the ground set [n]. The non-uniform submodular load
balancing problem is

(7.7) min
V1,...,Vm

max
j

fj(Vj),

where the minimization is over partitions of [n] into
V1, . . . , Vm.

Suppose we construct the approximations
f̂1, . . . , f̂m such that

f̂j(S) ≤ fj(S) ≤ g(n) · f̂j(S) ∀j ∈ [m], S ⊆ [n].

Furthermore, suppose that each f̂j is of the form

f̂j(S) =
√∑

i∈S

cj,i,

for some non-negative real values cj,i. Consider the
problem of finding a partition V1, . . . , Vm that minimizes
maxj f̂j(Vj). By squaring, we would like to solve

(7.8) min
V1,...,Vm

max
j

∑

i∈Vj

cj,i.

This is precisely the problem of scheduling jobs without
preemption on non-identical parallel machines, while
minimizing the makespan. In deterministic polyno-
mial time, one can compute a 2-approximate solution
X1, . . . , Xm to this problem [22], which also gives an
approximate solution to Eq. (7.7).

Formally, let W1, . . . ,Wm be an optimal solution to
Eq. (7.8), let X1, . . . , Xm be a solution computed using
the algorithm of [22], and let Y1, . . . , Ym be an optimal
solution to the original problem in Eq. (7.7). Then we
have 1

2 ·maxj f̂2
j (Xj) ≤ maxj f̂2

j (Wj), and thus

1√
2g(n)

·max
j

fj(Xj) ≤ max
j

fj(Yj).

Thus, the Xj ’s give a (
√

2 g(n))-approximate solution to
Eq. (7.7). Applying the algorithm of Section 5 to con-
struct the f̂j ’s, we obtain an O(

√
n log n)-approximation

to the non-uniform submodular load balancing problem.

7.2 Submodular Max-Min Fair Allocation
Consider m buyers and a ground set [n] of items. Let
f1, . . . , fm be monotone submodular functions on the
ground set [n], and let fj be the valuation function
of buyer j. The submodular max-min fair allocation
problem is

(7.9) max
V1,...,Vm

min
j

fj(Vj),

where the maximization is over partitions of [n] into
V1, . . . , Vm. This problem was studied by Golovin [11]
and Khot and Ponnuswami [19]. Those papers re-
spectively give algorithms achieving an (n − m + 1)-
approximation and a (2m− 1)-approximation. Here we

give a O(n
1
2 m

1
4 log n log

3
2 m)-approximation algorithm

for this problem.
The idea of the algorithm is similar to that of the

load balancing problem. We construct the approxima-
tions f̂1, . . . , f̂m

f̂j(S) ≤ fj(S) ≤ g(n) · f̂j(S) ∀j ∈ [m], S ⊆ [n],

such that f̂j is of the form

f̂j(S) =
√∑

i∈S

cj,i,

for some non-negative real values cj,i. Consider the
problem of finding a partition V1, . . . , Vm that maxi-
mizes minj f̂j(Vj). By squaring, we would like to solve

max
V1,...,Vm

min
j

∑

i∈Vj

cj,i.

This problem is the Santa Claus max-min fair allocation
problem, for which Asadpour and Saberi [2] give a
O(
√

m log3 m) approximation algorithm. Using this,
together with the algorithm of Section 5 to construct the
f̂j ’s, we obtain an O(n

1
2 m

1
4 log n log

3
2 m)-approximation

for the submodular max-min fair allocation problem.

Acknowledgements

The authors thank Robert Kleinberg for helpful discus-
sions at a preliminary stage of this work, José Soto for
discussions on inertial ellipsoids, and Uri Feige for his
help with the analysis of Section 6.

References

[1] N. Alon and J. Spencer. “The Probabilistic Method”. Wiley,
second edition, 2000.

[2] A. Asadpour and A. Saberi. “An approximation algorithm
for max-min fair allocation of indivisible goods”. STOC,
114–121, 2007.

[3] A. Assad and W. Xu. “The Quadratic Minimum Spanning
Tree Problem”. Naval Research Logistics, 39, 1992.

[4] K. Ball. “An Elementary Introduction to Modern Convex
Geometry”. Flavors of Geometry, MSRI Publications, 1997.

[5] R. G. Bland, D. Goldfarb and M. J. Todd. “The Ellipsoid
Method: A Survey”. Operations Research, 29, 1981.

[6] S. Dobzinski and M. Schapira. “An improved approxima-
tion algorithm for combinatorial auctions with submodular
bidders”. SODA, 1064–1073, 2006.

[7] J. Edmonds, “Matroids and the Greedy Algorithm”, Math-
ematical Programming, 1, 127–136, 1971.

[8] K. Fan, “On a theorem of Weyl concerning the eigenvalues
of linear transformations, II”, Proc. Nat. Acad. Sci., 1950.

[9] U. Feige, V. Mirrokni and J. Vondrák, “Maximizing non-
monotone submodular functions”, FOCS, 461–471, 2007.

[10] S. Fujishige, “Submodular Functions and Optimization”,
volume 58 of Annals of Discrete Mathematics. Elsevier,
second edition, 2005.

[11] D. Golovin, “Max-Min Fair Allocation of Indivisible
Goods”. Technical Report CMU-CS-05-144, 2005.

[12] M. Grötschel, L. Lovász, and A. Schrijver, “Geometric Algo-
rithms and Combinatorial Optimization”, Springer Verlag,
second edition, 1993.

[13] O. Güler and F. Gürtina, “The extremal volume ellipsoids
of convex bodies, their symmetry properties, and their
determination in some special cases”, arXiv:0709.707v1.

[14] S. Iwata, L. Fleischer, and S. Fujishige, “A combinatorial,
strongly polynomial-time algorithm for minimizing submod-
ular functions”, Journal of the ACM, 48, 761–777, 2001.

[15] S. Iwata and J. Orlin, “A Simple Combinatorial Algorithm
for Submodular Function Minimization”, SODA, 2009.

[16] F. John. “Extremum problems with inequalities as sub-
sidiary conditions”, Studies and Essays, presented to R.
Courant on his 60th Birthday, January 8, 1948, Inter-
science, New York, 187–204, 1948.

[17] L. G. Khachiyan. “Rounding of polytopes in the real number
model of computation”, Math of OR, 21, 307–320, 1996.

[18] S. Khot, R. Lipton, E. Markakis and A. Mehta. “Inapprox-
imability results for combinatorial auctions with submodu-
lar utility functions”, WINE, 92–101, 2005.

[19] S. Khot and A. Ponnuswami. “Approximation Algo-
rithms for the Max-Min Allocation Problem”. APPROX-
RANDOM, 204–217, 2007.

[20] P. Kumar and E. A. Yıldırım, “Minimum-Volume Enclosing
Ellipsoids and Core Sets”, Journal of Optimization Theory
and Applications, 126, 1–21, 2005.

[21] B. Lehmann, D. J. Lehmann and N. Nisan. “Combinatorial
auctions with decreasing marginal utilities”, Games and
Economic Behavior, 55, 270–296, 2006.

[22] J. K. Lenstra, D. B. Shmoys and E. Tardos. “Approxima-
tion algorithms for scheduling unrelated parallel machines”.
Mathematical Programming, 46, 259–271, 1990.

[23] L. Lovász, “Submodular Functions and Convexity”, in A.
Bachem et al., eds, Mathematical Programmming: The
State of the Art, 235–257, 1983.

[24] J.Matoušek, “Lectures on Discrete Geometry”. Springer,
2002.

[25] K. Murota, “Discrete Convex Analysis”, SIAM Monographs
on Discrete Mathematics and Applications, SIAM, 2003.

[26] H. Narayanan, “Submodular Functions and Electrical Net-
works”, Elsevier, 1997.

[27] G. L. Nemhauser, L. A. Wolsey and M. L. Fisher. “An
analysis of approximations for maximizing submodular set
functions I”. Mathematical Programming, 14, 1978.

[28] A. Schrijver, “Combinatorial Optimization: Polyhedra and
Efficiency”. Springer, 2004.

[29] A. Schrijver, “A combinatorial algorithm minimizing sub-
modular functions in strongly polynomial time”, Journal of
Combinatorial Theory, Series B, 80, 346–355, 2000.

[30] J. Spencer, “Six Standard Deviations Suffice”, Trans. Amer.
Math. Soc., 289, 679–706, 1985.

[31] P. Sun and R. M. Freund. “Computation of Minimum
Volume Covering Ellipsoids”, Operations Research, 52,
690–706, 2004.

[32] Z. Svitkina and L. Fleischer. “Submodular Approximation:
Sampling-Based Algorithms and Lower Bounds”. FOCS,
2008.

[33] M. J. Todd. “On Minimum Volume Ellipsoids Containing
Part of a Given Ellipsoid”. Math of OR, 1982.

[34] J. Vondrák. “Optimal Approximation for the Submodular
Welfare Problem in the Value Oracle Model”. STOC, 2008.

[35] L. A. Wolsey. “An Analysis of the Greedy Algorithm for
the Submodular Set Covering Problem”. Combinatorica, 2,
385–393, 1982.

