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Abstract

In this note, we give a 1.47-approximation algorithm for the preemptive scheduling of jobs with release dates on a single
machine so as to minimize the weighted sum of job completion times; this problem is denoted by 1|rj; pmtn|

∑
j wjCj in the

notation of Lawler et al. (Handbooks in Operations Research and Management Science, Vol. 4, Logistics of Production and
Inventory, North-Holland, Amsterdam, pp. 445-522). Our result improves on a 2-approximation algorithm due to Hall et al.
Math. Oper. Res. 22 (1997) 513–544, and also yields an improved bound on the quality of a well-known linear programming
relaxation of the problem. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this note we consider the problem of schedul-
ing n jobs on a single machine. Each job j must
be scheduled for pj units of time, and only one job
can be scheduled at any point in time. We will con-
sider preemptive scheduling: that is, we may suspend
the scheduling of some job before processing it com-
pletely and resume it at a later point in time with-
out penalty. In a non-preemptive schedule, we would
have to schedule all pj units of job j consecutively.
We will impose the restriction that job j is not avail-
able to be scheduled before time rj, called the release
date of job j. A positive weight wj is associated with
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job j, and our goal is to �nd a schedule which mini-
mizes the sum

∑
j wjCj, where Cj is the time at which

job j completes in the given schedule (the comple-
tion time of j). This scheduling problem is denoted
1|rj; pmtn|

∑
j wjCj in the notation of Lawler et al.

[6].
The problem 1|rj; pmtn|

∑
j wjCj was shown to

be strongly NP-hard by Labetoulle et al. [5]. One
approach to providing solutions for NP-hard op-
timization problems is to give an approximation
algorithm for the problem. A �-approximation al-
gorithm for 1|rj; pmtn|

∑
j wjCj runs in polynomial

time, and for any instance constructs a schedule
whose sum of weighted completion times is no
more than a factor of � times the value of an op-
timal schedule for the instance. Sometimes the
value � is called the performance guarantee of
the algorithm. One can also consider randomized
�-approximation algorithms for 1|rj; pmtn|

∑
j wjCj.

Such an algorithm runs in randomized polynomial
time (which means that its running time is guar-
anteed to be polynomial in the problem size, but
that it is allowed to make random choices in the
course of the algorithm) and for any instance con-
structs a schedule whose expected sum of weighted
completion times is no more than a factor of �
times the value of an optimal schedule for the
instance.
There was a good deal of research recently on

the design and analysis of approximation algorithms
for scheduling problems in which the objective is
to minimize the sum of weighted completion times
[7,4,1,9]. These papers draw on interesting theoreti-
cal and experimental work on polyhedral approaches
to these problems. As corollaries of the perfor-
mance guarantees of these approximation algorithms,
these papers also give bounds on the quality of
linear-programming relaxations of the problems that
had no prior worst-case analysis.
The �rst approximation algorithm for 1|rj; pmtn|∑
j wjCj was given by Phillips et al. [7], who gave

an (8 + �)-approximation algorithm based on a
certain linear-programming relaxation of the prob-
lem. This was improved by Hall et al. [4] who
made use of a linear-programming relaxation in
Cj variables that was a valid relaxation of both
1|rj; pmtn|

∑
j wjCj and the non-preemptive variant

1|rj|
∑

j wjCj. Based on this relaxation, they gave

a 3-approximation algorithm for the non-preemptive
problem and a 2-approximation algorithm for the
preemptive problem. Subsequent to these results,
Goemans [2] developed a new combinatorial un-
derstanding of this Cj-based formulation and then,
based on it, developed a 2-approximation algo-
rithm for 1|rj|

∑
j wjCj [3]. All of these results

also yielded bounds on the quality of the rele-
vant linear-programming relaxation: for example,
Goemans’ result establishes that the optimal solu-
tion to the Cj-based relaxation of 1|rj|

∑
j wjCj is

no more than a factor of 2 smaller than the optimal
schedule.
In this note we show that some of the ideas

of Goemans [2,3] can be used to give an im-
proved preemptive algorithm as well. Speci�cally,
we give a randomized 1.47-approximation algo-
rithm for 1|rj; pmtn|

∑
j wjCj. We then note how

it can be derandomized to give a (deterministic)
1.47-approximation algorithm as well. In work sub-
sequent to an announcement of our result, Schulz and
Skutella [8] gave a 4

3 -approximation algorithm for
this problem.
This note is structured as follows. In Section 2, we

review relevant ideas and theorems from Goemans
[3], and in Section 3 we present our algorithm and its
analysis.

2. Some preliminaries

The algorithm of Goemans [3] for the non-preemp-
tive problem works as follows. First, the algo-
rithm solves a linear-programming relaxation of the
scheduling problem. As shown in [2] there is an
O(n log n) time algorithm to solve the relaxation. The
algorithm then uses randomization and the structure
of an optimal solution to the linear-programming
relaxation to create a non-preemptive schedule.
Goemans shows that the expected value of the
sum of the weighted completion times of his
schedule is no more than twice the value of the
linear-programming relaxation, proving that the
algorithm is a randomized 2-approximation algo-
rithm. He also shows that it is possible to obtain
a 2-approximation algorithm which does not need
randomization.
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The LP relaxation used is

Z∗
LP =Min

∑
j

wjpj
2

+
∑
j

wjMj

(LP)
∑
j∈S

pjMj¿p(S)
(
r(S) +

p(S)
2

)
∀S;

where r(S) = minj∈S rj, p(S) =
∑

j∈S pj, and vari-
able Mj represents the mean busy time of job j in
a schedule: if job j is processed during intervals in
the set I in the schedule, then the mean busy time of
job j is (

∫
I t dt)=(

∫
I dt) = (

∫
I t dt)=pj. For any sched-

ule, preemptive or non-preemptive, setting the vari-
ables Mj to be the mean busy time of job j pro-
duces a feasible solution for (LP) [4,3]. Note that in a
non-preemptive schedule,Mj is simply the “midpoint”
of job j, Mj = Cj − pj=2, and the objective function
of (LP) is thus the sum of weighted completion times.
In contrast, note that in a preemptive schedule the ob-
jective function of (LP) is merely a lower bound on
the sum of weighted completion times: the mean busy
time of a job in a preemptive schedule is at most, but
is not necessarily equal to, Cj − pj=2.
Assume throughout this note that jobs are indexed

so that w1=p1¿w2=p2¿ · · ·¿wn=pn, unless stated
otherwise. Goemans proves that an optimal solution
M for (LP) corresponds to the mean busy times of
jobs in a preemptive schedule constructed by always
scheduling the available job with the minimum index.
Call this schedule S. Because of release dates, this
schedule will sometimes be a preemptive one. Ob-
serve that althoughS is an optimal solution to an LP
relaxation of the preemptive scheduling problem, it is
not an optimal preemptive schedule because the ob-
jective function of (LP) cannot be interpreted as the
sum of weighted completion times in a preemptive
schedule. However, any preemptive schedule is not
only feasible for (LP), but also has an objective func-
tion value no greater than the sum of the weighted
completion times for that preemptive schedule, and
thus Z∗

LP gives a lower bound on the optimal value of
the preemptive scheduling problem.
We will principally need the following result from

the analysis in [3].S can be decomposed into sets of
jobs S with certain properties. This decomposition is
called the canonical decomposition, and sets S in the

decomposition canonical sets. These sets S have the
property that in schedule S, jobs in S are processed
continuously between r(S) and r(S) +p(S). Further-
more, the following theorem is proved in [3].

Theorem 1 (Goemans [3]). Let Ĉj be the completion
time of job j in a preemptive schedule constructed by
a randomized algorithm. If for all canonical sets S;

E


∑
j∈S

pj(Ĉj − pj=2)

6� p(S)(r(S) + p(S)=2);

then E[
∑

j wjĈj] is no greater than � Z
∗
LP.

An implication of this theorem is that if we can
construct a preemptive (resp. non-preemptive) sched-
ule in randomized polynomial time that obeys the
condition of the theorem, then we have a randomized
�-approximation algorithm for the preemptive (resp.
non-preemptive) problem. Furthermore, this would
prove that the worst-case ratio between the optimal
preemptive (resp. non-preemptive) schedule and the
optimal value of (LP) is at most �. Goemans constructs
a non-preemptive schedule obeying the condition for
� = 2. This yields a randomized 2-approximation
algorithm for both the non-preemptive and the pre-
emptive problems, and a proof that the worst-case
ratio is at most two in both cases.
We will also be using the idea of an �-point in a pre-

emptive schedule, �rst introduced in [7]. Given some
parameter �, 06�61; and a preemptive schedule, the
�-point of job j is the time at which �pj units of job
j have been processed.

3. The algorithm and its analysis

Our scheduling algorithm is as follows. We �nd
the schedule S that is the optimal solution to (LP)
in O(n log n) time. Given a parameter � (06�61),
we construct a new preemptive schedule S̃ from S
as follows. We order the jobs by their �-points in S
(e.g. the job with the earliest �-point is ordered �rst).
We construct S̃ by always scheduling the available
job that appears earliest in the ordering of jobs by
�-points. Observe that the machine is busy at exactly
the same times inS and in S̃. Denote the completion
time of job j in S̃ by Ĉj.
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We note that this algorithm can be derandomized to
give a deterministic approximation algorithm with the
same performance guarantee. Goemans proves that for
a �xed preemptive schedule there are at most n possi-
ble di�erent orderings of the jobs by �-points, where
06�61 [3, Proposition 3.1]. Since the schedule con-
structed by our algorithm is entirely determined by
the ordering of jobs by their �-points, there are thus at
most n possible schedules that can be constructed by
our algorithm.We inspect every one of these schedules
and choose the one with minimum sum of weighted
completion times, which is guaranteed to be at most
the expected performance of the algorithm.
We analyze the performance of our algorithm by

examining what happens to a canonical set S of jobs.
Recall that such a set S is processed continuously from
time r(S) to time r(S) + p(S) in schedule S, and
observe that this implies that no job j ∈ S is processed
for any amount of time outside this interval.
We begin with the following lemma.

Lemma 2. Given a canonical set S; let �j denote the
fraction of job j processed in S before time r(S);
for all j 6∈ S. If jobs in S are indexed so that job 1
�nishes �rst in S̃; job 2 second; etc.; then for i ∈ S;

Ĉi6 r(S) +
∑
j:�j¿�

(1− �j)pj + �p(S)

+(1− �)[p1 + · · ·+ pi]:

Proof. Note that in S̃ from time r(S) on, there may
be a period of time during which S̃ schedules some
jobs with � points that occur before r(S) inS. This pe-
riod of time, however, completes no later than r(S)+∑

j:�j¿�(1− �j)pj in S̃.
Subsequently, for p(S) units of time, S̃ only pro-

cesses jobs in S. Consider the �rst job 1, and note
that this job must also be the �rst of the jobs in S in
the ordering of jobs by �-points. Thus, its �-point oc-
curs in S between times r(S) and r(S) + �p(S). It
follows that the job must be released by time r(S) +
�p(S)−�p1, and thus it completes in S̃ by time r(S)+∑

j:�j¿�(1−�j)pj+�p(S)+(1−�)p1: Therefore, we
have that

Ĉ16r(S) +
∑
j:�j¿�

(1− �j)pj + �p(S) + (1− �)p1:

Similarly, job 2 is released not later than r(S) +
�p(S) + (1− �)p1 − �p2 and thus

Ĉ26 r(S) +
∑
j:�j¿�

(1− �j)pj + �p(S)

+ (1− �)[p1 + p2]:
The lemma follows by similar reasoning.

Lemma 3. Given a canonical set S; let �j denote the
fraction of job j processed in S before time r(S) for
all j 6∈ S. Then
∑
j∈S

pj(Ĉj − pj=2)

6p(S)


r(S)+ ∑

j:�j¿�

(1−�j)pj+12(�+1)p(S)

 :

Proof. By Lemma 2, for the ith job to complete in S,

Ĉi6 r(S) +
∑
j:�j¿�

(1− �j)pj + �p(S)

+(1− �)[p1 + · · ·+ pi];
so that

pi(Ĉi − pi=2)

6pi


r(S) + ∑

j:�j¿�

(1− �j)pj + �p(S)



+(1− �)pi[p1 + · · ·+ pi]− p2i =2:
Let p2(S) denote

∑
i∈S p

2
i , and p(S)

2 = (
∑

i∈S pi)
2.

Then by summing this inequality over all jobs j ∈ S
we obtain∑
j∈S

pj(Ĉj − pj=2)

6p(S)


r(S) + ∑

j:�j¿�

(1− �j)pj + �p(S)



+(1− �)
|S|∑
i=1

pi(p1 + · · ·+ pi)− p2(S)=2
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=p(S)


r(S) + ∑

j:�j¿�

(1− �j)pj + �p(S)



+
1
2
(1− �)(p(S)2 + p2(S))− p2(S)=2

6p(S)


r(S) + ∑

j:�j¿�

(1− �j)pj + �p(S)

+
1
2
(1− �)p(S)




=p(S)


r(S)+ ∑

j:�j¿�

(1−�j)pj+12(�+1)p(S)

 :

We can now prove the following theorem.

Theorem 4. Suppose we choose � from the interval
[0; �] according to the probability distribution f(�)=
(1− �)=�(1− �)2. Then for any canonical set S;

E


∑
j∈S

pj(Ĉj − pj=2)



6p(S)
(
1
�
r(S)+

(
1+
1−�
2�

ln(1−�)
)
p(S)

)
:

By setting � ≈ 0:682, we have that

E


∑
j∈S

pj(Ĉj−pj=2)

61:466 p(S)(r(S)+p(S)=2):

By Theorem 1, our algorithm is a randomized
1.466-approximation algorithm. It can be made deter-
ministic by our observation earlier. Recall also that
this also shows that the worst-case ratio between the
value of the optimal preemptive schedule and the
optimal value of (LP) is at most 1.466.

Proof. We wish to compute the expected value of∑
j∈S pj(Ĉj−pj=2).We observe that, for �j as de�ned

in Lemma 3,

Pr[�j¿�]6
∫ �j

0
f(�) d�

=
1− �
�

(
1

1− �j − 1
)

=
(1− �)�j
�(1− �j) ;

so that

E


 ∑
j:�j¿�

(1− �j)pj

=∑

j

(1− �j)pjPr[�j¿�]

=
1− �
�

∑
j

�jpj6
1− �
�

r(S);

since
∑

j �jpj, the total amount of jobs processed
in S before time r(S), can be no more than r(S).
Furthermore,

E[�] =
∫ �

0
�f(�) d�

=
1− �
�

[
�

1− � + ln(1− �)
]�
0

=
1− �
�

[
�

1− � + ln(1− �)
]

= 1 +
1− �
�

ln(1− �):

Then by Lemma 3

E


∑
j∈S

pj(Ĉj − pj=2)



6p(S)
(
r(S) +

1− �
�

r(S)

+
(
1
2
+
1−�
2�

ln(1−�)+1
2

)
p(S)

)

=p(S)
(
1
�
r(S)+

(
1+
1−�
2�

ln(1−�)
)
p(S)

)
:
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