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Abstrac t .  We consider the acyclic subgraph polytope and define the no- 
tion of strength of a relaxation as the maximum improvement obtained 
by using this relaxation instead of the most trivial relaxation of the 
problem. We show that the strength of a relaxation is the maximum of 
the strengths of the relaxations obtained by simply adding to the trivial 
relaxation each valid inequality separately. We also derive from the prob- 
abilistic method that the maximum strength of any inequality is 2. We 
then consider all (or almost all) the known valid inequalities for the poly- 
tope and compute their strength. The surprising observation is that their 
strength is at most slightly more than 3/2, implying that the strongest 
inequalities are yet unknown. We then consider a pseudo-random con- 
struction due to Alon and Spencer based on quadratic residues to obtain 
new facet-defining inequalities for the polytope. These are also facet- 
defining for the linear ordering polytope. 

1 Introduction 

Given weights wa on the arcs of a complete directed graph (or digraph) D = 
(V, A), the acyclic subgraph problem is that  of determining a set of arcs of maxi- 
mum total  weight that  define an acyclic subgraph. The complement of an acyclic 
subgraph is called a feedback arc set. For general graphs, the acyclic subgraph 
problem is NP-hard,  even for graphs with unit weights and with total  indegree 
and outdegree of every vertex no more than three [GJ79], although the prob- 
lem is polynomially solvable for planar graphs as was shown by Lucchesi and 
Younger [LY78]. For any number n of vertices, the acyclic subgraph polytope 
P~c is defined as the convex hull of incidence vectors of acyclic subgraphs of the 
complete digraph on n vertices; for simplicity, we will omit the superscript n. 
The acyclic subgraph polytope PAc was extensively studied by GrStschel, J/inger 
and Reinelt [GJR85a, Ju85, Re85]. At the present time, many classes of facet- 
defining valid inequalities are known (in addition to the references just  cited, 
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see, e.g., [Gi90, Ko95, LL94, Su92]; for a survey of many of these inequalities, 
see Fishburn [Fi92]). 

Goemans [Go95] introduced a notion for evaluating the strength of a linear 
programming relaxation for a combinatorial problem, relative to a weaker relax- 
ation of that problem. He applied these results to compute the relative strength 
of classes of facet-defining inequalities for the traveling salesman problem. Mo- 
tivaLed by that definition, we set out to determine the strengths of the known 
classes of facet-defining inequalities for the maximum acyclic subgraph problem, 
using as our relaxation for comparison the completely trivial relaxation of PAC 
given by 

P = {x : xlj + ~ji < 1 for all i, j E V}. 

In general, we were aware that certain probabilistic results imply that the strength 
of PAC itself relative to P must be close to 2 (specifically, 2 - o(1)5), something 
that follows from the fact that, for large random tournaments, the maximum 
acyclic subgraph has at most about half the total number of arcs (with high prob- 
ability). Thus we were quite surprised to discover, in computing the strengths of 
the known inequalities, that in every case except one, their strength was at most 
3/2 (see Table 1). In the last case, the strength was still no more than 55/36. 
This "gap" implies, in particular, that if we were to choose a large random graph 
and optimize a unit-weight function over the polytope consisting of all known 
valid ~equalities, the relaxed solution value would (with high probability) be off 
by at least 30 percent from the true optimum! 

Inequality Type 
k:dicyde (k 2"5i 
k-fence (k _>,3) 
augmented k-fence 

(k > 3) 
r-reinforced k-fence 
( k > 3 , 1 < r < k - 2 )  
k-wheel (k >_ 3) 
zk (k -> 4) 

[diagonal 
I~,-~tical fence 
Inode-disjoint 
[k-MSbius ladder 
[ ........ (k > 3) 

Reference 
[GJR85a, J~5' 
[GJR85a, Ju85' 
ILL94, Me90] 

ILL94, Su92] 

[JuSS] 
[Ross] 
[Gigo] 
[Ko951 

General Strength 
k / ( k - 1 )  

" k~/(k ~ - k + l )  
(3k ~ - 4 k ) / ( 2 t  ~ - 3 ~ + 1 )  

-P + (~ - 1)k 
k 2 - k + ( r 2 ~  
" 10k/(rk : 1)  
(4k+3)/(3k+2) 

(IV[ + 21EI)/(ct(G) + 2[E[) 

[GJR85a, Ju85 < 6k/(5k - 1) 9/7 

Max Strength 
3/2 
9/7 =1.2857... 

55/36 =1.5277... 

I + V ~  =1.3660... 
2 

3 / 2  
19/14 = 1.3571. 
< 3/~ 
9/7 1.2857... 

Table 1. Strength of various classes of valid inequalities for PAc. 

5 o(1) means that this term is normegative and tends to 0 as the number of vertices n 
tends to oo. 
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Armed with these results, we started hunting for new facet-defining inequal- 
ities with strength closer to 2. The probabilistic proof that the strength of PAc 
is 2 -- o(1) shows that an inequality based on a uniformly selected random tour- 
nament has strength 2 - o(1) with high probability. Many results in random 
graph theory of this flavor, however, are highly "existential" in nature and indi- 
cate no way of explicitly constructing a graph with the desired (highly probable) 
property. However, in some cases, explicit constructions (often based on number- 
theoretic arguments) are known which exhibit almost the same properties as 
their random counterparts. For the maximum acyclic subgraph problem, Alon 
and Spencer [AS92] explicitly construct such pseudo-random tournaments with 
an upper bound on the size of the maximum acyclic subgraph asymptotically 
close to one-half. These tournaments are known as Paley tournaments. 

Asymptotically, these tournaments induce valid inequalities which have 
strength arbitrarily close to 2, even though there is no guarantee that they 
define facets of PAC. We have considered Paley tournaments on several small 
numbers of vertices, and have discovered that the associated Paley inequality on 
11 vertices already has strength larger than that of all known valid inequalities, 
and also defines a facet for PAC. The same results hold for 19 vertices. 

The polytope PAC is a cousin of the linear ordering polytope PI, o (see 
[GJR85b] and references therein). A linear ordering is a permutation ~r on the 
vertex set {1, 2 , . . . ,  n} and will be denoted by (~r(1), ~r(2),..., r(n)).  Any linear 
ordering induces an acyclic subgraph {(~r(i), ~r(j)) : i < j}. The linear ordering 
polytope PLO is the convex hull of the maximal acyclic subgraphs of complete 
graphs induced by linear orderings. Clearly, PLO is a face of PAr [GJR85b]. 
More precisely, PLO = {x E PAC : xij +xji = 1}. Moreover, for any nonnegative 
weight function, any optimal solution over PLO is also an optimal solution over 
PAc. For technical reasons, our results about the strengths of inequalities will 
apply only to the acyclic subgraph polytope; nonetheless, our new facet-defining 
inequalities turn out to be facet-defining for the linear ordering polytope, as well. 

The extended abstract is structured as follows. In the next section, we gen- 
eralize the results on the strength of relaxations derived in [Go95] to polytopes 
of anti-blocking type, such as PAC. In Section 3, we establish that the strength 
of PAC is 2 -  o(1), and we compute the strength of almost all known inequalities 
for PAC in Section 4. In Section 5, we present the Paley inequalities and give a 
general condition under which they are facet-defining. Finally, in Section 6 we 
consider a different notion of strength by defining it relative to a stronger LP 
relaxation of PAC. 

2 S t r e n g t h  

A notion of strength of a relaxation was introduced by Goemans [Go95] for 
polyhedra of blocking type. The strength of a relaxation is one measure of how 
well a relaxation approximates a polyhedron in comparison to another weaker 
relaxation. In this section, we derive the equivalent results for polytopes of anti- 
blocking type, i.e., for polyhedra P C IR a such that E P and 0 < < y _ + y x 
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imply that x E P.  The exposition is adapted from [Go95]. We state the main 
result (Theorem 2) in the case ofpolytopes restricted to the nonnegative orthant, 
although the result holds for more general anti-blocking polyhedra as well. 

ff P and Q axe polyhedra in IR n then we say that P is a relaxation of Q or Q 
is a strengthening of P ff P __D Q. For polytopes P and Q of anti-blocking type, we 
say that P is an a-relaxation of Q (a E IR, a >_ 1) or Q is an a-strengthening of 
P if Q D_ P / a  = {x /a  : x E P},  i.e., Q is a relaxation of P/a .  Any a-relaxation 
is also a ~-relaxation for any fl >_ a. Also, let t(P, Q) denote the minimum value 
of tr such that P is an a-relaxation of Q. Notice that t(P, Q) >_ 1, t(P, Q) = I if 
and only ff P = Q, and that t(P, Q) could be infinite. 

The following lemma follows trivially from the separating hyperplane theo- 
rem. 

L e m m a  1. Let P be a relaxation of a polytope Q, P and Q being of anti.blocking 
type. Then P is an a-relaxation of Q if  and only if, for any nonnegative vector 
w E IR n, 

Max{wx : x E Q} > t-Max{wx : x E P}.  
oz 

As a corollary, t(P, Q) is equal to 

Max{wx : x E P} 
t(P, Q) = Sup~e~a~ Max{wz : z E Q) '  (1) 

where, by convention, o = 1. 
The following result gives an alternative characterization of t(P, Q) when a 

description of Q in terms of linear inequalities is known. The proof is similar to 
that of Theorem 2 in [Go95]. 

T h e o r e m  2. Let P and Q be polytopes of anti-blocking type, and let P be a 
relaxation of Q. Assume Q = {x : a~z <<_ bi for i = 1 , . . . ,  m, x > 0}, as, bi >_ 0 
for i = 1 , . . . ,  m. Then 

di 
r Q) = Maxi--,  

b~ 

where di = Max{aix : x E P}.  

Proof. From (1), it is clear tha* 

Max{aix : x E P} > di 
t(P,Q) > May~ Max{a~ x : T E  Q} - M a x ~ .  

We therefore need to prove the reverse inequality. 
Let w be any nonnegative weight function. By strong duality, we know that 

Max wx = Min bTy 
s.t. Ax  < b s.t. ATy > w T 

z>_O y>O,  
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where T denotes the transpose. Let y* be the optimal dual solution of the above 
program. Then 

Maxwz <Max(y*)TAz<_~'~4 {Maxaiz  } y~ =~'].idiy* 
s.t. xEP s.t z E P  s.t. x E P  

(the middle inequality follows from the fact that z > 0 and (y*)TA > wT). 
Hence, 

Max{wz:z  e Q} - < "E,b'-----~i - �9 k E j  Jyj / g 

Since di > 0 (since al > 0) and y* >_ 0, the latter quantity can be interpreted as 
a convex combination of ~ and is therefore less than or equal to 

di 
Maxi ~/. 

The result is proved by taking the supremum over all nonnegative weight func- 
tions w. 

Theorem 2 can be rephrased as follows. To compute t(P, Q), one only needs to 
consider the cases in which a single inequality of Q is added to P. This motivates 
the following definition. The strength of an inequality ax < b with respect to a 
polytope P is defined as 

Max{ax : z E P} 
b 

Theorem 2 implies that t(P, Q) is equal to the maximum strength with respect 
to P of a facet-defining inequality for Q. 

3 S t r e n g t h  o f  t h e  A c y c l i c  S u b g r a p h  P o l y t o p e  

The acyclic subgraph polytope PAC is of anti-blocking type, and therefore the 
results of the previous section apply. 

T h e o r e m  3. The strength t(P, PAC) of the acyclic subgraph polytope PAC on n 
vertices is 2 - O(1/v/-n ). 

Proof. We first show that the strength of PAy is at most 2. This is a well-known 
result. Given any nonnegative weight function w, consider the acyclic subgraphs 
induced by two opposite linear orderings, i.e. (1, 2 , . . . ,  n) and (n, n - 1, . . . ,  2, 1). 
Clearly, every arc is in one of these linear orderings and, therefore, the maximum 
weight of the acyclic subgraphs induced by these 2 orderings is at least �89 ~'~.id wij. 
Thus, using (1), t(P, PAe) is at most 

t(P, PAr <_ Supwe~ 1 1 < 2. 
E~<~(w~j + w~) - 
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To establish a lower bound on t(P, PAt), we use a probabilistic result. A 
tournament is a directed graph D = (V, A) in which for every (i, j)  exactly one 
of (i, j)  or (j, i) belongs to A. We can associate a weight function to every tour- 
nament: wq = 1 if (i, j) E A and 0 otherwise. The strength t(P, PAC) given 
in (1) must be at least the maximum ratio obtained by considering only the 
weight functions associated with tournaments. Consider now a random tourna- 
ment chosen uniformly among all tournaments. ErdSs and Moon [EM65] have 
shown that the size f(n) of the maximum acyclic subgraph in a random tourna- 

. _  1 n ment is f(n) ~(~) + O(nZ/21v/~-n) with high probability and this was refined 
= 1 O(n 3/2) with high by Spencer [Sp711 (and de la Vega [Ve83]) to f(n) ~ (~) + 

probability. As a result, a random tournament gives a ratio of = 2-O(1/v/~)  
with high probability, and the worst tournament must give a ratio at least as 
high. 

4 Strength of Known Valid Inequalities 

We begin by characterizing certain properties of valid inequalities for PAC; these 
facts can be found in Jiinger [Ju85]. Since PAC is of anti-blocking type, all its 
facet-defining valid inequalities, except the nonnegativity constraints, are of the 
form ax <_ b with a >_ 0 and b > O. Moreover, any facet-defining valid inequality 
ax <_ b, except the nonnegativity constraints and the inequalities xij + xj/ <_ 1, 
must satisfy rain(a/j, aj/) = 0 for all (i, j). We can therefore restrict our attention 
to such support reduced inequalities [BP91]. 

For the acyclie subgraph problem and the trivial relaxation P given in Section 
1, it is very easy to compute the strength of any support reduced inequality 
ax < b with a~ b _> 0. Indeed, when optimizing over P,  the problem decomposes 
over all pairs of indices and, as a result, the strength of ax <_ b is given by 

~ / < j  max(a/j, aji) = ~i , j  aq . (2) 
b b 

In particular, if the inequality is a rank inequality, i.e. an inequality of the form 
x(A) < b where x(A) - ~,(i,j)eA xq, as are most known facet-defining valid 

inequalities for PAc, then the strength is simply IAt/b. 
We can use these formulas to compute the strength of most classes of known 

facet-defining valid inequalities for PAc. However, because of space limitations, 
we do not include the description of the known inequalities. We refer the reader 
to Fishburn [Fi92] for a survey. We summarize our findings in Table 1. All the 
inequalities listed in the table are rank inequalities except the augmented k- 
fence, the r-reinforced k-fence, and the diagonal inequalities. The column "Max 
Strength" indicates the maximum value over all possible values of the parameters 
of an inequality in the class considered. As mentioned before, the strength of 
any of these inequalities appears to be at most 3/2, except for the augmented 
k-fences, whose strength is maximized for k = 5 at 55/36. 

We would like to comment on three of the entries. The node-disjoint k-MSbius 
ladder inequalities are rank inequalities x(A) <_ b with b = IAI-  k--~J-2 ~ �9 The value 
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of the strength indicated in the table follows from the fact that ]A] can be seen 
to be at least 3k when the cycles in the definition of the MSbius ladder are 
node-disjoint. For the diagonal inequalities, we have not computed their exact 
strength, but we use the following result. 

L e m m a  4. Let az < b be a support reduced valid inequality for PAC and assume 
that az < b is implied (over PLO} by the valid inequalities cix < di for PAC and 
the equalities zij + xjl = 1 for all i, j valid only over PLo. Then the strength of 
ax < b is at most the maximum strength of the inequalities eix <_ di. Moreover, 
the strength is strictly less than the maximum strength if  the equalities Zij '~ Zji  -~- 
1 are needed. 

Proof. Let li/di be the strength of inequality eix < di, where li denotes the 
sum of the entries of ci. Since az < b is implied by eiz < di and the equalities 
xij + zji = 1, there must exist Ai > 0 and I~ij such that b = ~ i  Aidi - ~-~i"/qJ 
and a = ~,i  Aicl -~- , i j  tqjeij, where eij is the incidence vector of xij + xji. ~ince 
az < b is support reduced, all #ij's must be nonnegative. 

The strength of ax < b is therefore 

)"]i Aili - 2 ~ i j  I~ij 
-< ~ i  Aidi <- max--,i di 

the first inequality following from the fact that the strength of any inequality is 
less than 2. Moreover, the first inequality is strict if any #ij > 0. 

As an illustration, the lemma shows that the strength of the k-dicycle in- 
equalities (k > 3) is less than the strength of the 3-dicycle inequalities since the 
k-dicycle inequalities are implied by the 3-dicycle inequalities over Pl.o (but not 
over PAt) .  For the diagonal inequalities, Leung and Lee ILL94] show that they 
are implied by the 3-dicycle inequalities, the r-reinforced k-fence inequalities and 
the equalities xlj + zji = 1. This in conjunction with the lemma shows that the 
strength of the diagonal inequalities is less than 3/2. 

The a-critical fence inequalities [Ko95] are generalizations of k-fence inequal- 
ities in which the structure of the inequality's supporting digraph is related to 
a connected undirected graph G = (V, E) with IVI > 3. Koppen proves that the 
associated inequality is a facet if and only if the graph is a-critical, i.e., if any 
edge is removed from G then the independence number of G, a(G), increases. 
For this inequality, ~"~4,j aij is IV[ + 21El, while b = a(G) + 2[El, implying that 

v)+21~) their strength is ~(G)+2 E �9 We show next that the strength of these inequalities 
is bounded by 9/7. 

Le inmaS.  For any connected, s-critical graph G = (V, E) with IVI ~ 3, 

JVI + 21El 9 
c~(G) + 2IEI < if' 

and this bound is attained if G is a triangle. 
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Proof. For simplicity, let v = [VI, e = tEl, and a = a(G). Since G is a-critical 
and IV[ >_ 3, it cannot be a tree [LP86, Th. 12.1.8.], and therefore e > v. 

From Turs theorem [Tu41], we have that a >_ i~f  where d is the average 
degree. Thus a >_ ~ .  Letting x = e/v  >_ 1, the bound on the strength 
becomes 

v + 2 e  

a+2e -< 

v + 2e (2e + v) 2 1 + 4x + 4x 2 9 
2e+'-"'~ + 2e v 2 + 4e 2 + 2ev 1 + 2x T 4x 2 - "7' 

the value of 9/7 being attained at x - 1. When x = 1, G must be a cycle; but, 
among all cycles, Turs theorem is tight only for the triangle. 

Given a valid inequality for PAc, several operations are known for deriving 
other valid inequalities [Ju85]. For example, both the operations of node-splitting 
and arc-subdivision take an inequality az < b and transform it into another in- 
equality cx _< d with the property that d - b = ~ c~j - ~ aij >_ 0. Such a 
transformation results in an inequality of lesser strength since both the numer- 
ator and denominator of ~ a~j/b increase by the same amount. 

Finally, we note that the class of MSbius ladder inequalities introduced by 
GrStschel, Jiinger, and Reinelt [Ju85, GJR85a] is much more general than what 
we have described here. It is quite possible that there exist general MSbius in- 
equalities whose strength is greater than 3/2. However, the description of these 
general inequalities gives no systematic way of recognizing classes for which the 
strength might be greater. (Indeed, our new inequalities, described in the next 
section, could in fact be MSbius ladders; we comment further about this possi- 
bility at the end of the next section.) Also, we have omitted the web inequalities 
[Ju85, GJR85a] because they are defined relative to general MSbius ladders. 
When they are defined relative to node-disjoint MSbius ladders, their strength 
is at most (6k + 10)/(5k + 9) < 6/5. 

5 P a l e y  I n e q u a l i t i e s  

Motivated by the results of Section 3 and 4, we introduce a class of valid inequal- 
ities based on a construction of Alon and Spencer [AS92] and we give conditions 
under which these inequalities define a facet of the linear ordering and acyclic 
subgraph polytopes. 

5.1 N u m b e r - T h e o r e t i c  Pre l iminar ies  

We collect here some basic number theoretic results which will be useful for the 
definition and properties of Paley inequalities. The results can be found in Hardy 
and Wright [HW79], for example. 

The letter p will always denote a prime number. Given p, any x not congruent 
to 0 modulo p has a unique inverse modulo p, denoted by z -1, i.e. xx -1 - 1 

(rood p). We can thus define a division modulo p by x / y  = xy  -1.  
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A given a ~ 0 (mod p) is called a quadratic residue of p if the congruence 
z 2 = a (mod p) has a solution z; otherwise a is called a quadratic non-residue. 
There are exactly (p - 1)/2 quadratic residues of an odd prime p. If we let x(a) 
be 1 if a is a quadratic residue, 0 if a is 0, and - 1  if a is a quadratic non- 
residue, then it is known that  x(a) = a(p-1)/2 (mod p) [HW79, Th. 83]. Since 
x(ab) = x(a)x(b), the product of two quadratic residues (or two quadratic non- 
residues) is a quadratic residue, and the product of a quadratic residue and a 
quadratic non-residue is a quadratic non-residue. For primes of the form 4k + 3, 
exactly one of a or - a  is a quadratic residue [HW79, Th. 82]. For any odd prime 
p, there exist quadratic residues a, b and c such that  a + b + c = 0 (rood p) 
[HW79, Th. 87]. 

The number of positive integers not greater than and prime to m is denoted 
by r The function r is called Euler's function. For a prime p, r = p - 1. 

a l  a2 In general, if m is expressed in its standard form m = Pl P2 "" "P~' where the 

p,'s are distinct primes then r  m ( 1 - ~ ) ( 1 - ~ ) . . .  ( 1 - ~ ) [ H W 7 9 ,  

Th. 62]. The order of an element a {mod m) is the smallest positive value d 
such that  a d - 1 (mod m). If a is prime to m then the order of a (mod m) 
divides r [HW79, Th. 88]. The integer a is called a primitive root of m if 
its order is equal to r It is known that  every prime p has exactly r  1) 
primitive roots [HW79, Th. 110]. We will refer to the square of a primitive root as 
a squared primitive root. Observe that  any squared primitive root is a quadratic 
residue with order exactly (p - 1)/2. If a is a primitive root of a prime p then 
x(a) =- a (p-1)/2 =- - 1  (modp),  i.e. a is a quadratic non-residue. Therefore, if 
p is of the form 4k + 3, then - a  is a quadratic residue and cannot be a primitive 
root. This implies that  for a prime p of the form 4k + 3 the squares of the 
primitive roots are distinct, and thus there are r - 1) = r - 1)/2) squared 
primitive roots. In particular, if (p - 1)/2 is prime, all quadratic residues, except 
the residue 1, are squared primitive roots. 

5.2 P a l e y  t o u r n a m e n t s  

A Paley tournament can be constructed as follows. Take a prime p of the form 
4k Jr 3. Let the vertex set V be the residues modulo p or {0, 1 , . . . , p  - 1}, and 
let the arc set A be {(i , j)  : x(J - i) = 1}. The fact that  x(a) = - x ( - a )  implies 
that  (V, A) is a tournament.  Let s(r) denote the number of arcs in the acyclic 
subgraph defined by a linear ordering r on V, and let l(p) be the maximum of 
s(~r) over all ~r. Alon and Spencer [AS92] show that  l(p) < �89 (~) + O(p3/2 logp). 
Given a Paley tournament (V, A), we can associate the inequality 

z,j < l(p), (3) 
(i,j)EA 

which is valid for both PAc and PLO. We refer to this inequality as a Paley 
inequality. The term Paley comes from R.E.A.C. Paley [Pa33] who introduced a 
very closely related construction for a Hadamard matrix of size p + 1. 
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5.3 Facets  

In this section, we give conditions under which the Paley inequality defines a 
facet of either PLO or PAc. 

We first consider the case p = 7. The quadratic residues modulo 7 are 1, 
2 and 4. We claim that,  for p = 7, the Paiey inequality is implied by the 3- 
dicycle inequalities. Indeed, if we consider the seven dicycle inequalities corre- 
sponding to vertices i, i - 1, and i - 4, i = 0 , . . . , 6 ,  where all differences are 
modulo 7, then we cover each arc of the Paley tournament exactly once, and 
so we have ~(i, j)eA zij <_ 14. This value is attainable, e.g., by the permutation 
(0, 1, 2, 3, 4, 5, 6). 

For higher values of p, we need the following definition. Given a linear or- 
dering ;r, we say that  ~r contains the loose triple (u, v, w), where u, v, w are (not 
necessarily all distinct) quadratic residues summing to 0 modulo p, ff there is an 
index i such that  ~ r ( i + l ) - r ( i )  - u, ~r( i+2)- lr( i§ = v and r ( i ) - ~ ( i §  = w. 

T h e o r e m 6 .  For a prime p > 11 of the form 4k + 3, the inequality (3) defines 
a facet of PLo if there exists an optimal linear ordering 7r (i.e. for which s(~r) -- 
l(p)) which contains a loose triple (u, v, w) where one of v/u, w/v or u/w is a 
squared primitive root. 

Proof. We start by observing that  v/u, w/v and u/w cannot all be equal. If 
they were all equal say to x then x 3 -= 1 (mod p), which contradicts the fact 
that  x must be a squared primitive root (unless p = 7 which is ruled out by 
assumption). 

We will consider several operations on linear orderings of Paley tournaments 
which preserve optimality. Given r and a quadratic residue a, we let a~ denote 
the permutation defined by (ar)(i) -= r(i).a (mod p). Similarly, for any residue 
a (not necessarily quadratic), we let Ir + a denote the permutation defined by 
(~r + a)(i) = r(i) + a (mod p). Observe that,  in both cases, s(alr) = s(lr) 
and s(Tr + a) -= s(~r). The effect of these operations on a loose triple (u, v, w) 
of ~r is the following: (u, v, w) is still a loose triple of r + a, and (au, av, aw) 
is a loose triple of aTr. Also, if ~r has a loose triple, say given by the index i, 
then we can obtain two other permutations (pi o ~r) and (p/2 o ~r) by applying 
(once or twice) the permutation Pi that  only rotates elements r( i) ,  ~r(i + 1) and 
Ir(i+2). The important observation is that,  by definition of a loose triple, we have 
s(r) = s(piolr) = s(p~olr). Moreover, by applying these rotations, we can assume 
without loss of generality that  the loose triple (u, v, w) in some optimal ordering 
~r satisfies: (i) v/u is a squared primitive root, and (ii) w/v ~ v/u. Furthermore, 
by considering a t ,  we can assume that  u = 1, and then by considering 7r + a, 
we can assume that  lr(i) = 0. We therefore assume the existence of an optimal 
linear ordering ~r with a loose triple (1, k, kl) at index i where k is a squared 
primitive root, k ~ 1 and ~r(i) = 0. 

To prove that  (3) defines a facet of PLO, we consider the set (9 = (lr : s(~r) = 
l(p)) of optimal orderings and show that  if the equality cTz = b is satisfied for 
M1 incidence vectors x ~ corresponding to permutations r in (9 then cTx = b 
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is implied by the equality version of (3) and the equalities zij + zji  = 1 for 
all i, j .  Because of the latter equalities, we can assume that  the only non-zero 
coefficients of e correspond to arcs in the Paley tournament,  and, as a result, we 
only need to show that  such restricted o's are multiples of the equality version 
of (3). For simplicity of notation, we let c , , ,  denote the coefficient of the arc 
(u, u + a) where a is a quadratic residue. The subscripts of c should always be 
taken modulo p. 

Comparing eTz Irl and cTz '~ where rrl = p i o r  and us = p~or, we derive that  
c0,1 = Cl,k. If we now consider r ~ = ar + b where a is a quadratic residue, the 
same argument shows that  Cb,a = Ca+b,ak. In particular, taking (a, b) = (k, 1), 
we get that  c0,1 = cl,k = ck+l,kU. Repeating this process, we derive that ,  for any 
positive integer j ,  c0,1 = ed(k,j),ki where d(k , j )  = k j -1  + k j - s  + . . .  + 1. Since k 
was assumed to be a squared primitive root, as j runs from 0 to (p - 1)/2 - 1, 
kJ runs over all quadratic residues modulo p. 

If we compare now cTx r with cTz 'r2, we derive that  c0,1. = cl+k,kt. But 
we already know that  c0,1 = c~(k,j),kt where j is such that  k J is congruent to 
the quadratic residue kl modulo p. We claim that  k + 1 ~ d(k, j)  (mod p). 
Assuming the claim, we are almost done. We have just proved that  Cbl,kt = Cb2,kt 
for two distinct values bl, bs. By repeatedly adding bs - bl to the permutations, 
we derive that  e0,kt = cb,kl for any b. By multiplying by all quadratic residues, 
we get that  co,, = Cb,a for all b and all quadratic residues a. Now using the fact 
derived in the previous paragraph that,  for any quadratic residue, c0j = cm,, 
for some m, we get that  all coefficients of cTa: are identical, proving the result. 

We still need to prove the claim that  k + 1 ~ d(k, j)  (mod p). To avoid 
having to deal with the cases j = 0 or j = 1 separately, we add ( p -  1)/2 to j 
in such cases (remember that  k( p-D/9 -= 1 (mod p)), and therefore we assume 
without loss of generality that  2 _< j _< (p - 1)/2 + 1. We need to show that  
d(k, j )  - k - 1 ~ 0 (mod p). We observe that  

( k -  1 ) ( d ( k , j ) -  k -  1) = ( k -  1) (~  -1 + k j - s  + . . . k  2) 

---k j - k  s (modp)  

= k2(k j - 2 -  1) (modp)  

(mod p) 

Since k is a squared primitive root, we have that  k # 1 and kJ-S ~ 1 (mod p) 
unless j = 2. However, our assumption that  k r l implies that  j r 2. Therefore, 
d(k, j )  - k - 1 ~ 0 (mod p), proving the claim. 

Since the inequality (3) is support reduced, if it defines a facet of PLO then 
it also defines a facet of PAc. (See Boyd and Pulleyblank [BPgl] and Leung and 
Lee [LL94] for the details of why generally such an implication holds.) 

C o r o l l a r y  7. Under the same conditions as in Theorem 6, inequality (3} defines 
a facet of Pac .  

For p = 11, 19, and 23, we have been able to compute the correct right-hand 
side value l(p) using CPLEX branch-and-bound code; see Table 2. In the case 
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p = 11, the following permutation, which yields a solution containing 35 arcs, 
satisfies the conditions of the proof: 

(1, 6, 7, 10,4, 8,2, 0, 5, 9,3). 

Notice that the first three elements induce a loose triple (5, 1, 5). Since 5 is a 
squared primitive root, the theorem can be applied. For p = 19, we have the 
following permutation containing 107 arcs: 

(8, 17, 18, 15, 5, 3, t2, 10, 2, 0, 9, 7, 16, 14, 6, 4, 13, 11, 1). 

The first three elements induce the loose triple (9, 1,9). Since 9 is a squared 
primitive root for 19, we again have the necessary conditions that imply the 
constraint is facet-defining. 

Since the Paley inequalities can be trivially lifted to larger instances, we 
therefore have the following corollary to Theorem 6 and Corollary 7. 

Corollary 8. The Paley inequalities on 11 and on I9 vertices are facet-defining 
for P]c  and P~.o, for all n > 11 and 19, respectively. 

In the case ofp = 23, two rather striking things occurred. First, the only per- 
mutations we have found that lie on the facet have no loose triples; moreover, the 
solutions we have found are all isomorphic to the permutation (0, 1, 2, �9 .-, 21, 22). 
Second, the strength 253/161 of this inequality is identical to that of p = 11, 
55/35. For both of these reasons we conjecture that the Paley inequality in this 
case is not facet-defining. 

For p = 31 and p = 43, we have been unable to ascertain whether the best 
feasible solutions generated (with 285 and 543 edges, respectively) are optimal. 
In the case of p = 31, if the true right~hand side is 285, then we are able to 
show that the inequality is facet-defining. Although the proof of this fact does 
not follow directly from the previous theorem, it uses a similar technique of 
combining "loose tuples" (in this case, tuples larger than triples) in order to 
equate coefficients. 

We do not know whether the Paley inequalities are special cases of MSbius 
ladders. However, we do know that if they are, then, in the case of p = 11, 
the MSbius ladder would have to have 39 cycles, while the p = 19 case would 
require 127 cycles! Finally, we note that the Paley inequalities are but one type 
of tournament with pseudo-random properties; a larger class that subsumes the 
Paley inequalities can be extracted from Hadamard matrices. Our experiments 
with additional inequalities generated from small instances of Hadarnard ma- 
trices have thus far yielded inequalities that are neither strong nor provably 
facet-defining. 

6 D i c y c l e  s t r e n g t h s  

One drawback to the definition of the strength of an inequality is that strength 
is defined relative to a given relaxation. An inequality which is strong relative 
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p l(p) # Edges Strength 
-- 11 35 55 1.57142857... 
-- 19 107 171 1.59813084... 
= 23 161 253 1.57142857... 
---- 31 > 285 465 _< 1.64893617... 

p = 43 > 543 903 < 1.66298342... 

Table 2. Examples of Paley inequalities for specific values of p. 

to one relaxation might actually be much weaker relative to another relaxation. 
In this section, we consider a stronger and classical relaxation of PAC as our 
"benchmark". Some, but not all, of the results corroborate the observations 
from the previous sections. 

Let 

Pd = {x : zij + xji ~ 1 for all i, j E V and 

Z x,j < ] C ] -  1 for all dicycles C),  
(i,j)ec 

namely, Pd is the relaxation obtained by adding all dicycle inequalities to P. 
We can apply the results of Section 2 to evaluate the strength of any relaxation 
relative to Pd instead of relative to P.  To avoid any confusion, let the dicycle 
strength of any relaxation Q of PAc with I'd D__ Q be defined as t(Pd, Q). Because 
of Theorem 2, we know that the dicycle strength of any relaxation Q is equal to 
the maximum dieycle strength of (the relaxation obtained by adding to Pal) any 
inequality defining Q. The computations of dicycle strengths are slightly more 
tedious than the computations of strengths; we have nevertheless been able to 
compute the dicycle strengths of most of the inequalities considered before. Table 
3 summarizes these results. 

By the asymptotic properties of Paley tournaments, we know that the dicycle 
strength of the Paley inequalities approaches 4/3 as p tends to infinity. However, 
the convergence is very slow, and in fact the dicycle strength for p = 11 or p = 23 
is only 22/21 - 1.0476... while the dicycle strength for p = 19 is 114/107 = 
1.0654 .... Thus the dicycle strengths of the Paley inequalities for p = 11, 19, and 
23 are actually smaller than the dicycle strength of (for example) the 4-fence, 
which is 14/13; these results are in contrast to those concerning the (regular) 
strengths of these inequalities. For p = 31, the dicycle strength would be 62/57 = 
1.0877... if in fact l(31) = 285. 

The dicycle strength of PAy itself must be at least 4/3 (asymptotically, as 
the number of vertices grows to infinity) since the Paley inequalities achieve this 
bound. However, we do not know if the dicycle strength of PAC is 4/3 or whether 
it is larger (possibly as large as 2). On the one hand, if the dicycle strength of 
PAY is more than 4/3, then there must exist inequMities which are stronger 
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Inequality Type Dicycle Strength Max Value 

k-fence 

augmented k-fence 

r-reinforced k-fence 

k-wheel 
Zk 

a-critical fence 

Paley 

k z - k /2  

k s - k - I - 1  
2k z -- 5k/2 

2k2 - 3 k  5- 1 
k ( k -  1) + rk/2 

k ( r, ---f) u T) / 2 
7k/(rk-1) 

(6k+5)/(6k+4) 
IvI/2 + 2IEI 
~(G) + 21El 

31(pL_____ 

14/13 = 1.0769... 

21/20 =1.05 

112+~r = 1.1123... 

21/20 = 1.05 
29/28 =1.0357... 

< 12 q- 7V~ = 1.0773... 
-12 + 6v~ 

4/3 = 1.3333... 

Table  3. Dicycle strength of various classes of valid inequalities for PAC. 

than the Patey inequalities in the dicycle-strength sense. On the other hand, if 
the dicycle strength of PAc were bounded away from 2, say at most c < 2, this 
fact would be extremely interesting from an approximation point-of-view since 
it would imply that the value obtained by optimizing over Pd (and this can be 
done in polynomial time) is within a ratio of e of the value of the maximum 
acyclic subgraph. The problem of finding an approximation algorithm with a 
performance ratio better than 2 - o(1) for the directed acyclic subgraph problem 
has been a long-standing open problem, at least in part due to the poor upper 
bounds used in proving the performance guarantees. 
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