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Abstract. In this note we give an alternate proof that a scheduling algorithm of Lawler [E.L.
Lawler, Ann. Discrete Math., 2 (1978), pp. 75–90, E.L. Lawler and J.K. Lenstra, in Ordered Sets,
I. Rival, ed., D. Reidel, 1982, pp. 655–675] finds the optimal solution for the scheduling problem
1|prec|

∑
j
wjCj when the precedence constraints are series-parallel. We do this by using a linear

programming formulation of 1|prec|
∑

j
wjCj introduced by Queyranne and Wang [Math. Oper.

Res., 16 (1991), pp. 1–20]. Queyranne and Wang proved that their formulation completely describes
the scheduling polyhedron in the case of series-parallel constraints; a by-product of our proof of
correctness of Lawler’s algorithm is an alternate proof of this fact. In the course of our proof it
is helpful to use what might be called two-dimensional (2D) Gantt charts. We think these may
find independent use, and to illustrate this we show that some recent work in the area becomes
transparent using 2D Gantt charts.
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1. Introduction. We consider the problem of scheduling n jobs on a single
machine. Each job j must be scheduled for pj units of time, and only one job can be
scheduled at any point in time. We only consider nonpreemptive schedules, in which
all pj units of job j must be scheduled consecutively. Furthermore, the schedule must
obey specified precedence constraints. Precedence constraints are given by a partial
order on the jobs; if i precedes j in the partial order (denoted i→ j), then i must be
completely processed before j can begin its processing. A (possibly negative) weight
wj is associated with job j, and our goal is to find a schedule which minimizes the
sum

∑
j wjCj , where Cj is the time at which job j completes in the given schedule

(the completion time of j). This scheduling problem is denoted 1|prec|∑j wjCj in
the notation of Lawler et al. [6].

The general problem 1|prec|∑j wjCj was shown to be NP-complete by Lenstra
and Rinnooy Kan [7] and Lawler [4]. Nevertheless, special cases are known to be
polynomial-time solvable. In 1978, Lawler [4] gave an O(n log n) time algorithm for
solving 1|prec|∑j wjCj when the given precedence constraints are series-parallel.
Series-parallel precedence constraints can be defined inductively; the base elements are
individual jobs. Given series-parallel constraints on sets of jobs S1 and S2, S1∩S2 = ∅,
the parallel composition of S1 and S2 gives a partial order on S1 ∪ S2 that maintains
the orders on S1 and S2, and if i ∈ S1 and j ∈ S2, then i and j are unordered. The
series composition of S1 and S2 gives a partial order on S1 ∪ S2 that maintains the
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orders on S1 and S2, and if i ∈ S1 and j ∈ S2, then i precedes j in the partial order.
Often series-parallel constraints are given in terms of a binary structure tree, with
the leaves denoting jobs and the internal nodes denoting either a parallel or series
composition of the two corresponding subtrees.

In this note we give an alternate proof of the correctness of Lawler’s algorithm.
We do this by using a linear programming (LP) formulation of 1|prec|∑j wjCj in-
troduced by Queyranne and Wang [11]. Queyranne and Wang proved that their for-
mulation completely describes the scheduling polyhedron in the case of series-parallel
constraints; a by-product of our proof of correctness of Lawler’s algorithm is an al-
ternate proof of this fact. Other proofs of the correctness of Lawler’s algorithm have
been given (see [4, 10, 9], for example), but to the best of our knowledge, ours is the
first duality-based proof.

In the course of our proof it is helpful to use what might be called two-dimensional
(2D) Gantt charts. Although 2D Gantt charts were introduced in a 1964 paper by
Eastman, Even, and Isaacs [2], they seem to have become buried in the literature. We
use these 2D Gantt charts to obtain geometric intuition into the dual of Queyranne
and Wang’s linear programming formulation. We think 2D Gantt charts may find
further uses, and to illustrate this we show that a recent observation of Hall and
Chudak [3] and a recent theorem of Margot, Queyranne, and Wang [8] (discovered
independently by Chekuri and Motwani [1]) are transparent using 2D Gantt charts.

The remainder of the note is structured as follows. In section 2 we introduce 2D
Gantt charts and illustrate their usefulness. In section 3 we review the LP formulation
for 1|prec|∑j wjCj . Finally, in section 4 we turn to the proof of correctness of Lawler’s
algorithm.

2. 2D Gantt charts. We first need the following notation. Let N = {1, . . . , n}
denote the set of all jobs. For any set S of jobs, let w(S) =

∑
j∈S wj and p(S) =∑

j∈S pj .

A traditional Gantt chart has a single dimension of processing time, in which jobs
are represented as blocks of length pj (see Figure 1).

Processing time

Job 1 Job 2 Job 3 Job 4

Fig. 1. A Gantt chart.

In a 2D Gantt chart, we introduce a second axis of weight. The chart starts at the
point (0, w(N)) and ends at (p(N), 0). Each job, say j, is represented by a rectangle
of length pj and height wj whose position is defined by a startpoint and an endpoint.
The startpoint (t, w) of a job is the endpoint of the previous job (or (0, w(N)) for
the first job) while its endpoint is (t + pj , w − wj). See Figure 2 for an illustration
in which job 3 has a negative weight. The total amount of weight that has not been
completed yet at any point in time—the uncompleted work—can be easily read off
from the 2D Gantt chart: this corresponds to the bold line in the figure, and it is
composed of the upper side of each rectangle for the jobs of positive weight and of the
lower side of each rectangle for the jobs of nonpositive weight. The value

∑
j wjCj of

a schedule can then be easily inferred from the 2D Gantt chart; it is simply the area
below the uncompleted work line, as shaded in Figure 3. This is true even if there are
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Processing time

Weight

Job 4
Job 3

Job 2

Job 1

Fig. 2. A 2D Gantt chart. Job 3 has a negative weight.

Processing time

Weight
Job 1

Job 2

Job 3 Job 4

Fig. 3. The area of a schedule.

negative weight jobs since w1p1 +w2(p1 + p2) + · · ·+wn(p1 + p2 + · · ·+ pn) can also
be written as p1(w1 +w2 + · · ·+wn) + p2(w2 +w3 + · · ·+wn) + · · ·+ pnwn. We will
refer to this shaded area as the area of the schedule. Thus minimizing

∑
j wjCj over

nonpreemptive schedules is equivalent to arranging the jobs as shown in the 2D Gantt
chart so as to minimize its area. If we have negative weights and the chart of a given
schedule goes below the x axis, then this means that, by postponing the processing of
the jobs following that point, we can decrease the weighted sum of completion times
arbitrarily and the problem is unbounded. We will see that this is the only possible
situation to make the objective function unbounded; in particular, if the problem is
bounded, then there will not be any idle time in an optimum schedule. As a result,
we will only consider schedules without idle time.

For convenience, we will often draw a line from the startpoint to the endpoint of
the rectangle representing a job. We will denote minus the slope of this line segment
as ρ(j) = wj/pj , and we will sometimes refer to this line segment as the slope of
job j. See Figure 4. We will let ρ(S) denote the slope of a set S of jobs, so that
ρ(S) = w(S)/p(S), where w(S) =

∑
j∈S wj and p(S) =

∑
j∈S pj . The dotted line in

the figure represents ρ(S) for S = {1, 2, 3}. Observe that the area of a schedule is
equal to the area below its slopes plus

∑
j∈N

1
2wjpj . The area below the slopes thus

represents
∑

j∈N wj(Cj− 1
2pj) =

∑
j∈N wjMj , where Mj denotes the mean busy time

of job j, that is, the midpoint between its start and its completion.

To show the usefulness of this concept, we illustrate two recently discovered facts
about 1|prec|∑j wjCj using 2D Gantt charts. First, Hall and Chudak [3] made the
following observation (see Von Arnim, Faigle, and Schrader [14] for the case pj = 1).
Given an instance (p, w,→) of 1|prec|∑j wjCj , where → is the precedence relation,
if one creates a new instance (p′, w′,→′) by setting p′j = wj and w′

j = pj for all j, and
j →′ i iff i → j, then an optimal schedule for (p′, w′,→′) is in the opposite order of
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Processing time

Weight
Job 1

Job 2

Job 3 Job 4

Fig. 4. The slope of jobs and of a set of jobs.

an optimal schedule for (p, w,→) and has the same value. This follows quite simply
by displaying any solution for (p, w,→) on a 2D Gantt chart and flipping the axes to
obtain a solution of the same value for (p′, w′,→′). See Figure 5 for an illustration.

Job 1

Processing time

Weight

Processing time

Weight

Job 2

Job 1

Job 3

Job 3

Job 2

Fig. 5. Illustration of the Hall–Chudak observation.

Also, Margot, Queyranne, and Wang [8] recently showed the following (also dis-
covered independently by Chekuri and Motwani [1]): suppose we have an instance of
1|prec|∑j wjCj such that all weights are nonnegative and for any initial set of jobs
S (i.e., there exists a valid schedule in which all the jobs in S are scheduled before
all jobs in N − S), ρ(S) ≤ ρ(N). Then any valid schedule comes within a factor of 2
of optimal. Given the condition ρ(S) ≤ ρ(N) for any initial set S, using a 2D Gantt
chart it is easy to see that the slopes of the jobs will always remain above the slope of
the entire set of jobs. Thus for any schedule

∑
j wjCj ≥ 1

2w(N)p(N), since its area

will always be at least 1
2w(N)p(N). See Figure 6 for an illustration. But certainly∑

j wjCj ≤ w(N)p(N), so that any schedule is no more than twice the optimal value.

This observation, together with a result of Sidney [12], leads to a 2-approximation
algorithm for general instances of 1|prec|∑j wjCj as observed by Chekuri and Mot-
wani [1]. Sidney [12] shows that if we let S be an initial set of jobs of maximum ρ
value, then there exists an optimum solution to 1|prec|∑j wjCj for which the jobs in
S are processed before any job in N \ S. This result can be shown using 2D Gantt
charts, and this is left as a (nontrivial) exercise to the reader. Chekuri and Motwani
[1] propose to find such a set S (which can be done using parametric maximum flow
techniques), process these jobs first in any valid ordering, and repeat the procedure
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Weight

p(N)

w(N)

Processing time

Fig. 6. Illustration of the Margot, Queyranne, and Wang result.

with the remaining jobs in N \S. Their previous observation together with the result
of Sidney guarantees that the solution they construct is within a factor of 2 of the
optimum.

3. A linear program for 1|prec|∑j wjCj and some preliminaries. We
now turn to proving that a scheduling algorithm of Lawler for 1|prec|∑j wjCj is op-
timal when the precedence constraints are series-parallel. The proof uses the following
linear programming formulation of the problem

Min
∑
j

wj(Mj + pj/2)

subject to

(1)
∑
j∈S

pjMj ≥ 1

2
p(S)2, S ⊆ N,

(2)
1

p(B)

∑
j∈B

pjMj − 1

p(A)

∑
j∈A

pjMj ≥ 1

2
(p(A) + p(B)),

A ⊆ N, B ⊆ N −A, A→ B,

where A→ B means that the precedence constraints enforce that each job in A must
be scheduled before each job in B. In this formulation, Mj represents the mean busy
time of job j. By adopting the convention that ∅ → S for any S, we could simply
get rid of constraint (1). Queyranne and Wang [11] have shown that the completion
time reformulations of constraints (1) and (2) completely describe the scheduling
polyhedron when the precedence constraints are series-parallel (also shown by Von
Arnim, Faigle, and Schrader [14] in the case pj = 1 for all jobs). A by-product of our
proof of correctness of Lawler’s algorithm is an alternate proof of this fact.

To see that constraint (1) is valid, choose any S ⊆ N ; suppose S = {1, . . . , k}.
If the jobs 1, . . . , k are the first jobs scheduled, then simple algebra shows that∑

j∈S pjMj = 1
2p(S)2 (notice that this does not depend on the ordering of the jobs).

In any valid schedule the sum is at least as large, and hence inequality (1) is valid.
More generally, if the jobs in S are continuously scheduled between s and t = s+p(S)
then

∑
j∈S pjMj =

(
s+ 1

2p(S)
)
p(S) =

(
t− 1

2p(S)
)
p(S). Hence in any valid schedule
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in which the jobs in S are scheduled (not necessarily continuously) between s and t,
we have (

s+
1

2
p(S)

)
p(S) ≤

∑
j∈S

pjMj ≤
(
t− 1

2
p(S)

)
p(S).(3)

To see that constraint (2) is valid, choose any A and B obeying the conditions. From
(3), we derive that 1

p(B)

∑
j∈B pjMj ≥ τ + 1

2p(B) and 1
p(A)

∑
j∈A pjMj ≤ τ − 1

2p(A),

where τ is any time between the completion of A and B. Subtracting these two
inequalities gives (2). Note that an inequality of the form (2) is tight exactly when
all jobs in A are processed from time τ − p(A) to τ (for some τ), followed by jobs in
B processed from time τ to time τ + p(B).

To prove the optimality of Lawler’s algorithm, we will construct a feasible solution
to the dual of the linear program above:

Max
1

2

∑
S

p(S)2yS +
1

2

∑
A,B

(p(A) + p(B))zA,B +
1

2

∑
j

wjpj

subject to ∑
S:j∈S

yS +
∑

A,B:j∈B

1

p(B)
zA,B −

∑
A,B:j∈A

1

p(A)
zA,B = ρ(j) ∀j,

yS ≥ 0 ∀S ⊆ N,

zA,B ≥ 0 ∀A ⊆ N,B ⊆ N −A,A→ B.

We will show that our dual solution obeys the complementary slackness conditions
with respect to the Mj constructed by Lawler’s algorithm. Assuming that all pj > 0,
notice that if we have a solution M and (y, z) that obey the complementary slackness
relations, then by the observations above, if yS > 0, then the jobs in S must all appear
at the beginning of the schedule, and if zA,B > 0, then the jobs in A and B are all
scheduled together, with the jobs in A appearing immediately before those in B.

As a warm-up exercise, suppose that ρ(1) ≥ ρ(2) ≥ · · · ≥ ρ(n) ≥ 0, and the
schedule 1, . . . , n is compatible with the precedence constraints. Notice that we require
that the minimum slope ρ(n) be nonnegative; otherwise the problem is unbounded
since we can postpone the processing of this last job arbitrarily. Then the dual solution

y{1} = ρ(1)− ρ(2)

y{1,2} = ρ(2)− ρ(3)

...

y{1,...,n−1} = ρ(n− 1)− ρ(n)

y{1,...,n} = ρ(n)

and all other variables set to zero are feasible and obey the complementary slackness
conditions by the discussion above. Hence the schedule 1, . . . , n is optimal. Notice
that this gives an alternate proof of Smith’s rule [13], which states that scheduling
jobs in order of nonincreasing ρ value gives the optimal schedule for problem instances
without precedence constraints.

We now consider this simple case from the perspective of 2D Gantt charts. We
observe that in this case, the diagonals of the jobs in a 2D Gantt chart representation
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Weight

Processing time

Fig. 7. Illustration of Smith’s rule. Shaded areas indicate the n triangles that account for the
area of the schedule (after 1

2

∑
j
wjpj is included).

of the sequence 1, 2, . . . , n form a piecewise-linear convex function (see Figure 7).
Note also that the area of the schedule can be expressed as

∑
j∈N

1
2wjpj plus the area

below the slopes of the jobs. This area can be decomposed into n triangles, shown
as shaded regions in Figure 7. These triangles are formed by extending the slope
of each job to the y axis. We associate with job j the triangle formed between the
line from the slope of job j and that of the slope of job j + 1 (where we use the y
axis of slope ρ(n + 1) = 0 for job n + 1). Then the “base” of the jth triangle on
the y axis is p({1, . . . , j})(ρ(j) − ρ(j + 1)), and its height is p({1, . . . , j}), so that
its area is exactly 1

2p({1, . . . , j})2(ρ(j) − ρ(j + 1)) = 1
2p({1, . . . , j})2y{1,...,j}, using

the dual solution of the preceding paragraph. Then the total area of the schedule is
1
2

∑
S p(S)2yS + 1

2

∑
j wjpj , or exactly the value of the dual objective function.

4. Lawler’s algorithm. We now turn to Lawler’s algorithm. Lawler’s algorithm
works bottom-up on the series-parallel structure tree of the precedence constraints.
We give the algorithm below, but first we will try to give some intuition on how
the algorithm and our dual construction works. One perspective is that as much as
possible it tries to follow Smith’s rule and makes sure that the jobs in the current
subtree can be maintained in order of nonincreasing ρ, so that the dual solution given
above proves the optimality of the schedule. This may not always be possible, so in
some cases two or more jobs are replaced by a composite job. The composite jobs may
be composed themselves of composite jobs. The weight of a composite job of a set S
of jobs is w(S), and its processing time is p(S), so that ρ(S) = w(S)/p(S). A sequence
of the jobs forming the composite job is given, so that the effect of scheduling the
p(S) time units of the composite job is that the jobs in S are scheduled together in
the given sequence.

To be more specific, suppose we have a parallel composition of two sets of jobs
S1 and S2, such that the ρ values of the jobs in Si can be scheduled in nonincreasing
order. Then the jobs in S = S1 ∪ S2 can be scheduled in nonincreasing ρ order. (We
should stress that, when scheduling in nonincreasing order of ρ values, the slopes of
the jobs form a convex function which starts to increase once we start processing the
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Weight

Processing time

Fig. 8. Slopes in each Si are nonincreasing before performing a series or parallel composition.

Weight

Processing time

a
a

b1 1
2a

3

2b

Fig. 9. An illustration of a composite job c resulting from a series composition of two sets of
jobs. The slope ρ(c) is shown as the bold dashed line.

jobs with negative ρ value; see Figure 8 for an illustration.) However, if we have a
series composition of two sets of jobs S1 and S2, then it is possible that some job
in S2 has ρ value greater than some job in S1. In this case, we create a composite
job c formed of a certain number of jobs of S1 with lowest ρ values and a certain
number of jobs of S2 with greatest ρ value. The crucial property to achieve is that
the slope of the composite job c is no greater than the ρ value of any remaining
job in S1 and no less than the ρ value of any remaining job in S2. The scheduling
of job c is then understood to mean that the jobs taken from S1 are scheduled in
order of nonincreasing ρ, followed immediately by the jobs taken from S2 in order of
nonincreasing ρ.

There is a unique way of performing this aggregation of jobs, as one can easily
see from the 2D Gantt chart. Consider, for example, the situation in Figure 9. In
this case, there is the series composition of four jobs in S1 (the four jobs to the left
of the vertical line, which we will call the dividing line) and three jobs in S2. Note
that both S1 and S2 can be scheduled according to Smith’s rule, so that the slopes of
the jobs in each form a piecewise-linear convex function. A composite job c is formed
from a3, a2, a1, b1, and b2. In general, the composite job is formed by the jobs whose
slopes do not participate in the lower envelope of the slopes in S1 and in S2.
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In Lawler’s algorithm, for a series composition of S1 and S2, the composite job
was obtained by repeatedly combining two jobs at a time. More precisely, let j1 be
the job in S1 that minimizes ρ(j), and let j2 be the job in S2 that maximizes ρ(j).
If ρ(j1) ≥ ρ(j2), then S = S1 ∪ S2 can be scheduled in nonincreasing ρ order, and
we stop. Otherwise, we remove j1 from S1 and j2 from S2 and form a composite job
c = (j1, j2). As long as there is a job j in S1 whose ρ value is lower than ρ(c) or a job
j in S2 whose ρ value is greater than ρ(c), we remove j from S1 or S2 and add it to
the composite job c. When this terminates, ρ(j) ≥ ρ(c) for all jobs remaining in S1

(if any), and ρ(c) ≥ ρ(j) for any job j remaining in S2 (if any).

When performing a series composition of S1 and S2 which concatenates jobs
ak, ak−1, . . . , a1 ∈ S1 (where ρ(ai) ≥ ρ(ai−1)) and jobs b1, b2, . . . , b� ∈ S2 (where
ρ(bi) ≥ ρ(bi+1)) into a single job c, we define the z variables in such a way that the
ρ value of ai effectively increases to ρ(c) and the ρ value of bj effectively decreases to
ρ(c). More formally, we construct dual variables zA,B ≥ 0 such that zA,B > 0 only
if A ⊆ S1, B ⊆ S2, the jobs in A appear immediately before B in the schedule, and
such that for all ai,

ρ(c) = ρ(ai) +
∑

A,B:ai∈A

1

p(A)
zA,B ,

and for all jobs bj ,

ρ(c) = ρ(bj)−
∑

A,B:bj∈B

1

p(B)
zA,B .

All the jobs composing c now look identical in terms of ρ values. Later on, if we set a
variable zA,B , or even yS , involving the composite job c, we simply need to replace c
by the set of jobs (or by the set of composite jobs and proceed recursively) to get the
appropriate dual solution. In particular, if an ai or bj is itself a composite job formed
in a previous series composition, applying the argument recursively ensures that all
the (original) jobs that compose c look identical in terms of ρ values. In the process of
defining zA,B , we need to ensure that the contribution of these newly defined variables
to the dual objective function corresponds exactly to the area between the slope of
the composite job c and the slopes of the jobs composing c (the area shaded on Figure
12); this is the area of the schedule which is lost by replacing the jobs composing c into
a single composite job. If we can show that these newly defined variables account for
this lost area, then by induction it suffices to show that, at the end, after processing
the root of the series-parallel structure tree, we can account for the area below the
resulting schedule, and this will follow from our discussion of Smith’s rule from section
3.

The z variables are defined as follows. Let Ai = {a1, . . . , ai} for i ≤ k and
Bj = {b1, . . . , bj} for j ≤ �. We set z = 0 and give the procedure shown in Figure 10
for computing zi,j ≡ zAi,Bj , where we use the convention that Ak+1 ≡ Ak, B�+1 ≡ B�,
ρ(ak+1) ≡ ρ(b�+1) ≡ ρ(Ak ∪ B�). As stated above, we need to show that z ≥ 0, that
for job ai

ρ(Ak ∪B�)−
∑

r,s:ai∈Ar

1

p(Ar)
zr,s = ρ(ai),



290 MICHEL X. GOEMANS AND DAVID P. WILLIAMSON

1. for i← 1 to k
2. αi ← ρ(ai+1)p(Ai+1)− w(Ai+1)
3. for j ← 1 to �
4. βj ← w(Bj+1)− ρ(bj+1)p(Bj+1)
5. i← 1
6. j ← 1
7. x← 0
8. while i ≤ k and j ≤ �
9. if αi < βj
10. zi,j ← αi − x
11. x← αi

12. i← i+ 1
13. else
14. zi,j ← βj − x
15. x← βj
16. j ← j + 1

Fig. 10. Procedure for computing zi,j .

and that for job bj

ρ(Ak ∪B�) +
∑

r,s:bj∈Bs

1

p(Bs)
zr,s = ρ(bj).

Before we formally prove the correctness of these values for zi,j , we use 2D Gantt
charts to give some intuition of where these values come from. In the situation
depicted in Figure 9, we extend the slopes of a3, a2, and b2 to intersect the dividing
line: these extensions are shown as dashed lines. If we think of the origin of the
dividing line as the point at which a1 and b1 touch, then αi is the point on the
dividing line at which the slope extended from job ai+1 touches the dividing line.
Similarly, βi is the point on the dividing line at which the slope extended from job
bi+1 touches the dividing line. See Figure 11 for a blowup of the dividing line. Then
the zi,j are computed by walking down the dividing line from the origin to the next
point on the line: zi,j is the difference between the current point and the last one,
and i gets incremented if an α is encountered, whereas j gets incremented if a β is
encountered. Now observe that 1

2

∑
i,j(p(Ai) + p(Bj))zi,j expresses exactly the area

above the slope of composite job c but underneath the slopes of the jobs ai and bi,
as needed. To see this, observe that the shaded area in Figure 11 is the area of two
triangles, each with base z2,1 = β1−α1, one of height p(A2) and one of height p(B1),
for a total area of 1

2z2,1(p(A2) + p(B1)). The area between the lower envelope and
the slopes of the jobs can be expressed as the sum of pairs of triangles like this pair,
as shown in Figure 12.

We now turn to the formal proof of the correctness of the dual variables. To show
that z ≥ 0, note that by construction zi,j is either αi−αi−1, βj − βj−1, αi− βj−1, or
βj − αi−1. In the last two cases, it follows immediately that zi,j ≥ 0: in the previous
iteration of the program (when x was set to βj−1 (resp., αi−1)), it was the case that
αi ≥ βj−1 (resp., βj > αi−1). In the first case,
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3a
a2

a

b1

1

b2

α

α

α = β

1

1

3 2

2

β

0

Fig. 11. A blowup of the dividing line, and intersections of it with extensions of slopes of the
ai and bi, resulting in the αi+1 and βi+1. By construction z2,1 = β1 −α1 and the gray shaded area
is the sum of two triangles of base z2,1 and heights p(A2) and p(B1), resp.

a1

b1

2b

a2

3a

Fig. 12. An illustration showing that the area between the slope of a composite job and its
constituent jobs can be expressed as the sum of the area of pairs of triangles.

αi − αi−1 = ρ(ai+1)p(Ai+1)− ρ(ai)p(Ai) + w(Ai)− w(Ai+1)

= p(Ai)(ρ(ai+1)− ρ(ai)) + ρ(ai+1)p(ai+1)− w(ai+1)

= p(Ai)(ρ(ai+1)− ρ(ai))

≥ 0.
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In the second case,

βj − βj−1 = w(Bj+1)− w(Bj) + ρ(bj)p(Bj)− ρ(bj+1)p(Bj+1)

= p(Bj)(ρ(bj)− ρ(bj+1))− ρ(bj+1)p(bj+1) + w(bj+1)

= p(Bj)(ρ(bj)− ρ(bj+1))

≥ 0.

To see that

ρ(Ak ∪B�)−
∑

r,s:ai∈Ar

1

p(Ar)
zr,s = ρ(ai)

for job ai, first observe that by construction

∑
r,s:ai∈Ar

1

p(Ar)
zr,s =

∑
r:ai∈Ar

1

p(Ar)

∑
s

zr,s =

k∑
r=i

1

p(Ar)
(αr − αr−1).

Thus we have

ρ(Ak ∪B�)−
∑

r,s:ai∈Ap

1

p(Ar)
zr,s = ρ(Ak ∪B�)−

k∑
r=i

1

p(Ar)
(αr − αr−1)

= ρ(Ak ∪B�)−
k∑

r=i

1

p(Ar)
(p(Ar)(ρ(ar+1)− ρ(ar)))

= ρ(Ak ∪B�)− (ρ(Ak ∪B�)− ρ(ai))

= ρ(ai).

Showing that

ρ(Ak ∪B�) +
∑

r,s:bj∈Bs

1

p(Bs)
zr,s = ρ(bj)

for job bj is similar. First we observe that

∑
r,s:bj∈Bs

1

p(Bs)
zr,s =

�∑
s=j

1

p(Bs)
(βs − βs−1),

so that

ρ(Ak ∪B�) +
∑

r,s:bj∈Bs

1

p(Bs)
zr,s = ρ(Ak ∪B�) +

�∑
s=j

1

p(Bs)
(βs − βs−1)

= ρ(Ak ∪B�) +

�∑
s=j

1

p(Bs)
(p(Bs)(ρ(bs)− ρ(bs+1)))

= ρ(Ak ∪B�) + (ρ(bj)− ρ(Ak ∪B�))

= ρ(bj).

After processing the root of the series-parallel structure tree, we are left with
the final set of jobs c1, c2, . . . , ck returned by the algorithm (some of them possibly
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composite jobs), with ρ(c1) ≥ ρ(c2) ≥ · · · ≥ ρ(ck), and the jobs scheduled as ordered.
Let J(ci) denote the set of all the actual jobs contained in the job ci. There are two
possibilities. Either ρ(ck) ≥ 0 or ρ(ck) < 0. In the first case, we can set

yJ(c1) = ρ(c1)− ρ(c2)

yJ(c1)∪J(c2) = ρ(c2)− ρ(c3)

...

y∪k−1
i=1

J(ci)
= ρ(ck−1)− ρ(ck)

y∪k
i=1

J(ci) = ρ(ck),

so that complementary slackness is obeyed for the y variables with respect to the
schedule, and so that for any given actual job j ∈ J(ci),

∑
S:j∈S yS = ρ(ci). We have

therefore derived that the schedule is optimum both for the problem and for the linear
programming formulation of Queyranne and Wang [11].

In the second case, i.e., when ρ(ck) < 0, we can postpone the processing of the
jobs J(ck) and make the schedule of arbitrarily negative objective function value.
Since any feasible schedule leads to a feasible primal solution for the LP formulation
we are considering, this LP is also unbounded.

In summary, we have just shown that if there is an optimum schedule, then
this schedule provides an optimum solution to the LP formulation, and if there is
none (and the problem is unbounded), the LP is also unbounded. We have therefore
simultaneously given a proof of correctness of Lawler’s algorithm and an alternate
proof of the polyhedral result of Queyranne and Wang [11].
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