
A Supermodular Relaxation
for Scheduling with Release Dates

Michel X. Goemans*

Dept. of Mathematics, Room 2-382, M.I.T., Cambridge, MA 02139.**

Abstract. We consider the scheduling problem of minimizing a weighted
sum of completion times under release dates. We present a relaxation
which is a supermodular polyhedron. We show that this relaxation is
precisely the projection of a time-indexed relaxation introduced by Dyer
and Wolsey.

1 Introduction

We consider the 1-machine scheduling problem with release dates and in which
the objective is to minimize a weighted sum of completion times. In the classical
scheduling notation, this corresponds to l[rj[~ j wjCj.

We use the following notation. Job j has a processing time pj, and a release
date rj. Its completion time in a schedule is given by Cj. Let N = {1,- . . , n}
denote the set of jobs to be processed. For any subset S of jobs, let p(S) denote
the sum of the processing times of jobs in S, let p2(S) (not to be confused with
p(S) 2 = p(S) * p(S)) denote ~'~-jes P~, and let r(S) = minims rj.

In this paper, we consider the scheduling problem llrjl ~'~.. wjCj from a
polyhedral point-of-view. For a survey of the study of scheduling polyhedra,
we refer the reader to Queyranne and Schulz [10]. Let P denote the convex
hull of the set of feasible completion times over all possible schedules, i.e. P =
conv{(C1,..., C,) : there exists a feasible schedule with completion time Cj for
job j}. When all jobs are available at time 0, i.e. rj = 0 for all j , Queyranne [9]
has completely characterized P in terms of linear inequalities:

P = {C : ~ p j C j >_ h(S) for all S C_ N }

where h(S) = ~ (p2 S 7, () + P(S) ~) Moreover, Queyranne has shown that h(S) is
supermodular, meaning that h(S) + h(T) < h(S U T) + h(S A T) for all S and T.
This implies that P is a supermodular polyhedron and that the greedy algorithm
can be used to optimize over P when there are no release dates. For a discussion

* Part of this work was supported by NSF contract 9302476-CCR, a Sloan Foundation
Fellowship, and ARPA Contract N00014-95-1-1246.

** Emaih goemans@math.mit .edu

289

of supermodularity and related topics, see Lov~sz [5], Fujishige [3], or Nemhauser
and Wolsey [6].

When there are release dates~ one possible way to strengthen the supermod-
ular constraints is to "shift" the entire schedule by the smallest release date in
the set S. This implies that the following polyhedron is a relaxation of P

Q = {C: ~ p j C j > l(S) for all S C N) ,
j E s

1 2 where l(S) = p(S)r(S) + -~(p (S) + p(S)~). However, it is easy to see that l(S)
is not necessarily supermodular. We may, however, construct an equivalent for-
mulation of Q by replacing l(S) by

k

= max ~l (S i) .
g(S) {Partitions s,,...,s~ of s} i=1

The function g(S) is called the upper Dilworth truncation of/(S) (see Lov~sz [5]).
One of the results of this paper is to show that 9(S) is supermodular and therefore
Q defines a supermodular polyhedron. This means that one can optimize over
P by using the greedy algorithm, and we show how the greedy algorithm can
be implemented in O(nlogn) time. A very similar situation appears in [11].
We also give necessary and sufficient conditions under which this supermodular
inequality defines a facet of P.

There are typically three types of scheduling formulations (see [10]); the first
ones use the completion times as variables, the second ones have linear ordering
variables indicating whether job j precedes job k in the schedule, and the third
ones are time-indexed and have one variable for each job and each unit of time.
Dyer and Wolsey [2] present several types of relaxations for llrjl)-]~j wjCj, the
strongest ones being time-indexed. We actually show that one of their time-
indexed relaxations is equivalent to Q; by projecting the time-indexed variables,
one obtains Q. The way we derive time-indexed variables out of Q is quite
interesting and may be useful for other types of scheduling problems. We should
point out that the equivalence between these two relaxations gives another proof
of the supermodularity of 9(S).

This research was actually performed back in 1989 and was motivated by the
preprints of the papers of Queyranne [9] and Dyer and Wolsey [2]. Very recently/
Hall, Shmoys and Wein [4] used time-indexed formulations to derive the first
approximation algorithms for several scheduling problems with a weighted sum
of completion times as objective. Subsequently, Schulz [12] also showed that
approximation algorithms for these problems can be obtained from relaxations
based solely on completion times. This motivated us to write these results on the
relationship between time-indexed relaxations and completion times relaxations
for ll jl wiCk.

290

2 S u p e r m o d u l a r r e l a x a t i o n

Instead of computing the upper Dilworth truncation of/(S) , we will directly
introduce the function g(S) and then its relationship with l(S) will become clear
later on.

Let S be a subset of jobs. Consider the schedule in which we first schedule
all jobs in S in order of non-decreasing release dates (ties are broken arbitrarily)
and as early as possible, and then schedule all other jobs in any order. We refer
to this schedule as the S-schedule (it is only well specified for the jobs in S,
but this will not cause any problem). Some of the jobs in S will be scheduled
at their release dates in the S-schedule, and the others will start strictly after
their release dates. This leads to a partition of S into $ 1 , ' " , Sk, such that (i)
exactly one job in each Si is scheduled at its release date, and (ii) all jobs in Si
are scheduled before the jobs in Si+l. We refer to $1, .-- ,Sa as the canonical
decomposition of S. Observe that the canonical decomposition does not depend
on how ties are broken in the definition of the S-schedule when there are several
jobs with the same release date. We will refer to the S-schedule corresponding
to the canonical decomposition of S by a superscript (s).

For any subset S of jobs, let

jEs

An expression of#(S) in terms of its canonical decomposition will be given later.
This will relate the function g to the function 1 discussed in the introduction.

T h e o r e m 1. For any S, the inequality

Z p j C j > g(S) (1)
jE$

is a valid inequality for P.

Proof. We need to prove that z(C) =)-']~jes pjCj is minimized by the S-schedule.
Consider any schedule and assume that the start time of some job in S can
be decreased slightly without violating feasibility. Then z(C) decreases, and
therefore we can assume that all jobs in S are scheduled as early as possible.
Furthermore, we can assume that all jobs not in S are scheduled after all the
jobs in Sj and therefore do not interfere with the jobs in S.

Now, if the jobs in S are not scheduled according to non-decreasing release
dates then there exist two consecutive jobs j l and j2 such that Cjl < Cj~ and
rjl > rj2. By interchanging j l and j2, we obtain a new feasible schedule with
Cj, = C A -- Pi, and C~, = C A + PA. Observe that PA Cj, + Pi2 Ci, = PJ, Cj, +
pj2C~=, and therefore z(C) = z(C'). Repeating this argument and the first part
of the proof, we derive that the S-schedule must minimize g(S).

291

Our next goal is to show that g(S) is supermodular, but this will require some
preliminaries. First, for any schedule, we define the indicator function Is (t) to
be 1 at time t if some job in S is being processed at time t, and 0 otherwise.
To avoid any confusion, if a job of S is being processed up to time t and no
other job of S is started at time t, we let Is(t) to be 0. For simplicity, we denote
Iij}(t) by Ij(t). The indicator function will be very useful not only to prove
supermodularity of g(S) but also to relate our formulation to a time-indexed
relaxation introduced by Dyer and Wolsey [2] (which in turn can be used to
prove the supermodularity of g(S) as well).

Here are two elementary properties of indicator functions.

L e m m a 2 . 1. I f S1 , . . . , Sk is a partition o r s then Is(t) = ~-]4=1~ Is~(t). In
particular, Is(t) = Y~d~s l j(t) .

e. For .ny S, Is(t)dt = p(S).

Proof. 1. is obvious. 2. follows from the fact that the total processing time of
jobs in S is p(S).

The following lemma will be very useful for the analysis.

L e m m a 3. For any schedule and any set S,

1

jEs

Note that the value }-'~desPjCj depends only on when the machine is pro-
cessing a job of S, but does not depend on which specific job is being processed.

Proof. We first claim that, for any j,

/o pjCj = ~'z + tl j(t)dt .

If we then sum over all j 6 S, we obtain the first equality by using Lemma 2,
part 1.

To prove the claim, it suffices to observe that Ij (t) is equal to 1 on the interval
[Cj - p~, C~) and 0 otherwise. As a result, the integral on the right-hand-side is
equal to

tdt = ~ - = pjCj
Jc ~-vj 2 2 2 '

and the claim follows.
The second equality follows from simple calculus:

E Z /0 t ls(t)dt = Is(t)drdt

/2/2 = ~s(t)dtdr

= fo~176 [p (S) - fo~ls(t)dt] dr,

292

using Lemma 2, part 2.

To prove the supermodularity of #(S), we will only be dealing with the indi-

cator functions corresponding to S-schedules for all S. Let Js (t) denote I(s s) (t),
namely the indicator function for the set S associated with the S-schedule. We
refer to Js(t) as the canonical indicator function. Although this is not needed
to prove supermodularity~ we first give an expression for 9(S) in terms of its
canonical decomposition.

L e m m a 4 . Let $1, . . . , Sk be the canonical decomposition of S. Then

k , k

i = 1 i = 1

Proof. By definition, g(S) "-" .~(s) = 2~jespjwj . For j E Si, the definition of the

canonical decomposition implies that CJ s) = CJ sd, and thus

k

i = 1 jESi

By Lemma 3,

jESi

But Js, (t) is 1 if t E [r(Si), r(Si) + p(Si)) and 0 otherwise. Therefore,

which proves the result.

This implies that g is the upper Dilworth truncation of I (since there is a
schedule achieving g(S)).

We now give some properties of the canonical indicator function.

L e m m a 5 (Monoton ic i ty) . For S C T, and for any t, Js(t) < JT(t).

Proof. Let $ 1 , ' " , Sk and T1," ", 7] be the canonical decompositions of S and T
respectively. In the S-schedule, the machine is busy from r(Si) to r(Si) + p(Si)
for every i. In the T-schedule, independently of whether a job is being processed
right before r(S~), the machine must be continuously busy at least between r(S~)
and r(S~) +p(S~) since all the jobs in Si were released on or after r(Si). In other
words, whenever the S-schedule is processing a job in S, the T-schedule must
be processing a job in T, proving the claim.

293

Lemma 6. For] ~ S,

fot [Jsu{jI(r) - Js(r)] dr= min \(PJ' Jmin(rr ,t) (1 - Js(r)) dr) .

Proof. If rj > t then both sides are 0. So assume that rj _< t. The integral on
the right-hand-side represents the amount of idle time between rj and t in the
S-schedule. In the (S U {j})-schedule, these periods of idle time will be used to
process some job in S U {j}, up to pj units. This proves the result.

A function f is submodular if for all S and T, f(S) + I(T) >__ f (S U T) +
f (S ClT). So, f is submodular iff - f is supermodular. An alternate definition for
submodularity (see, for example, [6]) is that for any T C S and for any j ~ T,
we have that

f (S u {j}) - f (S) <_ f (T U {j}) - f(T).

/o' Let fs(t) = Js(v)dr.

Lemma 7. For any t, fs (t) is submodular.

Proof. By Lemma 6, for any j ~ S, we have that

(, , J :) fsu{j}(t) -- fs(t) = rain , (1 -- Js(r)dr .
in(r i,t)

The same expression with S replaced by T can also be written.
Using Lemma 5, it then follows that

fsu{j} (t) - fs (t) < fTu{j} (t) -- fT (t),

since the integrand on the right-hand-side is no greater for S than for T. This
shows submodularity.

We are now ready to prove:

T h e o r e m 8. The function g(S) is supermodular.

Proof. From Lemma 3, #(S) can be rewritten as:

/0 g(S) = p2(S) + [p(S) - Is (t)] dr.

Using the fact that p(S) and p2(S) are modular (i.e. both supermodular and
submodular) and the submodularity of fs(t) proved in Lemma 7, we derive the
supermodularity of g.

294

We now consider the following linear program:

Za = Min ~ wjCj
jEN

subject to:

(n) r , PjCj >_ g(S) S C_ N.
jEs

Because of Theorem 1, (R) is a valid relaxation for the scheduling problem
llrr ~j wr162 and therefore Zn is a lower bound on the optimum value Z*. If
we make a change of variables and replace pjCj by zj for all j , we can rewrite

wj
ZR = Min 2.~ - - x j

je~v PJ

subject to:

(n') >__ g(s) s c
jES

Because of Theorem 8, this is a supermodular polyhedron (see [3]). This im-
plies that its optimum solution can be computed by the greedy algorithm. More
precisely, first order the jobs in non-increasing order of wj/pj, i.e. assume that

> ~_a > . . . > ~_~ Let Nj = { 1 , 2 . . , j } . Then, let ~:j = g (N j) - #(Nj-1)
P l - - P 2 - - - - P , , "

for j = 1 , . . . , n, where g(0) = 0. Then ~ is an optimum solution for (R'). As
a result, an opt imum solution to (R) is given by Cj = ~ (g (N j) - g(Nj-1)) for
j = 1 , . . . , n, assuming that ~ > "2 > . . . > ~-~

P l - - P 2 - - - - P , . , "

Computing Cj for all j can be done in O(n log n) time, although we will need
some data structures for this purpose. First, we can sort the -~ in O(nlogn)

P j

time. Then we need to be able to compute #(Nj) efficiently for all j . A naive
implementation would take O(n ~) time. Here is a brief sketch of how to imple-
ment this computation in O(nlogn) time. For a given j , we keep track of the
disjoint intervals (corresponding to the canonical decomposition of Nj) in which
J~rj (t) = 1. For this purpose, we use a balanced binary search tree (such as a red-
black tree, see [1]). When considering j + 1, we start by finding the first interval
/ whose right endpoint is greater than r j+l . This requires one SE^RCH operation
(for the terminology see [1]). The addition of job j + 1 will either create a new
interval (if r j+l + Pj+I is no greater than the left endpoint of I) or will cause
several consecutive intervals, say q, to merge (because we need Pj+I units of idle
time to accommodate job j + 1). This can be determined by performing at most
q SuccEssoR operations, and then performing either one INSERT operation or
q - 1 DELETION operations. This gives O(q) operations, each taking O(logn)
time. However, the number of intervals decreases by q - 1, and therefore this
can be charged to the time when these intervals were created. This shows that
maintaining the intervals over all j takes O(nlogn) time. As we update these
intervals, it is very easy to compute g(Nj+I) - g(Nj) in O(q) time.

295

3 Equivalence with a relaxation of Dyer and Wolsey

In [2], Dyer and Wolsey introduce 5 different relaxations of llrj[Y']4 wjCj that
they denote by (A), (B), (C), (D) and (E). They show that their values satisfy
ZA < ZB < Zv < ZD < ZE, i.e. E is the strongest one. Relaxation (D) is a
time-indexed formulation using two types of variables: yj~. = 1 if job j is being
processed at time r, and tj represents the start time of job j. For simplicity, we
add pj to tj and replace the resulting expression by Cj; this gives an equivalent
relaxation.

(D)

Z9 = Min Z wj Cj
J

subject to:

Z y j ~ < 1 r = 0, 1 , . . . , T
J

Z yjr : pj j E N
1"

O < yj~ j E N, r = rj, rj + I, . . ., T,

(2)

where T is an upper bound on the makespan of any schedule. In this relaxation,
the release dates are assumed to be integral, and we will keep this assumption
for the rest of this paper. Because of the equalities (2), the expression for Cj can
take many different equivalent forms; we selected the easiest for the forthcoming
analysis. Observe that the number of variables of this formulation is only pseudo-
polynomial.

Theorem9. ZD = ZR.

Proof. The most interesting part of the proof is to show that Z~ < Z/~. Consider
the optimal solution C given by the greedy algorithm for (R). We will construct
variables yj~ such that C and y are feasible in (D), showing that ZD < ZR.

Assume that w.~ > w~ > . . . > w_~ Define Yjr = JNj (r) - JNj_I (7") for every
P l - - P2 ~ ~ P n "

job j and every integral r. We claim that C and y are feasible in (D). First,
yjr ~ 0 because of Lemma 5. Moreover, Yjr as defined will be 0 if r < rj or if

r > C (N~) and thus certainly if r > T. Equality (2) follows from Lemma 2 part
2, and the fact that J s (r) is constant over It, t + 1) for any integer t:

T T

" - (J N j (T) - - J N j - , (T)) d r -'- p (g j) - p (Y j - 1) - " p j .

296

Furthermore, we have that

n

~ y j ~ = ~ (JNj(7-)- JN~_I(7-)) = J~(7-) _< 1,
j j=1

for all 7-. Finally, we need to verify the expression for Cj:

2 + p~ • ~ (7 - + ~)Y~" = - + p~- t (JN~ (t) - JNj_, (t)) et

/? = ~ + • t (J~j (0 - JNj_I (t)) dt
2 pj

2 pj

= • (g(Nj) - g(g~_l))
Pj

=C~,

the third equality following from Lemma 3.
The second part of the proof is to show that ZD >_ ZR. For this purpose, we

show that if y and C are feasible in (D) then C is also feasible in (R). Consider
any set S. Then,

[_~ 1 (1)]

jes jes PJ

= 2 + E 7-+ Yjr
jeS

r jeS

Now, to y, we can easily associate a preemptive schedule: between 7- and 7" + 1,
yjr units of time are used to process job j. Because of the constraints on y in
(D), every job is processed for a total of pj units of time and the machine never
works on two jobs at the same time. Let /I be the indicator function for this
preemptive schedule. Then the above expression can be rewritten as:

E p j C j - P2(S) fo ~176 - ~ + tI~(t)dt.
jEs

But, the integral only depends on the times at which the preemptive schedule
is busy processing some job in S, but not on which job is being processed at
any such time. As a result, the expression on the right is minimized by a non-
preemptive schedule. But, over the non-preemptive schedules, the expression is
minimized for the S-schedule (see Lemma 3 and Theorem 1). This shows that

Ejesp~C~ > g(S).

297

The proof actually shows a stronger result. When T is 0% the projection of
relaxation (D) onto the space of the Cj's is precisely (R).

From the proof, we can Mso derive a stronger result for the problem 1 [rj,pj =
l l~']~ j wjCj with unit processing times. Indeed, the preemptive schedule derived
in the first part of the proof is not preemptive if the processing times are all
equal to 1. This shows that the value ZR is precisely equM to the opt imum value
in the case of unit processing times, and that the feasible region defined by (R)
is precisely equal to P. This was already known; see Queyranne and Schulz [11].

We should point out that Dyer and Wolsey [2] indicate that, after elimination
of the variables Cj, (D) becomes a transportation problem. This has several
consequences. First, we could have restricted our attention to extreme points of
this transportation problem in the second part of the proof above, which have
the property that yj, E {0, 1}. This would have avoided dealing with fractional
y's.

Also, as indicated in [2], the relaxation (D) can be solved in O(n logn) time
by exploiting the special cost structure of this transportation problem. Dyer and
Wolsey refer the reader to Posner [8] for details. This gives the same time bound
as the one we obtained for (R).

Finally, the fact that (D) becomes a transportation problem after elimination
of the Cj's can be used to give an alternate proof of the supermodularity of g.
Clearly,

g(S) = min / ~_~pjCj subject
t i e s

to jeT~PJCJ > g(T) for all T C N } .

By Theorem 9, g(S) can then be expressed by the following transportation prob-
lem:

g(s) = P2(s)
2

subject to:
jES

~ B j ~ _~ 1 I" = 0, 1 , - . - ,T
J

~ Yj, = p~ j E S
T

0 < Yjr j E S , r - rj,rj + 1,...,T.

From an interpretation by Nemhauser et al. [7] of a result of Shapley [13], it
then follows that the value of the above transportation problem as a function of
S is supermodular.

This also shows that the value of ZR (or ZD) as a function of the set S
of jobs is supermodular. But this follows from the h c t that ZR is obtained by
optimizing over a supermodular polyhedron.

298

4 A d d i t i o n a l r e s u l t s

The separation problem for the inequalities (i) can be solved efficiently. Indeed,
we only need to separate over ~ j e s p j C j > l(S), and this can be done by
trying all n possible values for r(S) and then applying a separation routine of
Queyranne [9] for the problem without release dates. The overall separation
routine can be implemented in O(n ~) time.

We can also give necessary and sufficient conditions under which the inequal-
ities (1) define facets of P . We should point out that the condition that all the
release dates in S should be identical is not necessary as claimed in [ll]. We
say that S is inseparable if it is its own canonical decomposition. Certainly, the
condition that S is inseparable is necessary for the inequality (1) to define a
facet. For a given inseparable set S, we say that a schedule is S-tight if Is (t) = 1
for all t E [r(S), r(S) + p(S)). The proof of the following theorem is omitted.

T h e o r e m l 0 . Let S = {1 , . . . , i} be an inseparable set with rl < r2 < .-- _< ri.
Then ~ ; e s P j C j > g(S) defines a facet of P if and only if, for every j E
{2, . . . , i~ , there exists an S-tight schedule for which j precedes a job k with
k<j.

Proof. We start with the "only if" part. If, for some j , there is no S-tight schedule
for which j precedes some job k with k < j then we claim that every S-tight
schedule starts with the jobs { 1 , 2 , . . . , j - 1} (in any order). Indeed, assume
there is a schedule in which a job l > j - 1 precedes a job k < j - 1. Then if
we schedule j just in front of 1 and continue the schedule as before, we obtain a
feasible schedule (since rt > rj). This gives a S-schedule violating the hypothesis
(since j precedes k). Hence, every S-tight schedule is also { 1 , - . . , j - 1}-tight
and therefore the set of feasible schedules satisfying (1) at equality are included
in the face defined by the set { 1 , . . . , j - 1}.

For the "if" part, assume that any feasible schedule satisfying (1) at equality
also satisfy ~z atCl = b. For every j , consider an S-tight schedule in which j
precedes k with k < j . If, in any schedule, we interchange two consecutive jobs
such that the release date of the first one is at least the release date of the second
one, then the schedule remains feasible. This means that, by the interchange of
consecutive jobs (and possibly redefining k), we can assume that in our schedule
j immediately precedes k. Now, if we interchange j and k, Cj increases by Pk
and C~ decreases by pj. But the equality ~ i aiC~ = b must still be satisfied,
implying that akpj = ajpk, or Es = ~ Since, for every 2 < j < i, we can find

p ~ P k " - - - -

such a k with k < j, this. proves. . that ~ -- p2 ~ = " " -- ~" Moreover, any job
j > i can be delayed arbltrardy, implying that aj = 0 forP3 " > i. This therefore
shows that the equality must be ~ j E s pjCj = g(S).

For example, the condition of the theorem is satisfied if rt +p(Sj_~) > rj for
j = 2 , . - - , i - 1.

The results in this paper can also be translated to the problem with dead-
lines instead of release dates by simply inverting the time. For the problem

299

l ldjl E wj C~, we can therefore introduce valid inequalities of the form)-'~jc s PJ Cj
< k(S) for all S. If we now have simultaneously release dates and deadlines, we
can consider the relaxation defined by k(S) >)-~-jes pjCj >_ g(S) for all S.
However, in the case of unit processing times (l l r j ,d j ,p j = II)'~wjCj), these
inequalities are not sufficient to describe the convex hull of feasible completion
times. This was also observed in [11]. The problem however is simply an as-
signment problem and can therefore be solved efficiently. Moreover, from Hall's
theorem, we can easily derive that this scheduling problem is feasible if and only
if k(S) > g(S) for all S.

Acknowledgmen t s

The author would like to thank Andreas Schulz for stimulating discussions and
for convincing him to write these results. The results presented here resulted
from discussions many years ago with Leslie Hall and Tim Magee on the papers
of Maurice Queyranne and of Martin Dyer and Laurence Wolsey.

R e f e r e n c e s

1. T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to algorithms, McGraw
Hill (1990).

2. M.E. Dyer and L.A. Wolsey, "Formulating the single machine sequencing problem
with release dates as a mixed integer program", Discrete Applied Mathematics, 26,
255-270 (1990).

3. S. b-hjishige, "Submodular functions and optimization", Annals of Discrete Math-
ematics, 47, North-Holland (1991).

4. L.A. Hall, D.B. Shmoys and J. Wein, "Scheduling to minimize average completion
time: Off-line and on-line algorithms", Proceedings of the 7th Annual A CM-SIAM
Symposium on Discrete Algorithms, 142-151, 1996.

5. L. Lovgsz, "Submodular functions and convexity", in: A. Bachem, M. GrStschel
and B. Korte (eds.), Mathematical Programming: The State of the Art, Bonn, 1982,
Springer, Berlin, 235-257, 1983.

6. G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization, John
Wiley & Sons, New York (1988).

7. G.L. Nemhanser, L.A. Wolsey and M.L. Fisher, "An analysis of approximations for
maximizing submodular set functions - - I", Mathematical Programing, 14, 265-294
(1978).

8. M.E. Posner, "A sequencing problem with release dates and clustered jobs", Man-
agement Science, 32, 731-738 (1986).

9. M. Queyrarme, "Structure of a simple scheduling polyhedron", Mathematical Pro-
gramming, 58, 263-285 (1993).

10. M. Queyrarme and A. S. Schulz, "Polyhedral approaches to machine scheduling",
Preprint 408/1994, Department of Mathematics, Technical University of Berlin,
Berlin, Germany, 1994.

11. M. Queyranne and A. S. Schulz, "Scheduling units jobs with compatible release
dates on parallel machines with nonstationary speeds", Proceedings of the 4th
Integer Programming and Combinatorial Optimization Conference, E. Balas and

300

12.

13.

J. Clausen, eds., Lecture Notes in Computer Science, 920, Springer-Verlag, 307-
320 (1095).
A.S. Schulz, "Scheduling to minimize total weighted completion time: Performance
guarantees of LP-based heuristics and lower bounds", these proceedings, 1996.
L.S. Shapley, "Complements and substitutes in the optimal assignment problem",
Naval Research Logistic~ Quaterly, 9, 45--48 (1962).

