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Abstract We introduce polylinking networks, which is a flow model based on
polylinking systems that generalizes the classical flow model of Ford and Fulker-
son on acyclic networks and has applications in the context of wireless networks.
More precisely, a flow model recently introduced by Avestimehr et al. (Proceedings
of the Allerton conference on communication, control, and computing 2007) used in
the context of wireless information networks is a special case of the presented model.
We define a notion of source-destination cut and derive a max-flow min-cut theo-
rem. Additionally, we present various properties of polylinking networks that can be
seen as generalizations of properties for classical flows. Using submodular function
minimization and submodular flow algorithms, one can efficiently determine a maxi-
mum flow, a minimum source-destination cut, as well as a minimum cost flow. These
algorithms lead to new efficient algorithms for the information flow model.
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1 Introduction

In this work, we introduce a flow model based on combined polylinking systems, a
notion introduced by Schrijver [13]. Given is a set of vertices that can be partitioned
into layers V1, . . . , Vr and flow is sent across these layers from V1 to V2 and so on.
There is no notion of edges, and how flow can be sent from one layer to the next
one is described by polylinking systems. Thanks to the abstract nature of polylinking
systems, the described model is very general and gives large freedom in specifying
how flow can be sent through the network. In particular, the new model includes the
classical flow model of Ford and Fulkerson restricted to acyclic graphs as well as a
wireless information flow model introduced by Avestimehr et al. [2].

We define a natural notion of source-destination cut which can be seen as a gener-
alization of the notions used in the flow models mentioned above. Using results from
polylinking systems we show that the value of a maximum flow is equal to the value of
a minimum source-destination cut. Despite the generality of the presented flow model,
using submodular flow algorithms, one can find a maximum flow, a minimum source-
destination cut as well as a minimum cost flow in polynomial time if an oracle for
evaluating a function associated with the polylinking systems used in the description
of the network is available.

We give a description of the flow polytope which is the set of all flows. Unlike
the classical Ford and Fulkerson flow model, the flow polytope of the presented flow
model has in general an exponential number of facets. However, using the reduction
to the submodular flow polyhedron, we show that the flow polytope is integral if the
underlying polylinking systems are integral. This generalizes the integrality property
of classical flows.

In the unit-capacity case the notion of polylinking systems reduces to the notion
of linking systems and our algorithmic approach reduces to matroid partition. For
this special case, our flow model corresponds to a cascading system introduced by
Schrijver [13], who presented a polynomial time algorithm for finding maximum
flows and minimum cost flows for this setting. The algorithm of Schrijver works by
finding augmenting paths in a network which is a union of basis exchange graphs
of matroids induced by the linking systems. It is essentially a particular method for
solving the above-mentioned matroid partition problem.

The matroid partition approach provides an efficient algorithm for finding a max-
imum flow and a minimum cut in the ADT flow model. This algorithm is faster than
the combinatorial algorithm recently presented by Amaudruz and Fragouli [1]. Fur-
thermore, introducing the notion of aggregation of polylinking systems, we present a
more compact formulation of the ADT model. With the aid of an effective use of FFT,
this formulation leads to another efficient method of analyzing the ADT model.
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The paper is organized as follows. In Sect. 2, we recall some properties of polylink-
ing systems shown by Schrijver [13]. In Sect. 3, we introduce a new flow model and
derive several properties, including the max-flow min-cut theorem and integrality of
the flow polytope. In Sect. 4, we show that a flow model recently introduced by Aves-
timehr, Diggavi and Tse [2] for information flows in wireless networks is a special case
of our model. In Sect. 5, we present a matroid partition algorithm for the unit-capacity
case and discuss its consequences in the ADT model. In Sect. 6, we introduce the
notion of aggregation of polylinking system to derive a compact representation of the
ADT model as a polylinking network. An efficient method of realizing the function
evaluation oracle is also developed. Finally, we conclude this paper in Sect. 7.

2 Polylinking systems and polylinking functions

For k ∈ N we use the notation [k] = {1, . . . , k}. For x, y ∈ R
k , we denote by

x ∨ y ∈ R
k the component-wise maximum of x and y and by |x | denote the L1-norm

of x , which is also called the size of x . We write x ≤ y if the inequality holds compo-
nent-wise and x < y if x ≤ y and x �= y. For a finite set V and Y ⊆ V , we denote by
χY ∈ {0, 1}V the incidence vector of Y . Let x ∈ R

A, and we denote by x(Y ) the sum
of the components of x corresponding to Y , i.e., x(Y ) = ∑

v∈Y x(v). We say that x
lies in Y if x(v) = 0 for all v ∈ V \Y .

2.1 Polylinking systems

Polylinking systems were introduced by Schrijver [13]. In the following we recall
some of their properties. For proofs and more information, see [13].

Definition 1 A polylinking system is a triple (V1, V2, L), where V1 and V2 are finite
sets and L is a non-empty compact subset of R

V1+ × R
V2+ satisfying the following

(P1)–(P4).

(P1) If (x1, x2) ∈ L , then |x1| = |x2|.
(P2) If (x1, x2) ∈ L and 0 ≤ y1 ≤ x1, then ∃y2 ≤ x2 with (y1, y2) ∈ L .
(P3) If (x1, x2) ∈ L and 0 ≤ y2 ≤ x2, then ∃y1 ≤ x1 with (y1, y2) ∈ L .
(P4) If (x1, x2), (y1, y2) ∈ L , then ∃(z1, z2) ∈ L such that x1 ≤ z1 ≤ x1 ∨ y1 and

y2 ≤ z2 ≤ x2 ∨ y2.

For a polylinking system (V1, V2, L), we call V1 and V2 the ground sets of the
polylinking system. For (x1, x2) ∈ L we say that x1 is linked to x2 and vice versa.
Schrijver [13, Theorem 6.3] showed that L is a polytope. We denote by (V2, V1, L)

the polylinking system defined by

L = {(x2, x1) | (x1, x2) ∈ L}.

If L is an integral polytope, we say that the polylinking system (V1, V2, L) is integral.
If (V1, V2, L) is integral and L ⊆ [0, 1]V1 × [0, 1]V2 , then the polylinking system
is simply called a linking system [14], which is equivalent to a bimatroid introduced

123



M. X. Goemans et al.

by Kung [10]. Since for a linking system the vertices of L can be seen as incidence
vectors of the finite ground sets V1, V2, linking systems are often presented using a
set notation instead of a notation relying on incidence vectors. Using set notations,
Definition 1 can be rewritten for linking systems as follows. A triple (V1, V2,�),
where ∅ �= � ⊆ 2V1 × 2V2 , is a linking system if it satisfies the following properties.

(L1) If (P1, P2) ∈ �, then |P1| = |P2|.
(L2) If (P1, P2) ∈ � and Q1 ⊆ P1, then ∃Q2 ⊆ P2 with (Q1, Q2) ∈ �.
(L3) If (P1, P2) ∈ � and Q2 ⊆ P2, then ∃Q1 ⊆ P1 with (Q1, Q2) ∈ �.
(L4) If (P1, P2), (Q1, Q2) ∈ �, then ∃(R1, R2) ∈ � such that P1 ⊆ R1 ⊆ P1 ∪ Q1

and Q2 ⊆ R2 ⊆ P2 ∪ Q2.

In the following we give three examples of polylinking systems, where the first two
examples are linking systems. For proofs and further information, see [13].

Example 1 (Linking systems induced by bipartite graphs, also called deltoid linking
systems) Let G = (V1, V2, E) be an undirected bipartite graph and let � ⊆ 2V1 × 2V2

be the set of all pairs (P1, P2) of P1 ⊆ V1 and P2 ⊆ V2 such that there exists a
matching M in G with ∂ M ∩ V1 = P1 and ∂ M ∩ V2 = P2, where ∂ M denotes the set
of end-vertices of the edges in M . Then (V1, V2,�) forms a linking system.

Example 2 (Linking systems induced by matrices, also called representable linking
systems) Let K be a field and A ∈ K V1×V2 be a matrix over the field K , where V1 and
V2 are two finite sets representing the rows and columns of A. Let � ⊆ 2V1 × 2V2

be the set of all pairs (P1, P2) of P1 ⊆ V1 and P2 ⊆ V2 such that the submatrix of
A determined by the row set P1 and the column set P2 is a nonsingular matrix. Then
(V1, V2,�) forms a linking system.

Example 3 (Polylinking systems induced by networks, also called gammoid polylink-
ing systems) Let G = (V, A) be a directed graph with capacities c : A → R+ on its
edges. Let V1, V2 ⊆ V and let L ⊆ R

V1+ × R
V2+ be defined as follows: (x1, x2) ∈ L

if and only if there is a feasible flow in G such that the demand given by x2 can be
satisfied by the supply given by x1. Then (V1, V2, L) is a polylinking system. If G is
a bipartite graph with bipartition V1 ∪ V2 = V , then the obtained polylinking system
is called a deltoid polylinking system.

2.2 Polylinking functions

The polylinking function λ : 2V1 × 2V2 → R+ of a polylinking system (V1, V2, L) is
defined by

λ(P1, P2) = max{x1(P1) − x2(V2\P2) | (x1, x2) ∈ L}.

For our purposes the following equivalent definition, which follows from the mono-
tonicity property of polylinking systems, seems often more intuitive:

λ(P1, P2) = max{|x1| | (x1, x2) ∈ L , x1(V1\P1) = x2(V2\P2) = 0}.
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Thus, λ(P1, P2) is the maximum size of a vector lying in P1 that can be linked to
a vector lying in P2. A polylinking system is integral if and only if its polylinking
function is integral. In the case of linking systems we use the term linking function for
the polylinking function. Polylinking functions completely describe the underlying
polylinking systems as highlighted by the following proposition.

Proposition 1 ([13, Theorem 6.3]) Let (V1, V2, L) be a polylinking system with poly-
linking function λ. Let x1 ∈ R

V1+ , x2 ∈ R
V2+ . Then (x1, x2) ∈ L if and only if |x1| = |x2|

and x1(P1) − x2(V2\P2) ≤ λ(P1, P2) for all P1 ⊆ V1 and P2 ⊆ V2.

The following proposition gives a characterization of polylinking functions.

Proposition 2 ([13, Theorem 6.3]) Let V1, V2 be two finite sets and let λ : 2V1 ×
2V2 → R+. Then λ corresponds to a polylinking system on ground sets V1 and V2 if
and only if the following conditions hold for all P1, Q1 ⊆ V1 and P2, Q2 ⊆ V2:

(F1) λ(∅, V2) = λ(V1,∅) = 0,
(F2) if Q1 ⊆ P1 and Q2 ⊆ P2 then λ(Q1, Q2) ≤ λ(P1, P2),
(F3) λ(P1 ∩ Q1, P2 ∪ Q2) + λ(P1 ∪ Q1, P2 ∩ Q2) ≤ λ(P1, P2) + λ(Q1, Q2).

The third condition (F3) in the above proposition is called bisubmodularity. Let
V1, V2 be two finite sets and let λ : 2V1 × 2V2 → R+ be a function satisfying the
conditions of Proposition 2. Then the polylinking system (V1, V2, L) corresponding
to λ is given by

L =
{
(x1, x2) ∈ R

V1+ × R
V2+ | |x1| = |x2|, x1(P1) − x2(V2\P2) ≤ λ(P1, P2)

∀P1 ⊆ V1, P2 ⊆ V2

}
.

Let V be a finite set and ρ : 2V → R be a monotone, submodular function with
ρ(∅) = 0. Then

P(ρ) = {x ∈ R
V+ | x(P) ≤ ρ(P),∀P ⊆ V }

is a polymatroid on V associated with ρ. There are many relations between polylinking
systems and polymatroids. Below we highlight one of them.

Proposition 3 ([13, Theorem 6.3]) Let (V1, V2, L) be a polylinking system and P1 ⊆
V1. Then the set

{
x2 ∈ R

V2+ | ∃x1 ∈ R
V1+ with (x1, x2) ∈ L , x1(V1\P1) = 0

}

forms a polymatroid on V2.

For a submodular function ρ : 2V → R+ with ρ(∅) = 0, which is not necessarily
monotone, the base polyhedron B(ρ) is defined by

B(ρ) =
{

x ∈ R
V | x(P) ≤ ρ(P),∀P ⊆ V, x(V ) = ρ(V )

}
.
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The following two propositions show that a polylinking system can be seen as a par-
ticular way of representing a base polyhedra and vice versa. This tight link between
polylinking systems and base polyhedra allows for deducing many results for poly-
linking systems from results for base polyhedra.

Proposition 4 ([13, Theorem 6.3]) Let (V1, V2, L) be a polylinking system with link-
ing function λ. Consider the set function ρ : 2V → R on V = V1 ∪ V2 defined
by

ρ(P) = λ(V1 ∩ P, V2\P).

Then ρ is a nonnegative submodular function with ρ(∅) = ρ(V2) = ρ(V ) = 0.
Moreover, ρ(P) = 0 if P ⊆ V2 or P ⊇ V2. The base polyhedron B(ρ) satisfies
B(ρ) = {(x1,−x2) | (x1, x2) ∈ L}.

In particular for linking systems, we have the following results.

Proposition 5 ([14, Theorem 3.2]) Let (V1, V2,�) be a linking system with two dis-
joint ground sets. Then the set B� = {P1 ∪ (V2\P2) | (P1, P2) ∈ �} forms the set of
bases of a matroid on the ground set V1 ∪ V2.

For a linking system (V1, V2,�) with disjoint ground sets we denote by M� the
matroid corresponding to the bases B� as defined in Proposition 5, and by ρ� the
rank function of M�. The following proposition shows the relation between the rank
function ρ� and the linking function λ.

Proposition 6 ([14, Theorem 3.2]) Let (V1, V2,�) be a linking system with disjoint
ground sets and with linking function λ. For P1 ⊆ V1 and P2 ⊆ V2,

ρ�(P1 ∪ P2) = λ(P1, V2\P2) + |P2|.

2.3 Combining polylinking systems and polymatroids

The following proposition describes a natural way of how two polylinking systems
that share one of the ground sets can be combined together yielding a new polylinking
system. This operation is also called the product of two polylinking systems.

Proposition 7 ([13, Theorem 6.7]) Let (V1, V2, L1) and (V2, V3, L2) be two poly-
linking systems, with polylinking functions λ1 and λ2 and define

L1 � L2 = {(x1, x3) ∈ R
V1+ × R

V3+ | ∃x2 ∈ R
V2+ with (x1, x2) ∈ L1, (x2, x3) ∈ L2}.

Then (V1, V3, L1 � L2) is again a polylinking system with polylinking function

(λ1 � λ2)(P1, P3) = min
P2⊆V2

{λ1(P1, P2) + λ2(V2\P2, P3)}.
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Notice that the product of two linking systems is again a linking system. A poly-
linking system can also be combined with a polymatroid that is defined on one of its
ground sets to obtain another polymatroid. This operation is also called the product
between a polymatroid and a polylinking system.

Proposition 8 ([13, Theorem 6.4]) Let (V1, V2, L) be a polylinking system with poly-
linking function λ and P(ρ) be a polymatroid with ground set V1 and rank function ρ.
Define P(ρ) � L by

P(ρ) � L = {x2 ∈ R
V2+ | ∃x1 ∈ P(ρ) with (x1, x2) ∈ L}.

Then P(ρ) � L is a polymatroid with rank function

(ρ � λ)(P2) = min
P1⊆V1

{ρ(V1\P1) + λ(P1, P2)}.

Notice that the product of a matroid with a linking system is again a matroid.

3 A flow model based on polylinking systems

3.1 Polylinking networks

Let r ≥ 2 be an integer, V1, . . . , Vr be finite disjoint sets, and (Vi , Vi+1, Li ) be
a polylinking system with polylinking function λi for each i ∈ [r − 1]. The tuple
G = (V, L), where V = (V1, . . . , Vr ) and L = (L1, . . . , Lr−1) is called a polylink-
ing network. The sets V1, . . . , Vr are called the layers of the network G and elements
of these sets are called vertices. Furthermore, V1 is called the source layer and its
vertices are called sources. Similarly, Vr is called the destination layer and its ver-
tices are called destinations or sinks. If G = (V, L) is a polylinking network such
that its underlying polylinking systems are linking systems, we say that G is a link-
ing network. A flow in a polylinking network, or also simply called flow, is a tuple
x = (x1, . . . , xr ) ∈ R

V1+ × · · · × R
Vr+ such that (xi , xi+1) ∈ Li for i ∈ [r − 1]. The

value of a flow x is defined by φ(x) = |x1|. Notice that by definition of a flow we
have |x1| = |xi | for i ∈ [r ]. We say that a flow x goes through some vertex v ∈ Vi if
xi (v) > 0. If there is no danger of ambiguity we sometimes represent a flow as a vector

in R
∪i∈[r ]Vi
+ . A V1-Vr cut in a polylinking network, also called source-destination cut

or simply cut, is a tuple C = (C1, . . . , Cr ) such that Ci ⊆ Vi for i ∈ [r ], C1 = V1
and Cr = ∅. The value of a cut C is defined by

κ(C) =
r−1∑

i=1

λi (Ci , Vi+1\Ci+1).

If there is no danger of ambiguity we also represent a cut C = (C1, . . . , Cr ) by the
set ∪r

i=1Ci and use the cut function κ also for this cut representation.

123



M. X. Goemans et al.

A slightly more general version of the proposed flow model can be obtained by
defining a flow to be a tuple x = (x1, . . . , xr ) that satisfies the polylinking condi-
tions mentioned above and furthermore satisfies that x1 is contained in some given
polymatroid P(ρ). However, this slightly generalized model can easily be cast to the
polylinking flow model by adding an additional layer at the beginning to the polylink-
ing system as follows. We add a new set V0 = {v0} containing only one vertex and
define the corresponding polylinking system (V0, V1, L0) by

L0 = {(x0, x1) ∈ R+ × R
V1+ | x0 = |x1|, x1 ∈ P(ρ)}.

It is easy to check that the above defined system is a polylinking system and that within
the layers 1 to r , flows in the extended network correspond to flows in the initial net-
work with the additional restriction on the first layer given by the polymatroid P(ρ).
The above construction also shows that we could without loss of generality restrict
ourselves to polylinking networks with a single source. An identical construction could
also be applied at the last layer to get a single sink.

Example 4 (Polylinking flows induced by deltoid polylinking systems) Let G = (V, L)

be a polylinking network with r layers, where every polylinking system (Vi , Vi+1, Li )

is induced by a bipartite graph (Vi ∪ Vi+1, Ei ) with capacities wi on Ei . Poly-
linking flows in G correspond to flows in the network obtained from the network
(∪r

i=1Vi ,∪r−1
i=1 Ei ) with capacities {wi }i∈[r−1] by orienting all edges towards the lay-

ers with higher indices. Furthermore, the notion of cut in the polylinking network
corresponds to the cut notion in classical flow networks.

The above example also shows that classical flows in acyclic graphs can be seen as
a special case of polylinking flows since every classical acyclic flow network can be
transformed into a layered network by splitting arcs.

3.2 Max-flow min-cut duality and submodularity

By combining Propositions 3 and 7, we get the following gammoid-like property for
polylinking network.

Proposition 9 Let G = (V, L) be a polylinking network with r layers. The set {xr ∈
R

Vr+ | ∃ flow (x1, . . . , xr ) in G} forms a polymatroid.

One of the main properties of polylinking networks is the following duality between
maximum flows and minimum cuts.

Theorem 1 In any polylinking network, the value of a maximum flow is equal to the
value of a minimum cut.

Proof Let G = (V, L) be a polylinking network with r layers and we define L̃ =
L1 � · · · � Lr−1. By the definition of the product of polylinking systems we have that
there is a linking flow in G of some given value q ∈ R+ if and only if there exists a
tuple (x1, xr ) ∈ L̃ with |x1| = q. The maximum possible value of |x1| for a linked pair
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(x1, xr ) ∈ L̃ is given by λ̃(V1, Vr ), where λ̃ is the polylinking function corresponding
to L̃ (see the equivalent definition of the polylinking function given at the beginning
of Sect. 2.2). Thus, the value of a maximum polylinking flow in G is λ̃(V1, Vr ). By
Proposition 7 and the definition of the value of a cut we have

λ̃(V1, Vr ) = min

{

λ1(V1, V2\P2) +
r−2∑

i=2

λi (Pi , Vi+1\Pi+1)

+λr (Pr−1, Vr ) | P2 ⊆ V2, . . . , Pr−1 ⊆ Vr−1

}

= min

{

κ

(

V1 ∪
r−1⋃

i=2

Pi

)

| P2 ⊆ V2, . . . , Pr−1 ⊆ Vr−1

}

,

which is the value of a minimum cut in G. ��
Theorem 2 Let G = (V, L)be a polylinking network overr layers, C = (C1, . . . , Cr )

a cut in G and x = (x1, . . . , xr ) a flow in G. Then C is a minimum cut and x is a
maximum flow if and only if

λi (Ci , Vi+1\Ci+1) = xi (Ci ) − xi+1(Ci+1), ∀i ∈ [r − 1].

Proof Since x is a flow, we have by Proposition 1

λi (Ci , Vi+1\Ci+1) ≥ xi (Ci ) − xi+1(Ci+1), ∀i ∈ [r − 1].

Thus, the value of the cut C can be bounded as follows.

κ(C) =
r−1∑

i=1

λi (Ci , Vi+1\Ci+1) ≥
r−1∑

i=1

[
xi (Ci ) − xi+1(Ci+1)

]

= x1(C1) − xr (Cr ) = x1(V1) − xr (∅) = |x1|. (1)

The bound given by (1) is a way of deriving weak duality, i.e., the value of any flow is
smaller or equal than the value of any cut. By the strong duality given by Theorem 1
we have that C is minimum and x is maximum if and only if the inequality in (1) is
tight, which proves the theorem. ��
Theorem 3 The function κ is submodular.

Proof Let G = (V, L) be a polylinking network with r layers let C = (C1, . . . , Cr ) be
a cut in G. By definition the value of the cut C is given by κ(C) =∑r−1

i=1 λi (Ci , Vi+1\
Ci+1). By the bisubmodularity property of polylinking functions, we have for i ∈
[r −1] that the function gi defined on 2Vi ∪Vi+1 by gi (Pi ∪ Pi+1) = λi (Pi , Vi+1\Pi+1),
where Pi ⊆ Vi , Pi+1 ⊆ Vi+1, is submodular; this property follows also immediately
from Proposition 4. Hence, κ(C) is the sum of submodular functions, and thus sub-
modular. ��
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Thus, if for some polylinking network the underlying polylinking functions can
be evaluated in strongly polynomial time, then a minimum cut can be determined in
strongly polynomial time by minimizing the submodular cut function.

In the case of a linking network, an efficient algorithm for finding a minimum cut
can easily be transformed into an efficient algorithm for finding a maximum flow as
follows. Consider the elements in ∪r

i=1Vi in any order. If removing an element from
the corresponding linking system does not decrease the value of a minimum cut, we
remove the element from the graph. One can easily check that the incidence vector of
the remaining elements form a maximum flow.

3.3 Optimization in polylinking networks

In this section, we present an efficient method for finding a maximum flow and a mini-
mum cut in a polylinking network. The method is based on reduction to the submodular
flow problem introduced by Edmonds and Giles [7]. The presented algorithm runs in
strongly polynomial time if the polylinking functions underlying the given polylinking
network can be evaluated in strongly polynomial time.

Let D = (W, A) be a directed graph with vertex set W and arc set A. For each
node v, we denote the set of arcs leaving v and those entering v by δ+v and δ−v,
respectively. The boundary ∂x : W → R of a function x : A → R is defined by

∂x(v) =
∑

a∈δ+v

x(a) −
∑

a∈δ−v

x(a).

Suppose we have lower and upper bounds c : A → R∪{−∞} and c : A → R∪{+∞},
and a submodular function f : 2W → R with f (∅) = f (W ) = 0. A function
x : A → R is a submodular flow if it satisfies ∂x ∈ B( f ) and c(a) ≤ x(a) ≤ c(a) for
all a ∈ A. The submodular flow polyhedron SFP(D, f ) is the set of submodular flows
in R

A. If c, c, and f are integral, then the submodular flow polyhedron is known to
be integral.

Consider a polylinking network G = (V, L) with V = (V1, . . . , Vr ) and L =
(L1, . . . , Lr−1). A flow x = (x1, . . . , xr ) satisfies (xi , xi+1) ∈ Li for each i =
1, . . . , r − 1. We now reduce the problem of finding a maximum flow in G to a
submodular flow problem.

Let V + and V − be two copies of V . For any subset S ⊆ V , we denote its copies in
V + and V − by S+ and S−, respectively. Construct a directed network (V + ∪ V −, A)

with vertex set V + ∪ V − and arc set A = V , where the tail and head of the arc v ∈ A
are the copies v+ ∈ V + and v− ∈ V −, respectively. Then shrink the vertices in V −

1 to
a single vertex s and the vertices in V +

r to a single vertex t . Add an arc a∗ = (s, t) to
A. In the resulting digraph D = (W, A) with A = V ∪ {a∗}, set the lower and upper
bounds to be 0 and +∞, respectively, for all arcs. Consider a submodular function
f : 2W → R+ defined by

f (U ) =
r−1∑

i=1

λi (Vi ∩ P, Vi+1\Q), (2)
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where P ⊆ V is the set of all vertices that correspond to vertices in U ∩ V +, i.e.,
P+ = U ∩V +, and similarly Q ⊆ V consists of all vertices that correspond to vertices
in U ∩ V −, i.e., Q− = U ∩ V −. Note that f (∅) = f (W ) = 0. Then we have the
following characterization.

Theorem 4 A vector x = (x1, x2, . . . , xr ) ∈ R
V is a polylinking flow in G if and only

if x∗ = (x1, x2, . . . , xr , φ(x)) ∈ R
A is a submodular flow in D.

Proof Let x = (x1, x2, . . . , xr ) be a polylinking flow in G. By Proposition 1 we have
for P, Q ⊆ V

xi (Vi ∩ P) − xi+1(Vi+1 ∩ Q) ≤ λ(Vi ∩ P, Vi+1\Q)

and |xi | = |xi+1| for i ∈ [r − 1]. For any P ⊆ V \Vr and Q ⊆ V \V1, we have

∂x(P+ ∪ Q−) =
r−1∑

i=1

[xi (Vi ∩ P) − xi+1(Vi+1 ∩ Q)]

≤
r−1∑

i=1

λi (Vi ∩ P, Vi+1\Q) = f (P+ ∪ Q−).

Since ∂x(s) = ∂x(t) = 0, this implies ∂x(U ) ≤ f (U ) for any U ⊆ W with U ∩V + =
P+ and U ∩ V − = Q−. Thus x is a submodular flow in D.

Conversely, let x ′ = (x1, . . . , xr , x∞) be a submodular flow in D. Then

∂x ′ (V +
i ∪ V −

i+1

) ≤ f
(
V +

i ∪ V −
i+1

) = 0

holds for i ∈ [r − 1]. In addition, ∂x ′(s) ≤ f ({s}) = 0 and ∂x ′(t) ≤ f ({t}) = 0.
Since ∂x ′(W ) = 0, all these inequalities must be tight. Thus we obtain |xi | = |xi+1|
for i ∈ [r − 1] and x∞ = φ(x). For any Pi ⊆ Vi and Pi+1 ⊆ Vi+1, we have

xi (Pi ) − xi+1(Vi+1\Pi+1) = ∂x ′ (P+
i ∪ (Vi+1\Pi+1)

−)

≤ f
(
P+

i ∪ (Vi+1\Pi+1)
−) = λ(Pi , Pi+1),

which means (xi , xi+1) ∈ Li , for i ∈ [r − 1]. Thus x = (x1, . . . , xr ) is a polylinking
flow in G. ��

The maximum flow in the polylinking network G can be obtained by finding a
submodular flow x in D maximizing x(a∗). This is the maximum submodular flow
problem, which can be solved in essentially the same running time as submodular
function minimization [8]. Once the maximum flow value φ∗ is computed, we can set
the lower bound c(a∗) = φ∗, and seek for a submodular flow minimizing the cost∑

a∈A d(a)x(a). This way, we can efficiently find a minimum-cost maximum flow in
a polylinking network. Using an algorithm of Fleischer and Iwata [8] a minimum-cost
maximum submodular flow can be found in O(n5 log(nM)) arithmetic operations and
calls to the submodular function f as defined by (2), where n = |V |, and M is an
upper bound on the function f , assuming f takes integral values.
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3.4 Polylinking flow polytope

In this section we introduce the polylinking flow polytope which is the set of all flows
of a polylinking network. We show that the polylinking flow polytope is integral if the
underlying polylinking systems are integral.

Let G = (V, L) be a polylinking network with r layers. We define the polylinking
flow polytope PFP(G) of G as follows.

PFP(G) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xi (Pi ) − xi+1(Pi+1) ≤ λi (Pi , Vi+1\Pi+1) ∀i ∈ [r − 1],
∀Pi ⊆ Vi ,

∀Pi+1 ⊆ Vi+1
|xi | = |xi+1| ∀i ∈ [r − 1]

(x1, . . . , xr ) ∈ R
V1+ × · · · × R

Vr+

The inequalities of the polytope can be interpreted as follows. The flow contained at
Pi , i.e., xi (Pi ), has to be send to the next layer Vi+1 and thus cannot be larger than the
flow at Pi+1 plus the maximum amount of flow that can be send from Pi to Vi+1\Pi+1.
Hence,

xi (Pi ) ≤ xi+1(Pi+1) + λi (Pi , Vi+1\Pi+1).

Theorem 5 Let G = (V, L) be a polylinking network with r layers. The polytope
PFP(G) is the set of all polylinking flows of G.

Proof By definition of a polylinking flow, a vector x = (x1, . . . , xr ) ∈ R
V1+ × · · · ×

R
Vr+ is a flow in G if |xi | = |xi+1| for i ∈ [r − 1] and (xi , xi+1) ∈ Li . By Proposi-

tion 1 we have that (xi , xi+1) ∈ Li if and only if xi and xi+1 satisfy the inequalities
of PFP(G).

��
Similar to the case of classical flows, we have the following integrality property for

polylinking networks.

Theorem 6 If G = (V, L) is an integral polylinking network then PFP(G) is integral.

Proof If all the polylinking functions λi are integral, the submodular function f de-
fined in (2) is also integral. By Theorems 4 and 5, the polytope PFP(G) is equal
to the submodular flow polytope SFP(D, f ) which is known to be integral if f is
integral [15]. ��

4 The ADT model as a linking network

In this section we consider a relatively recent information flow model for wireless
networks, which we call the ADT model, that was introduced in [2] and show that it
is a linking network. So far, not many results are known for the ADT model. In [3]
a max-flow min-cut result was proven and in [1] a polynomial-time algorithm for
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finding a maximum flow was presented. In parallel to this work, Sadegh Tabatabaei
Yazdi and Savari [12] developed another polynomial algorithm for finding a maxi-
mum flow in an ADT model, which is based on an extended Rado-Hall transversal
theorem. The ADT model is of special interest as an example for polylinking flows,
since the results derived for general polylinking systems do not only generalize the
known results but also lead to new properties and algorithms. Furthermore, we pres-
ent a compact representation of the ADT model as a polylinking network. Using this
compact representation allows us to present a faster algorithm for finding a maximum
flow in the ADT model.

4.1 The ADT flow model

The ADT flow model was introduced as a linear deterministic approximation of net-
worked Gaussian channels in a wireless setting. It takes into account broadcasting
and interference effects. The random noise of a Gaussian channel is approximated by
introducing between every pair of relays a threshold on the number of signals that can
be transmitted from one relay to the other. A principal motivation for introducing the
ADT flow model was to approximately determine the capacity of networked Gaussian
channels. Whereas very little is known of how to compute the capacity of nontrivial
combinations of Gaussian channels, in the ADT model the capacity can be determined
in polynomial time. In the following we introduce the ADT flow model as presented
in [2]. For additional information about the relation between the ADT flow model and
wireless networks with Gaussian channels we refer the reader to [2].

Given is a collection of nodes N = {N 1, . . . , N q}, also called relays, each of
which is a set of 2b vertices for some global constant b ∈ N. For each node N ∈ N ,
its vertices are partitioned into two groups of b vertices, called outputs and inputs. For
a node N i ∈ N , we denote by {vi

1, . . . , v
i
b} its inputs and by {wi

1, . . . , w
i
b} its outputs.

We call the set of all vertices V , the set of all outputs O and the set of all inputs I .
The nodes are partitioned into layers T1, . . . , Tr , where T1 = {N 1} and Tr = {N q}.
The node N 1 is called sender and N q is called receiver. The goal is to send signals
in some fixed finite field Fl from the sender to the receiver. Every input can send a
signal to outputs of nodes in the next layer. How the signals are sent from the inputs
of nodes in one layer to the outputs of the nodes in the next layer is described by a set
of arcs A ⊆ I × O given as follows. For every pair of nodes N i , N j such that N i is in
the layer immediately preceding the layer containing N j , a number ni j ∈ {0, . . . , b}
is given and the arcs of A connecting inputs of N i with outputs of N j are given

by
{(

vi
1, w

j
b+1−ni j

)
, . . . ,

(
vi

ni j
, w

j
b

)}
. If ni j = 0, then there are no arcs connecting

inputs of Ni with outputs of N j . The constants ni j bounds the number of signals that
relay N j can receive from relay N i . Thus, a small value for ni j models that signals
sent from relay N i to N j suffer a high noise. We call the triple G = (V, A,N ) an
ADT network. See Fig. 1 for an illustration of an ADT network.

We denote by Ii the inputs in layer i and Oi the outputs in layer i , i.e., Ii =
I ∩ (∪N∈Ti N ), Oi = O ∩ (∪N∈Ti N ). See Fig. 2 for an illustration.

Signals are sent in the following way. At each input w1
l of the sender, a signal

s ∈ Fl can be broadcast to the next layer. The signal is sent to all outputs in the next
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Fig. 1 Example of an ADT
network with q = 6. The
rectangles represent nodes. The
vertices contained in the left half
of each node are outputs and the
ones in the right half are inputs.
In this example we have
n12 = 5, n13 = 2, n24 = 5,

n25 = 3, n34 = 4, n35 = 2,

n46 = 3, n56 = 4

Fig. 2 Representation of the
output sets Oi and input sets Ii

layer that are connected by an arc to w1
l . This models broadcasting, i.e., a signal in

the wireless network cannot be directed towards a single particular output but may
reach other outputs as a side effect. If an output receives signals from different inputs,
interference between the received signals happens which is modeled as follows. The
output receives the sum in Fl of the incoming signals. Instead of the sum, any other
linear combination of the incoming signals with positive coefficients can be chosen
without changing the model or the algorithms to be presented in any significant way.
Every node receiving signals at its outputs can resend them over its inputs. A signal
received at a particular output can be resent over any input of the same node. However,
every input can be used at most once. Not every output has to be linked to an input
and thus not every input has to be used. The assignment of inputs of a given node to
its outputs is called wiring. Finally, the receiver receives at its outputs a set of linear
combinations of the signals sent by the sender. The signals have to be sent in such a
way that the receiver can decode the original signals, i.e., if k signals are sent from the
sender, then to properly decode the signals, the receiver needs to receive k signals that
are linearly independent combinations (over Fl ) of the k signals sent by the sender.
The task is to send the largest number of decodable signals from the sender to the
receiver. As observed in [2], decodability of the signal does not depend on the exact
wiring inside the nodes but only on the set of outputs and inputs that are used inside
the nodes. Since the exact wiring is not important, a flow in an ADT network can be
defined as the set of vertices used for receiving or sending signals as follows. For some
set U ⊆ V , we denote by M[U ] ∈ F

(U∩I )×(U∩O)
l the matrix such that for i ∈ U ∩ I

and j ∈ U ∩ O, M[U ]i j = 1 if (i, j) ∈ A and M[U ]i j = 0 otherwise. A flow F in
the ADT network G = (V, A, N ) is a subset of the vertices V such that:
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(i) For every node N ∈ N , |F ∩ N ∩ O| = |F ∩ N ∩ I |, i.e., the number of used
outputs in every node equals the number of used inputs.

(ii) The matrix M[F] is nonsingular (over Fl ).

The first condition makes sure that for every node N ∈ N , it is possible to wire the
signals received at its outputs N ∩ O ∩ F to the inputs N ∩ I ∩ F . The second condition
guarantees that the signals received at the outputs F ∩ N q of the receiver are linearly
independent combinations of the signals sent by the sender and thus are decodable.
Since the network is layered, the second condition can also be restated as a condition
that has to hold for every pair of consecutive layers.

(ii’) For every i = 1, . . . , r − 1, M[F ∩ (Ii ∪ Oi+1)] has full rank.

The value of a flow F is measured by |F ∩ N 1| = |F ∩ N q |. For finding a flow
of maximum value in the ADT model, Amaudruz and Fragouli give a combinatorial
algorithm with running time bounded by O(n|A|(φ∗)5) [1, Proposition 3.3], where
φ∗ is the capacity of the network, i.e. the maximum flow value, and n = |I ∪ O|.

4.2 Reduction to linking networks

Consider an ADT network with q layers of nodes. The ADT model is represented by
a linking network defined over the 2q − 2 layers I1, O2, I2, . . . , Oq using two types
of linking systems. For i ∈ [q − 1], the linking system that links Ii to Oi+1 is the
linking system induced by the matrix M[Ii ∪ Oi+1]. This ensures that a set of linear
independent signals that are sent from one layer of inputs to the next layer of outputs
results in linear independent signals at the outputs. Thus the condition ii) of an ADT
flow is satisfied. For i ∈ {2, . . . , q}, the set Oi is linked to Ii by a linking system
induced by the bipartite graph that contains an edge between a vertex v ∈ Oi and
w ∈ Ii if v and w are in the same node. These linking systems enforce that a linking
flow satisfies property i) of an ADT flow. Hence a linking flow in this linking network
is indeed an ADT flow in the corresponding ADT model and vice versa.

5 An algorithm for linking networks

5.1 Finding a maximum flow via matroid partition

We now show a reduction that allows for solving linking flow problems using any
matroid partition algorithm. Given any linking network G = (V,�) with r layers,
consider the matroid M∗ defined as the union of the matroids M�i for i ∈ [r − 1].
Recall that M�i is the matroid whose bases are given by the set B�i , which is defined in
Proposition 5, i.e. for every linked pair (Pi , Pi+1) ∈ �i there is a base Pi ∪(Vi+1\Pi+1)

in B�i .
This is a matroid whose ground set is the union ∪r

i=1Vi of the ground sets of the
M�i

′s, and whose independent sets are {∪r−1
i=1 Ii : Ii ∈ I(M�i )} where I(M) denotes

the family of independent sets of matroid M . The resulting union M∗ is indeed a
matroid, see [15, Chap. 42] for a proof and discussion. The independent sets of I(M∗)
are called partitionable.

123



M. X. Goemans et al.

The connection between the maximum flow problem in G and independent sets in
M∗ is highlighted in the following theorem.

Theorem 7 Let M∗ be the matroid described above corresponding to a linking net-
work G = (V,�). Then

1. Given a flow F = (F1, . . . , Fr ) in G, we have

F1 ∪
(
∪r−1

i=2 Vi

)
∪ (Vr\Fr ) ∈ I(M∗). (3)

2. Given any base B of M∗ such that

B ⊇ ∪r−1
i=2 Vi , (4)

and expressed as B = ∪r−1
i=1 Ii with Ii ∈ I(M�i ) one can derive a flow of G by

letting:

Fi =
{

Ii ∩ Vi i ∈ [r − 1]
Vr\Ir i = r.

(5)

In particular, F1 = B ∩ V1.

Proof (1) Given the flow F = (F1, . . . , Fr ), we know that Fi ∪ (Vi+1\Fi+1) ∈
I(M�i ) for i ∈ [r − 1], and therefore (3) holds.

(2) Consider a base B of M∗ with the required properties. We claim that each Ii is
a base of M�i . Since all bases of a matroid have the same cardinality, this can
be verified by showing that there is one basis of M∗ that is a disjoint union of
bases of M�i , for i ∈ [r − 1]. The set ∪r

i=2Vi ∈ I(M∗) is such a set since Vi+1
is a basis of M�i for i ∈ [r − 1].

Defining F by (5), we immediately get that F = (F1, . . . , Fr ) satisfies the defini-
tion of a flow. Furthermore, F1 = I1 ∩ V1 = B ∩ V1. ��

In M∗ (as in any (non-disjoint) union of matroids), it is not completely straight-
forward to test independence of a set. This is the purpose of matroid partition algo-
rithms which proceed incrementally. Given disjoint sets Ii ∈ I(M�i ), I = ∪r−1

i=1 Ii

and v /∈ I , one fundamental step of a matroid partition algorithm decides whether
I ∪ {v} ∈ I(M∗) and if so, finds disjoint Ii

′ ∈ I(M�i ) with I ∪ {v} = ∪r−1
i=1 Ii

′. This
can be used to find a maximum flow in a linking network. Indeed, using Theorem 7,
we can start from I = ∪r−2

i=1 Vi+1 ∈ I(M∗) (I consists of all elements except the first
and last layers) and repeatedly first check whether each element of V1 can be added
to our current set I ∈ I(M∗), and then do the same for Vr . This results in a base of
M∗ satisfying (4) and having as many elements of V1 as possible; therefore, as in the
proof of the theorem, we can extract a maximum flow. Observe that, for our initial set
I , we have a trivial decomposition of it into ∪r−1

i=1 Ii by taking Ii = Vi+1 for i ∈ [r −2]
and Ir−1 = ∅.

We need now to discuss how the fundamental step in a matroid partition algo-
rithm can be performed. There exist classical algorithms for the fundamental step,
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see [15, Section 42.3]. This boils down to constructing a digraph on ∪r
i=1Vi and find-

ing a shortest directed path in it. The arc set of this digraph is ∪r−1
i=1 Ei with

Ei = {(s, t) | s /∈ Ii , t ∈ Ii , Ii ∪ {s}\{t} ∈ I(M�i )} ⊂ (Vi ∪ Vi+1) × (Vi ∪ Vi+1).

For each i ∈ [r − 1], consider a vertex subset Si = {s ∈ (Vi ∪ Vi+1)\Ii | Ii ∪ {s} ∈
I(M�i )}. The fundamental step searches for a directed path from v /∈ I to any ver-
tex in ∪r−1

i=1 Si with minimum number of arcs. If such a directed path exists, then
I ∪ {v} ∈ I(M∗), and exchanging the elements along the directed path provides a
partition of I ∪ {v} into disjoint Ii

′ ∈ I(M�i ). Otherwise, I ∪ {v} /∈ I(M∗). Since,
for every i ∈ [r − 2], we start from a base Ii = Vi of M�i , we have that Si = ∅ for
i ∈ [r − 2]; only Sr−1 is non-empty.

For the ADT model, constructing this digraph takes O(rn3), and this dominates the
time to find appropriate directed path in it. As we are performing at most 2n fundamen-
tal steps, this gives an overall running time of O(rn4). Using the analysis technique
by Cunningham [6], one can show that the total length of the directed paths in the
above matroid partition algorithm is O(rn log n), which leads to an improved running
time bound O(rn3 log n). Thus, for ADT networks with large capacity, for example
φ∗ = �(n), this algorithm is considerably faster than the algorithm of Amaudruz
and Fragouli [1], whose running time is bounded by O(n|A|(φ∗)5), where |A| is the
number of arcs of the ADT model.

5.2 Finding a minimum source-destination cut

We now show how a minimum source-destination cut can be obtained as a by-product
of the above matroid partition algorithm.

At the end of the algorithm we get a solution set B = ∪r−1
i=1 Ii with Ii ∈ I(M�i )

which is a base of M∗ and corresponds to a maximum flow by Theorem 7. We now
consider the digraph for the fundamental step of the matroid partition algorithm that
corresponds to this final solution. We know that this digraph has no directed path from
V1\I1 to Vr ; indeed such a path from s ∈ V1\I1 to t ∈ Vr would mean that B\{t}∪{s}
is also a base of M∗ implying that the algorithm should have added s when it consid-
ered it. In fact, since the vertices in V1 ∩ I1 have no outgoing arcs (see the definition
of E1), there are no directed paths from V1 to Vr . Let W ⊂ ∪r−1

i=1 Vi be the set of all
vertices that are reachable from the vertices V1 in this digraph; thus W ∩ Vr = ∅ and
V1 ⊆ W .

Theorem 8 The set W is a minimum source-destination cut.

Proof Again let M∗ be the union of the matroids M�i for i ∈ [r − 1] and let M∗−
be the restriction of the matroid M∗ to the ground set ∪r−1

i=1 Vi , i.e., a set I ⊆ ∪r−1
i=1 Vi

is independent in M∗− if it is independent in M∗. Since we considered vertices in V1
prior to those in Vr , B\Vr is a base of M∗−. Observe that W also corresponds to the set
of vertices reachable from V1 in the digraph for the fundamental step of the matroid
partition algorithm corresponding to the matroid M∗−. It is well-known in matroid
theory (see for example [5]) that W corresponds to an optimality certificate, i.e., it
satisfies
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|B| = ρ∗−(∪r−1
i=1 Vi ) = |(∪r−1

i=1 Vi )\W | +
r−1∑

i=1

ρ�i (W ), (6)

where ρ∗− is the rank function of the matroid M∗− and ρ�i is the rank function of M�i

for i ∈ [r − 1]. Let φ∗ be the maximum flow value of the network. By Theorem 7, we
have

ρ∗−(∪r−1
i=1 Vi ) = | ∪r−1

i=2 Vi | + φ∗. (7)

Let Wi = W ∩ Vi for i ∈ [r ]. Notice that W1 = V1 and Wr = ∅. By Proposition 6 we
have

r−1∑

i=1

ρ�i (W ) =
r−1∑

i=1

(λi (Wi , Vi+1\Wi+1) + |Wi+1|) = κ(W ) +
r−1∑

i=2

|Wi |.

Combining this result with (6) and (7), we obtain

φ∗ = |V1\W1| + κ(W ) = κ(W ),

which implies that W is a minimum cut of the linking network. ��

6 Compact formulation of the ADT model

6.1 Polylinking systems obtained by aggregation

Let (V1, V2, L) be a polylinking system with polylinking function λ, let D1 = {V 1
1 ,

. . . , V p
1 } be a partition of V1 and D2 = {V 1

2 , . . . , V q
2 } be a partition of V2. The poly-

linking system obtained from (V1, V2, L) by aggregating D1 and D2 is the polylinking
system (D1, D2, L ′) defined by the following polylinking function λ′,

λ′(P1, P2) = λ

⎛

⎝
⋃

Y∈P1

Y,
⋃

Y∈P2

Y

⎞

⎠ ∀P1 ⊆ D1, P2 ⊆ D2.

It follows easily from the properties of the polylinking function λ that λ′ is a poly-
linking function and thus that (D1, D2, L ′) is a polylinking system. The following
proposition shows a basic relation between linked vectors in (V1, V2, L) and linked
vectors in (D1, D2, L ′).

Proposition 10 Let (V1, V2, L) be a polylinking system, D1 = {V 1
1 , . . . , V p

2 } a par-
tition of V1 and D2 = {V 1

2 , . . . , V q
2 } a partition of V2. Let (D1, D2, L ′) be the poly-

linking system obtained from (V1, V2, L) by aggregating D1 and D2.
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(i) Let (x1, x2) ∈ L and let (y1, y2) ∈ R
D1 × R

D2 be defined by y1

(
V j

1

)
=

x1

(
V j

1

)
for all j ∈ [p] and y2

(
V j

2

)
= x2(V j

2 ) for all j ∈ [q]. Then (y1, y2) ∈
L ′.

(ii) Let (y1, y2) ∈ L ′. Then there exists (x1, x2) ∈ L such that y1(V j
1 ) = x1(V j

1 ) for

all j ∈ [p] and y2(V j
2 ) = x2(V j

2 ) for all j ∈ [q]. Furthermore, if (V1, V2, L)

is an integral polylinking system and (y1, y2) is integral, then (x1, x2) can also
be chosen to be integral.

The first statement of the above proposition follows easily from the definition of
aggregation. The second statement can be shown by polymatroid intersection.

6.2 Compactification to polylinking networks

The above representation of the ADT network as a linking network can be made more
compact using the following representation as a polylinking network. For every node,
we aggregate its inputs to one node and its outputs to another node. The linking sys-
tems used in the original representation of the ADT network are thus transformed into
polylinking systems as described in Sect. 6.1. By Proposition 10, there is a one-to-
one correspondence between linking flows in the linking network before aggregation
and the aggregated polylinking network. Furthermore, in the aggregated network, the
polylinking systems combining output vertices to input vertices are trivial ones that
simply send for every node all the flow of the aggregated output vertex to the aggre-
gated input vertex. Thus, they can simply be eliminated by identifying for every node
the aggregated output vertex with the aggregated input vertex.

As an implication of the equivalence between the aggregated representation of an
ADT network and the original ADT network we get the following result, which was
already stated in [3].

Proposition 11 A minimum source-destination cut in an ADT network can always be
chosen such that for every node, all vertices contained in the node are on the same
side of the cut.

6.3 Evaluating the polylinking function

In this section, we provide an efficient algorithm for computing the values of the
polylinking functions that arise in the compact formulation of the ADT model.

We start by giving some more details of the polylinking functions encountered
after compactification by using as an example the ADT network shown in Figs. 1
and 2 of Sect. 4. More precisely, we want to discuss the polylinking function that
links the second and third layer of nodes, i.e., nodes {N 2, N 3} and nodes {N 4, N 5}
in the compact formulation. Below, we present the 0/1-matrix M[I2 ∪ O3] as defined
in Sect. 4, i.e., the rows of M[I2 ∪ O3] correspond to the vertices in I2, the columns
correspond to the vertices in O3, and there is a one at entry (i, j) ∈ I2 × O3 if and
only if there is an arc from i to j in the ADT network. The rows of the matrix can be
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naturally partitioned into two parts N 2 ∩ I2 and N 3 ∩ I2, depending on whether the
corresponding inputs belong to N 2 or N 3. Similarly, the columns can be partitioned
into N 4 ∩ O3 and N 5 ∩ O3.

N 4 ∩ O3
︷ ︸︸ ︷

N 5 ∩ O3
︷ ︸︸ ︷

N 2 ∩ I2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 1 0 0
⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

N 3 ∩ I2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

The polylinking function λ : 2{N 2,N 3} × 2{N 4,N 5} → Z+ that links the aggregated
layers {N 2, N 3} and {N 4, N 5} in the compacted ADT network is then given as fol-
lows: for P ⊆ {N 2, N 3}, Q ⊆ {N 4, N 5}, λ(P, Q) is the rank of the submatrix of
M[I2 ∪ O3] defined on the rows corresponding to P and the columns correspond-
ing to Q. Notice that in the uncompactified version of the ADT network, the task
of evalutating the linking function corresponded to determining the rank of a given
square submatrix of M[I2 ∪ O3] which was build by two arbitrary subsets of rows and
columns of the same size. In contrast, in the compactified version, only “block-wise”
submatrices have to be considered, where the blocks are defined by the nodes. In the
following, we discuss a fast method, based on FFT, to evaluate polylinking functions
such as λ that are encountered in the compact formulation.

Let F be a field and σ = (σ1, σ2, . . . , σb) be a sequence of b elements in F . We
denote by T (σ ) the b × b matrix defined by

T (σ )i j =
{

σb− j+i (i ≤ j)
0 (i > j).

We call such a matrix T (σ ) an upper-triangular Toeplitz matrix (or a UTT-matrix).
For a pair of sequences σ and τ of length b, the convolution σ ∗ τ is defined by

(σ ∗ τ)k =
b∑

i=k

σb−i+kτi

for k = 1, 2, . . . , b. Then we have T (σ )T (τ ) = T (σ ∗ τ). Thus the product of
two UTT-matrices is again a UTT-matrix. If T (σ ) is nonsingular, the inverse matrix
T (σ )−1 is also a UTT-matrix.

For a sequence σ of length b, the largest number � with σ� �= 0 is called the effective
length of σ and denoted by �(σ ). Note that �(σ ) = rank T (σ ) holds.
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Let Fl be a finite field and let M be a matrix with elements in Fl that can be
partitioned into blocks:

M =
⎛

⎜
⎝

M11 · · · M1ν

...
. . .

...

Mμ1 · · · Mμν

⎞

⎟
⎠ ,

where each block Mαβ is a b × b UTT-matrix. We now discuss how to compute the
rank of M over Fl efficiently. In the ADT model, the polylinking function values are
given by the ranks of matrices in this form.

Suppose without loss of generality that M11 attains the maximum rank � among
the blocks. We can eliminate Mα1 for α = 2, . . . , μ by row operations as follows.
For each α = 1, 2, . . . , μ, let Nα be the submatrix of Mα1 indexed by the first � rows
and the last � columns. Then the entries in the remaining part of Mα1 are all zero. For
α = 2, . . . , μ, let Sα be the b × b matrix in the form of

Sα :=
(

Nα N1
−1 O

O O

)

.

We then construct the matrix

M ′ =
⎛

⎜
⎝

M22
′ · · · M2ν

′
...

. . .
...

Mμ2
′ · · · Mμν

′

⎞

⎟
⎠ .

by Mαβ
′ := Mαβ − Sα M1β . The resulting matrix M ′ satisfies rank M = �+ rank M ′.

Each block of M ′ is a UTT-matrix, and we apply the same procedure recursively to
M ′. Thus we obtain an algorithm for computing the rank of M .

We now discuss the time complexity of this algorithm. For simplicity, we henceforth
assume μ = ν. The algorithm requires O(μ3) multiplications and O(μ) inversions
of UTT-matrices. The matrix M can be encoded by μ2 sequences of length b.

The multiplication of UTT-matrices reduces to convolution, which can be per-
formed in O(b2) time by a straightforward implementation. The inversion of a UTT-
matrix can be done in O(b2) time as well.

To devise a faster implementation of the above algorithm, we consider the use of
the fast Fourier transformation (FFT). In fact, it is a standard technique to use FFT
for computing the convolution over the reals or complex numbers in O(b log b) time.
However, the standard FFT over the reals or complex numbers does not trivially trans-
late to any finite field. In [11] a FFT working on any finite field Fl , was presented, which
has a running time of O(bm log(bm)), where m is the exponent of the characteristic
of Fl , i.e., l = pm with p prime. In particular, when accepting the typical assumption
that the number of possible signals is considered to be constant, the algorithm runs in
O(b log b).
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As for the inversion of UTT-matrices, there has been developed a fast divide-and-
conquer algorithm using FFT [4], which runs in O(b log b) time on any field, on which
a FFT can be performed in O(b log b) time.

To sum up, the time complexity of the entire algorithm for computing the rank of M
is O(μ3b log b), when the number of possible signals is considered to be a constant.

7 Conclusion

A layered flow model based on polylinking systems has been introduced that gener-
alizes the classical flow model of Ford and Fulkerson restricted to acyclic networks
and the ADT flow model used in the context of wireless information flows. Because
of the abstract nature of polylinking systems, the proposed model is very general.
Despite its generality, it is possible to find efficiently a maximum flow, a minimum
cut, and a minimum cost flow if it is possible to evaluate in polynomial time the
polylinking functions that underly the network. The algorithms used for the above
optimization problems rely on submodular flow. Furthermore, several properties of
polylinking networks have been presented, including the max-flow min-cut theorem
and the integrality of the flow polytope.

The reduction to linking networks leads to an efficient algorithm for finding a maxi-
mum flow and a minimum cut in the ADT flow model based on matroid partition. This
algorithm is faster than the combinatorial algorithm recently presented by Amaudruz
and Fragouli [1]. Furthermore, introducing the notion of aggregation of polylinking
systems, we present a more compact polylinking network formulation of the ADT
model. With the aid of an effective use of FFT in evaluating the polylinking functions,
this formulation leads to another efficient method of analyzing the ADT model based
on submodular flow algorithms.
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