
Approximating the Smallest k -Edge Connected Spanning
Subgraph by LP-Rounding

Harold N. Gabow
Department of Computer Science, University of Colorado at Boulder, Boulder, Colorado 80309

Michel X. Goemans∗

MIT, 77 Mass. Ave., Room 2-351, Cambridge, Massachusetts 02139

Éva Tardos†

Department of Computer Science, Cornell University, Ithaca, New York 14853

David P. Williamson
School of Operations Research and Industrial Engineering, Cornell University, Ithaca, New York 14853

The smallest k -ECSS problem is, given a graph along
with an integer k , find a spanning subgraph that is k -edge
connected and contains the fewest possible number of
edges. We examine a natural approximation algorithm
based on rounding an LP solution. A tight bound on the
approximation ratio is 1+3/k for undirected graphs with
k > 1 odd, 1+2/k for undirected graphs with k even, and
1+2/k for directed graphs with k arbitrary. Using iterated
rounding improves the first upper bound to 1+2/k . On the
hardness side we show that for some absolute constant
c > 0, for any integer k ≥ 2 (k ≥ 1), a polynomial-time
algorithm approximating the smallest k -ECSS on undi-
rected (directed) multigraphs to within ratio 1+c/k would
imply P = NP . © 2008 Wiley Periodicals, Inc. NETWORKS,
Vol. 00(00), 000–000 2009

Keywords: approximation algorithms; network design; graph
connectivity; edge connectivity; linear program; LP-rounding;
MAX SNP-hardness

1. INTRODUCTION

A k-ECSS of a k-edge connected graph is a k-edge con-
nected spanning subgraph. We are interested in finding a
smallest k-ECSS, i.e., one that has the fewest possible number
of edges. This is a basic problem in network design. When
the graph is undirected and k = 1 the solution is simply

Received July 2007; accepted July 2008
Correspondence to: H. N. Gabow; e-mail: hal@cs.colorado.edu
∗Contract grant sponsor: NSF; Contract grant number: CCR-0098018
†Contract grant sponsor: ONR; Contract grant number: N00014-98-1-0589
DOI 10.1002/net.20289
Published online in Wiley InterScience (www.interscience.wiley.com).
© 2008 Wiley Periodicals, Inc.

a spanning tree. For the other cases, it is intuitively plau-
sible that the problem becomes easier to approximate as k
increases, and several previous results support this belief. We
prove this conjecture, presenting polynomial-time algorithms
with approximation ratio 1 + 2/k. We start by reviewing the
previous results. Throughout this article n and m denote the
number of vertices and edges of the given graph, respectively.

First consider simple graphs. Cheriyan and Thurimella [1]
gave a 1+2/(k+1) approximation algorithm for the smallest
k-ECSS of a simple undirected graph. Their approach is based
on an analog of a theorem of Mader on k-node connected
graphs. The approach also extends to simple digraphs, achiev-
ing approximation ratio 1 + 4/

√
k. This work gave striking

evidence that the problem gets easier for larger k. However
the approximation bounds depend crucially on the assump-
tion of simplicity. (The bounds become 2 when parallel edges
are allowed [7].) Gabow [6] improves the bound for the sim-
ple digraph algorithm to 1 + √

2/k + O(1/k), an essentially
tight bound. Regarding hardness, Khuller et al. [13] show
the smallest directed 1-ECSS problem is MAXSNP-hard,
and Fernandes [3] shows the same for smallest undirected
2-ECSS.

Next consider multigraphs. Khuller and Raghavachari
[12] were the first to go beyond the naive performance bound
of 2 (on any type of graph, simple or multi-). Their algorithm
works on undirected multigraphs and is based on depth-first
search. They prove a performance bound < 1.85. Gabow [7]
improved the analysis to < 1 + √

1/e < 1.61, the best cur-
rently known combinatorial bound. Gabow [6] achieves the
performance bound 2 − 1/3k for any multidigraph. Karger
[10] gave a randomized algorithm for smallest k-ECSS,

NETWORKS—2009—DOI 10.1002/net

based on sampling and randomized rounding. It works
on undirected multigraphs and has performance ratio 1 +
O(

√
(log n)/k). This is the only known bound that improves

with k when parallel edges are allowed.
We analyze an algorithm for the smallest k-ECSS problem

based on linear programming. The algorithm simply rounds
up an extreme point of the LP corresponding to the natural
integer linear program. This algorithm achieves approxima-
tion ratio 1 + 2/k for digraphs and arbitrary k, as well as
for undirected graphs and even k. For undirected graphs and
odd k > 1 the approximation ratio is 1 + 3/k. This shows
the smallest k-ECSS problem gets easier to approximate for
larger k. These upper bounds are tight to within lower order
terms. We also show Jain’s iterated rounding algorithm [9]
improves the performance bound for the odd undirected case
to 1 + 2/k. Taken together these are the best-known bounds
for the smallest k-ECSS problem. They also show the natural
linear program for the smallest k-ECSS has integrality gap at
most 1+2/k for both directed and undirected graphs. On the
hardness side, we show that for some absolute constant c > 0,
for any integer k ≥ 2 (k ≥ 1), a polynomial-time algorithm
approximating the smallest k-ECSS on undirected (directed)
multigraphs to within ratio 1 + c/k would imply P = NP.
This is achieved by extending the reductions of [3,13] to show
that for any integer k ≥ 2 (k ≥ 1), the smallest k-ECSS on
undirected (directed) multigraphs is MAXSNP-hard.

Section 2 states the LP-rounding algorithm and sketches
short proofs of a 1 + 4/k bound on the approximation ratio.
Section 3 derives our tight upper bounds. Section 4 gives the
lower bound examples. Section 5 gives the hardness results.
We conclude this section with some terminology.

A fraction written a/bc is an abbreviation for a/(bc). The
expression a mod b where both arguments are positive real
values has the obvious interpretation (a − �a/b�b). We con-
sider real vectors whose components are indexed by a set of
edges, e.g., the edge set of the given graph. Boldface vari-
ables denote vectors, e.g., x with components xe. If F is a set
of edges then x(F) denotes

∑
e∈F xe. Similarly for a function

f : X → R and S ⊆ X , f (S) denotes
∑

s∈S f (s).
All graphs that we consider allow parallel edges. Cn

denotes the undirected cycle on n vertices. A graph G =
(V , E) is k-edge connected if every set of vertices other than
∅, V has degree at least k [15]. This definition makes sense
for digraphs too—we interpret “degree” to be “in-degree”
(equivalently, “out-degree”). The definition makes sense for
weighted graphs as well—we interpret the degree of a set to
be the total weight of all edges incident to that set.

2. ROUNDING ALGORITHM

The problem of finding a smallest k-ECSS of graph G =
(V , E) is modeled by the integer linear program

minimize x(E)

subject to dx(S) ≥ k ∅ ⊂ S ⊂ V
xe ∈ {0, 1, . . . , ue} e ∈ E.

If G is undirected then dx(S) denotes the degree of S
when edges are weighted by x, i.e., dx(S) = ∑{xe :
edge e is incident to S}. If G is directed “degree” becomes
“in-degree,” i.e., dx(S) = ∑{xe : edge e enters S}. Finally,
ue is an integer representing the multiplicity of edge e in G.
Without loss of generality assume G is k-edge connected.

To approximate the smallest k-ECSS relax this system to
the linear program

minimize x(E)

subject to dx(S) ≥ k ∅ ⊂ S ⊂ V
0 ≤ xe ≤ ue e ∈ E.

(1)

Find an optimum extreme point. From now on x denotes this
extreme point. Convert x to an integral solution by round-
ing each fractional part up to 1. We call this the simple
LP-rounding algorithm.

This algorithm clearly produces a k-ECSS. It can be imple-
mented in polynomial or strongly polynomial time, for both
directed and undirected graphs. (This is straightforward if we
use an LP equivalent to (1) but of polynomial size. Such an
LP can be based on interpreting xe as the capacity of edge e in
a flow network, see [9,16].) So the only issue is determining
the approximation ratio. We will sketch short derivations of
an upper bound 1 + 4/k on this ratio.

Suppose first that the graph is undirected. Let B be the set
of variables xe that the extreme point sets to its lower or upper
bound, i.e., xe ∈ {0, ue}. Since x is extreme, some subset of
the remaining constraints uniquely determines the remaining
values of x. That is, for some family L of subsets of V , if
we fix the values of variables xe ∈ B then the remaining
values form the unique solution to the system of equations
dx(S) = k, S ∈ L. Jain [9] showed that L can be chosen to
be laminar. (Recall that a family of sets is called laminar if
any two of its sets are either disjoint or one includes the other
[15]. Cornuéjols et al. [2] gives a similar argument for the
case k = 2.) A laminar family on a ground set of n elements
contains < 2n sets. Hence there are < 2n constraints in our
system of equations. Since the solution is unique, the number
of variables equals the number of constraints (assuming L
is minimal). Thus < 2n variables are not in B. Since every
variable of B is integral, < 2n variables have a fractional part.
So rounding up all fractional parts increases the objective
value x(E) by < 2n. In any k-ECSS any vertex has degree
≥ k, so there are ≥ kn/2 edges. Thus the approximation ratio
is < 1 + 2n/(kn/2) = 1 + 4/k.

A similar analysis holds for the directed case. Choose an
arbitrary vertex r and define B as before. The degree con-
straints of the integer program amount to requiring each set
S, ∅ ⊂ S ⊆ V −r, to have in-degree and out-degree both ≥ k.
Since x is extreme there are families of subsets of V , say L1

and L2, such that if we fix the values of all variables xe ∈ B
then the remaining values of x correspond to the unique solu-
tion to the system of equations that state each S ∈ L1 (L2) has
in-degree (out-degree) exactly k, respectively. (These in- and
out-degrees are computed using the weighting x.) The same
argument as in [9] shows that L1 and L2 can both be chosen

2 NETWORKS—2009—DOI 10.1002/net

to be laminar. There are < 2n+2n = 4n variables in the sys-
tem. Hence < 4n variables have a fractional part. Rounding
increases x(E) by < 4n. Any k-ECSS contains ≥ kn edges
so the approximation ratio is < 1 + 4n/kn = 1 + 4/k.

3. UPPER BOUND ANALYSIS

This section improves the analysis of the simple LP-
rounding algorithm and eventually shows the integrality gap
of (1) is ≤ 1 + 2/k.

It is convenient to transform the problem (in a fashion
similar to [9]). Enlarge G by adding a parallel copy of each
edge e that has both an integral and a fractional part, i.e.,
both �xe� and (xe mod 1) are positive. Assign the value �xe�
to one copy of e and (xe mod 1) to the other. We continue to
use the vector x to refer to the values in this new graph. In this
new graph we view the linear system dx(S) = k, S ∈ L as
having the fractional values xe as the unknowns. The integral
values xe are interpreted as known constants. Clearly, this
linear system still has a unique solution. Furthermore we can
assume our linear system is minimal. (Note that when we
switch to the new graph, some equations of the system can
become redundant because of edges with no fractional part.)
We continue to use L to refer to this new minimal laminar
family.

We start by analyzing the rounding algorithm for undi-
rected graphs. Consider a set S ∈ L. Say that S owns vertex
v if S is the smallest set of L containing v (as in [16]). Fur-
thermore say that S owns edge e if S is the smallest set of L
containing both ends of e. Thus a vertex or edge is owned
at most once. Let φ(S) denote the total weight in x of all
fractional edges owned by S:

φ(S) =
∑

{xe : 0 < xe < 1 and S owns e}.

Say that an integer, odd or even, divided by two is a half-
integer.

Lemma 3.1. Any set S ∈ L that does not own a vertex has
φ(S) a positive half-integer (integer) when k is odd (even)
respectively.

Proof. Assume S does not own any vertex. Hence S has
at least two children in L, say children Si, 1 ≤ i ≤ r, r > 1.
(Throughout the article we apply tree terminology to laminar
families in the obvious way.) The sets Si form a partition
of S.

Since an edge entering Si either enters S or leaves another
set Sj we get

r∑
i=1

dx(Si) = dx(S) + 2
∑
i<j

dx(Si, Sj).

Since dx(Si) = d(S) = k this says

rk = k + 2
∑

{xe : S owns e}.

Since the above summation equals φ(S) plus various integral
values xe, rearranging gives

(r − 1)k ≡ 2φ(S) (mod 2).

This shows φ(S) is a half-integer if k is odd and an integer if
k is even.

It remains to show φ(S) is positive, i.e., S owns a fractional
edge. In the opposite case the fractional edges leaving the
sets Si, 1 ≤ i ≤ r, form a partition of the fractional edges
leaving S. This makes the constraint dx(S) = k the sum of the
constraints of the children Si. But this contradicts the assumed
minimality of L. ■

Theorem 3.2. Simple LP-rounding achieves an approxi-
mation guarantee of 1 + 3/k (1 + 2/k) on undirected graphs
with k odd (even) respectively.

Proof. Rounding up a fractional weight xe increases the
objective function by 1 − xe. There are exactly |L| fractional
edges, since the linear system dx(S) = k, S ∈ L, uniquely
determines the fractional weights. Thus rounding increases
the objective function by a total amount ≤ |L|−φ(L). (Recall
that our notational convention makes φ(L) = ∑{φ(S) : S ∈
L}. Also, we write inequality above since a fractional edge
need not be owned by a set.) We will show

|L| − φ(L) ≤ �n

where � equals 3/2 (1) for k odd (even), respectively. This
implies the lemma since it shows the approximation ratio is
≤ 1 + �n/(kn/2) = 1 + 2�/k.

Suppose that k is even. Every set of L owns either a vertex
or fractional edges of weight φ(S) ≥ 1 (Lemma 3.1). Thus

|L| ≤ n + φ(L)

as desired.
Suppose k is odd. Using 2φ(S) ≥ 1 in the argument for

k even gives |L| ≤ n + 2φ(L). Together with |L| ≤ 2n this
implies

|L| − φ(L) ≤ min{n + φ(L), 2n − φ(L)}.
The right-hand side achieves its maximum value 3n/2 when
φ(L) = n/2. This gives the desired bound. ■

We turn to digraphs. All of our digraphs are weighted,
and we allow the weight of an edge to have arbitrary sign,
positive, negative, or 0. We use ρ and δ to denote the in-degree
and out-degree functions, respectively. These functions count
edges according to their weight, e.g., ρ(S) is the total weight
of all edges entering S.

The uncrossing argument of Jain [9] can be combined with
an argument of Frank [4] to get a single laminar family L for
digraphs. This is proved in [14] so we only state the result.
Recall that we have switched to the graph where each value
xe is either integral or fractional (strictly between 0 and 1).

NETWORKS—2009—DOI 10.1002/net 3

Let H be the digraph containing the integral edges, weighted
according to x. L will consist of two families of vertex sets
I, O having a corresponding system (2) of linear equations
in unknowns ye where e ranges over the fractional edges of x:

ρy(S) = k − ρH(S) S ∈ I,
δy(S) = k − δH(S) S ∈ O.

(2)

It is possible for a set to belong to both families I and O. Let
x̂ be the vector x restricted to its fractional edges. The result
of [14] states:

Lemma 3.3. There is a laminar family of sets L = I ∪ O
such that the linear system (2) in unknowns y has x̂ as its
unique solution.

The above family is not entirely adequate for our purposes.
Before refining it recall two simple facts about weighted
digraphs.

Lemma 3.4. In an arbitrary weighted digraph G consider
a vertex set S partitioned into subsets Si, i = 1, . . . , r.

(i) δ(S) + ∑r
i=1 ρ(Si) = ρ(S) + ∑r

i=1 δ(Si).
(ii) If G is k-edge connected then ρ(S1) = · · · = ρ(Sr) = δ(S) =

k implies δ(S1) = · · · = δ(Sr) = ρ(S) = k.

Proof. (i) Both sides of the equation count the total
weight of all edges incident to some set Si. (Arbitrarily signed
weights are allowed.)

(ii) Using the hypothesis, (i) and k-edge connectedness
gives

(r + 1)k = δ(S)+
r∑

i=1

ρ(Si) = ρ(S)+
r∑

i=1

δ(Si) ≥ (r + 1)k.

This implies that equality holds throughout, giving the
conclusion of (ii). ■

Choose I and O so together they give a set of constraints
satisfying Lemma 3.3 and in addition they are light, i.e., they
minimize the quantity

∑{|S| : S ∈ I ∪ O}. This sum counts
a set S ∈ I ∩ O twice. Note that lightness implies I and O
form a minimal family.

Define ownership of edges exactly as before: A set S ∈ L
owns edge e if S is the smallest set ofL containing both ends of
e. If S belongs to both I and O, it can only own an edge once.
In contrast we allow vertices to be owned twice, once in I and
once in O: A set S ∈ I owns vertex v in I if S is the smallest
set of I containing v. A similar definition applies to sets of O.

The next two lemmas are stated for a set S ∈ I; symmetric
versions hold for a set of O.

Lemma 3.5. Suppose a set S ∈ I does not own any vertex
in I.

(i) S owns a fractional edge.
(ii) If S ∈ I ∩ O then S owns a vertex in O.

Proof. Throughout this argument y stands for an arbi-
trary vector over the fractional edges.

Let the children of S in L be Si, 1 ≤ i ≤ r. Since S does
not own any vertex in I it is partitioned into proper subsets
belonging to I. So the children Si also form a partition of S.
Furthermore each child Si either belongs to I or is partitioned
into proper subsets, each belonging to I.

Claim. For each i = 1, . . . , r, ρx(Si) = k and so x̂ satisfies

ρy(Si) = k − ρH(Si). (3)

To prove the claim we can clearly assume child Si belongs
to O − I. Si ∈ O implies δx(Si) = k. We have already
observed that Si is partitioned into sets Tj all belonging to
I, so ρx(Tj) = k. Applying Lemma 3.4 (ii) shows ρx(Si) =
k as claimed. (The lemma is applicable since the weighting
x makes the graph k-edge connected.)

(i) Suppose S does not own a fractional edge. Hence the
fractional edges entering the sets Si, 1 ≤ i ≤ r, form a
partition of the fractional edges entering S. Equivalently we
have the identity ρy(S) = ∑r

i=1 ρy(Si). In other words the
constraint of (2) for S,

ρy(S) = k − ρH(S),

is the sum of equations (3) for i = 1, . . . , r. (The right-hand
sides add up correctly since x̂ satsfies all r + 1 equations.)

Since we have chosen I and O minimal, the constraints
of (2) are linearly independent. Hence equation (3) for some
child Si is linearly independent of the constraints of (2) with
S deleted from I. For definiteness suppose this child is S1.
Replacing I by I − S + S1 in (2) gives another linearly
independent system with a unique solution. (The solution
is unique since the number of equations equals the number
of unknowns.) The Claim shows this unique solution is x̂.
However this system is lighter than the original. This is the
desired contradiction.

(ii) We again argue by contradiction. Suppose S ∈ I ∩ O
and S does not own a vertex in either I or O. The Claim
applied twice shows that for i = 1, . . . , r, x̂ satisfies

ρy(Si) = k − ρH(Si), δy(Si) = k − δH(Si). (4)

Lemma 3.4 (i) gives a linear relation for the terms
ρy(Si), δy(Si), ρy(S) and δy(S). In other words the two con-
straints of (2) for S,

ρy(S) = k − ρH(S), δy(S) = k − δH(S),

are linearly dependent with equations (4), i = 1, . . . , r.
The rest of the argument is similar to part (i): At least one

of the equations in (4), i = 1, . . . , r, is linearly independent of
the constraints of (2) with S deleted from I. Since x̂ satisfies
this equation we get a contradiction to the lightness of the
original system just as in part (i). ■

We can now proceed analogously to the undirected case.
Define φ(S) as before.

4 NETWORKS—2009—DOI 10.1002/net

Lemma 3.6. Any set S ∈ I that does not own a vertex in I
has φ(S) a positive integer.

Proof. As before let the children of S in L be Si, 1 ≤ i ≤
r, with these sets forming a partition of S. φ(S) is positive by
Lemma 3.5(i). Recalling from the Claim that ρx(Si) = k, we
have the following equations analogous to Lemma 3.1:

r∑
i=1

ρx(Si) = ρx(S) +
∑
i �=j

ρx(Si, Sj),

rk = k +
∑

{xe : S owns e},
φ(S) ∈ Z. ■

Theorem 3.7. Simple LP-rounding achieves an approxi-
mation guarantee of 1 + 2/k on directed graphs.

Proof. The number of fractional edges equals the num-
ber of equations |I| + |O| of (2), since (2) has a unique
solution. Hence rounding increases the objective function by
≤ |I| + |O| − φ(L). We will show

|I| + |O| ≤ 2n + φ(L). (5)

This inequality then implies that rounding increases the
objective by ≤ 2n. Thus the approximation ratio is ≤ 1 +
2n/kn = 1 + 2/k as desired.

To prove (5) consider a set S ∈ I; the case S ∈ O is
symmetric. Lemma 3.6 shows that either S owns a vertex in
I or φ(S) ≥ 1. In both cases S contributes ≥ 1 to the right-
hand side of (5). To complete the proof we need only show
that a set S ∈ I ∩ O contributes ≥ 2 to the right-hand side.
This is the case if S owns both a vertex in I and a vertex in
O. So assume S does not own a vertex in I. Now Lemma 3.6
shows φ(S) ≥ 1 and Lemma 3.5(ii) shows S owns a vertex
in O, as desired. ■

Finally, we return to the undirected case to achieve per-
formance ratio 1 + 2/k for k odd. Recall Jain’s iterated
rounding algorithm [9,16] achieves approximation ratio 2 for
the Steiner network problem. Call such a problem a smallest
Steiner network problem if every edge cost is equal to one,
i.e., we wish to minimize the number of edges. (The input is
a multigraph as usual.)

Theorem 3.8. Jain’s iterated rounding algorithm always
finds a solution to a smallest Steiner network problem that
contains ≤ n edges more than the optimum.

Proof. We sketch the proof, relying on some details
from the analysis of Jain’s algorithm (see [9] or [16]). The
algorithm begins by solving (1) in the case of smallest k-
ECSS, and its analog for more general smallest Steiner
network problems. Let F be the set of fractional edges in
the optimum solution x (after we have broken each edge into
integral and fractional parts as usual). As before let L be the

laminar family that uniquely determines the fractional val-
ues of x. We will show that Jain’s algorithm gives an integral
solution whose objective value exceeds the LP optimum by
at most

min{|L| − x(F), x(F)}.
This quantity is clearly ≤ |L|/2. Since |L| ≤ 2n − 3 the
theorem follows.

To prove the first term of the upper bound recall that x has
|L| fractional values. Jain’s algorithm works by rounding up
a subset of the variables of F. So it increases the objective
function by ≤ |L| − x(F) as desired.

For the second term let B be the subset of F defined
by B = {e : xe ≥ 1/2}. The algorithm starts by round-
ing up the variables of B. This increases the objective by
≤ x(B). The algorithm then proceeds recursively on a prob-
lem whose optimum objective value is ≤ x(F − B). Since
Jain’s algorithm is a 2 approximation, the recursive invo-
cation increases the objective by ≤ x(F − B). So the final
solution amounts to the original optimum value increased by
≤ x(B) + x(F − B) = x(F). ■

For general Steiner problems the theorem sometimes gives
a better bound. Specifically let s be the number of vertices
x where the singleton set {x} has a positive connectivity
requirement (i.e., the given cut requirement function f has
f ({x}) > 0). Then |L| < s + n. Hence the proof shows Jain’s
algorithm finds a solution of ≤ OPT + (s + n)/2 edges.

The theorem implies iterated rounding achieves approxi-
mation ratio 1+2/k for the smallest k-ECSS of an undirected
graph. Note that analyses of iterated rounding on directed
graphs [8,14] do not seem to imply a similar bound, although
of course we have proved it. Note also that the simple LP-
rounding algorithm is faster than iterated rounding, since
it solves just one linear program compared to O(n) linear
programs.

The results of this section establish the following bound.

Corollary 3.9. The integrality gap of LP (1) is ≤ 1 + 2/k
for both directed and undirected graphs.

Note that for k > 1 odd, the cycle Cn has integrality gap
1 + 1/k − O(1/kn).

4. LOWER BOUND EXAMPLES

This section proves the bounds of Theorems 3.2–3.7 for
simple LP-rounding are tight:

Theorem 4.1. There is an infinite family of undirected
graphs where LP-rounding can find a solution with approxi-
mation ratio

1 + �/k − O(1/n),

where � = 3 for k > 1 odd and � = 2 for k even. There
is a similar family of directed graphs where � = 2 for any
k ≥ 1.

NETWORKS—2009—DOI 10.1002/net 5

FIG. 1. Gadget for undirected graphs. (a) The gadget consists of the solid edges. Edges incident to the gadget,
drawn dashed, go to v1, u2 or v2. (b) Tight sets and edge weights for an extreme point: The gadget has one edge
of weight k/2; the remaining gadget edges weigh a or k/2 − a. The two dashed arcs are the right boundaries of
the tight sets [v1, x) and [v1, x] respectively.

Theorem 4.1 is proved first for undirected graphs and then
for digraphs. Throughout this section w denotes the given
edge weight function.

We begin with two convenient examples of regular degree
k k-edge connected graphs. If G is a graph the notation c · G
denotes the graph obtained from G by making c copies of each
edge. So for example 2 · Cn is a regular graph of degree 4.

A cylinder on n = 2h vertices consists of two copies of
the cycle Ch, plus h edges forming a matching that pairs the
ith vertex of one cycle with the ith vertex of the other. (So
for instance h = 4 gives the cube.) A cylinder is odd or
even depending on the parity of h. We often use these edge
weights:

w(e) =
{

a e is a matching edge
(k − a)/2 e is a cycle edge

(6)

Proposition 4.2. (i) For even k, k
2 · Cn is a regular degree

k k-edge connected graph.
(ii) A cylinder with weights (6) is k-edge connected when

k/h ≤ a ≤ k/2. For odd k > 1 taking a = 1 (and h ≥ k)
gives a regular degree k k-edge connected graph.

Proof. (ii) To see the weighting is k-edge connected
observe that a ≤ k/2 makes any two vertices in the same
cycle k-edge connected, and k/h ≤ a makes the two cycles
k-edge connected. ■

Here is a simple illustration of the lower bound argument.
Suppose k > 1 is odd. Let Y denote an unweighted cylinder
on n vertices. Consider an input graph k · Y . An optimum
extreme point for LP (1) is k

2 · Cn. (Y contains a Hamiltonian
cycle Cn. Assigning each edge of this cycle weight k/2 gives
an extreme point, since this is the only feasible solution with
every vertex and edge tight.) Rounding up each edge weight
increases x(E) by n/2. On the other hand Proposition 4.2(ii)
shows a smallest k-ECSS has kn/2 edges. Hence the algo-
rithm’s approximation ratio is 1 + (n/2)/(kn/2) = 1 + 1/k.
We need to increase this by 2/k.

We will use the following obvious principle. The principle
allows nonsimple paths.

Path Principle Let P be a path where the first edge weighs
a and the weights of every two consecutive edges sum to s.
Then the weights of P are alternately a and s − a.

The lower bound is based on the gadget illustrated in Fig. 1.
A gadget consists of kites (a kite being K4 − e). A gadget can

be expanded arbitrarily by adding on new kites, each new kite
introducing four new edges. Edges incident to the gadget go
to one of the vertices v1, u2, or v2. More than one edge may
go to each of these vertices.

The vertices of a gadget have a natural left-to-right order.
In Fig. 1a the order is v1, u1, . . . , v2, u2, and adding another
kite at the right would make its two vertices last in the order.
We will use interval notation, based on this linear order, to
designate sets of gadget vertices. Figure 1b illustrates the
intervals [v1, x] and [v1, x) = [v1, x−] where x− is the vertex
preceding x; these intervals contain five and four vertices,
respectively.

Call the edge weights shown in Fig. 1b (including the
edges incident to the gadget) the generic weights for a. Here
a is an arbitrary value, 0 ≤ a ≤ k/2. Each horizontal gadget
edge weighs k/2 − a and each diagonal gadget edge except
the first weighs a.

Lemma 4.3. Consider a gadget occurring as an induced
subgraph H of a graph G. Let a be an arbitrary value, 0 ≤
a ≤ k/2.

(i) Suppose the edges incident to H at v1 have total weight a. Then
the generic weights for a are the unique values that make every
set {x} and [v1, x], x ∈ V(H) tight (i.e., degree k).

(ii) Suppose the edges containing a vertex of H have the generic
weights for a. Let G′ be the result of contracting the top (bot-
tom) row of H to a vertex u (v) respectively and assigning edge
uv the weight k/2. Then G is k-edge connected if G′ is.

Proof. (i) It is easy to check that the generic weights
make all singletons {x} and all intervals [v1, x] tight. The rest
of the argument is devoted to showing the weights are unique.

Claim. At any vertex x ∈ V(H)−v1, the edges going leftward
(rightward) from x must have total weight exactly k/2. (For
x = u2, v2 this includes edges incident to the gadget.)

To show the Claim compare the tight sets [v1, x) and [v1, x],
as illustrated in Fig. 1(b). The two sets are incident to the same
edges except for the edges going leftward and rightward from
x. (This holds at the boundaries x = u1, v2, u2 too.) Since
d(x) = k, the edges going leftward (rightward) have total
weight k/2 as claimed.

The Claim at vertex u1 shows w(u1v1) = k/2. Now con-
sider the following path P through the remaining edges of the
gadget: P starts at v1 and traverses the first kite minus u1v1,

6 NETWORKS—2009—DOI 10.1002/net

FIG. 2. (a) Even cylinder Y . (b) Y with an edge replaced by a gadget.

by zigzagging up three edges and going down the fourth; then
P traverses the remaining kites in the same pattern, ending by
going down u2v2. The first edge of P weighs k/2 − a by the
tightness of v1. The weights of every two consecutive edges
of P sum to k/2 by the Claim. The Path Principle then gives
the weights of all the gadget edges. The weights of the edges
incident to the gadget at v2 and u2 follow from tightness of
these vertices.

(ii) We will construct a family of edge-disjoint cycles in G
of total weight k/2, each cycle passing through every vertex
of H . This implies the vertices of H are k-edge connected
(since each cycle provides two paths joining any two vertices
of H). Now a cut of weight < k in G gives a similar cut in G′,
which is impossible. Thus we will deduce that G is k-edge
connected.

Split the gadget edge u1v1 into edges of weight a and
k/2 − a. Now every gadget edge has weight a or k/2 − a; we
use the terms a-edge and (k/2 − a)-edge accordingly.

Graph G′ − uv contains a collection of edge-disjoint uv-
paths of total weight k/2. In G the collection corresponds to
u2v1-paths of total weight a and u2v2-paths of total weight
k/2 − a. Form a cycles by starting with the u2v1-paths and
extending them back to u2 via the a-edges. Form k/2 − a
cycles by starting with the u2v2-paths of total weight k/2 −a
and extending them back to u2 via the (k/2 − a)-edges. Each
cycle traverses all of V(H) as desired. ■

Figure 2 illustrates how the gadget will be used. We first
discuss the cylinder Y of Fig. 2a. Y is constructed from two
cycles Ch, h even, and has the weights shown, for a an arbi-
trary real value, k/h ≤ a ≤ k/2. Y has the properties (a)–(d)
given below. We state each property and follow it immediately
with its simple proof, if a proof is required.

(a) Y is k-edge connected. To prove this, split each weight k/2
edge into edges of weight a and k/2−a. Then the edges can be
partitioned into a top cycle of weight k/2 − a, a bottom cycle
of weight k/2 − a, and a Hamiltonian cycle of weight a. This
implies the vertices of the top cycle are k-edge connected, as
are the vertices of the bottom cycle. The assumption ha ≥ k
then implies all vertices are k-edge connected.

(b) Every vertex is tight. So is every weight k/2 edge.

(c) Fixing the weight of one vertical edge to be a, the remaining
weights shown are the unique values satisfying property (b).
To prove this first recall that in general if a graph has disjoint
vertex sets A, B with d(A) = d(B) = d(A ∪ B) = k then
d(A, B) = k/2. For instance an edge xy with x, y and {x, y}
tight necessarily has w(xy) = k/2. Thus property (b) implies
all the weight k/2 edges are forced. The remaining edges
form a Hamiltonian cycle C. We can deduce their weights
by applying the Path Principle to C, using the tightness of
each vertex.

(d) If ha = k (i.e., our assumption holds with equality) then Y is
an optimum extreme point of LP (1) (where each upper bound
ue = ∞). In fact the weights shown are the unique values
making tight all the sets of (b) plus one more, the upper cycle.
(Note that although the number of tight sets we have specified
is one more than the number of edges, the graph is bipartite,
so the vertex degrees are linearly dependent.) Property (b)
guarantees optimum weight kn/2.

The extreme point for our lower bound is constructed by
gluing a gadget into Y , as illustrated by Figs. 2b and 1a. Call
this graph G. G satisfies analogs of properties (a)–(d). As
before we state each property and follow it immediately with
the simple proof, if a proof is required.

(a′) G is k-edge connected. Prove this by combining (a) and
Lemma 4.3(ii) (notice G′ = Y).

(b′) Every vertex, every weight k/2 edge and every interval of
Lemma 4.3(i) is tight.

(c′) Fixing the weight of the vertical cylinder edge at v1 to be a,
the remaining weights shown are the unique values satisfying
(b′). The argument is similar to (c). The weights of gadget
edges follow from Lemma 4.3(i). For the cylinder edges, the
weight k/2 edges are forced as before. The remaining cylinder
edges form a v1v2-path P starting with the vertical edge at v1

of weight a. The weights of every two consecutive edges sum
to k/2. (For the two edges at any cylinder vertex w �= v1, v2, u2

this follows as before – w is incident to a weight k/2 cylinder
edge. For the two edges at u2 this follows from Lemma 4.3(i).)
The Path Principle for P then gives all the weights.

(d′) If ha = k then G is an optimum extreme point of LP (1) (where
each ue = ∞).

Now imagine extending the gadget with a new kite. This
adds four new edges, two of weight a and two of weight

NETWORKS—2009—DOI 10.1002/net 7

FIG. 3. (a) Gadget for digraphs with its generic edge weights. As before edges incident to the gadget, drawn
dashed, go to v1, u2 or v2. (b) Inductive step deducing the edge weights on a kite.

k/2 − a. Let � be the amount that rounding up these four
edges increases the value of the objective function. Let α =
a mod 1.

Case 1. k is even. Assume 0 < α < 1. When we round
up the extreme point the four edges increase the objective
function by � = 2(1 − α) + 2(α) = 2.

Case 2. k is odd. Assume 0 < α < 1/2. When we round
up the four edges increase the objective function by � =
2(1 − α) + 2(1/2 + α) = 3. (Note that for 1/2 ≤ α < 1 the
objective increases by only 1.)

In summary, define the graph G by taking h = 4k and
a = k/h = 1/4. G is an optimum extreme point. Let the
gadget contain 2 + g vertices, where g is an even integer
that will approach infinity. So the gadget is built by starting
with the edge u1v1 and extending it by g/2 kites. Since α =
a = 1/4 < 1/2 rounding up this extreme point increases the
objective function by ≥ �g/2. Since G has n = g + O(k)

vertices the increase is ≥ �n/2 − O(k).
Observe that n is even (both the gadget and the cylinder Y

have an even number of vertices, and G discards exactly two
cylinder vertices). So by adding extra edges, we can assume
that the input graph contains a k-ECSS of kn/2 edges as in
Proposition 4.2. (In fact, for even k G itself has a Hamiltonian
cycle, consisting of the cylinder edges of weight �= k/2 − a
and the diagonal gadget edges. For odd k we can introduce
the cylinder Z of Proposition 4.2 by adding just three edges.
The vertical edges of Z are the current cylinder’s vertical
edges plus the gadget diagonals not parallel to u1v1.) Hence
the approximation ratio for the rounded solution is ≥ 1 +
(�n/2 − O(k))/(kn/2) = 1 + �/k − O(1/n). As g tends to
infinity so does n. Thus we have the ratio claimed in Theorem
4.1.

Digraphs

The example for digraphs follows the same outline. We
first discuss the gadget of Fig. 3a. Call the weights shown in
the figure the generic weights for a. Note that every diagonal
edge except the last is directed both ways, and the first diag-
onal u1v1 has different weights in the two directions. Use the
same interval notation for gadgets as before. Call two ver-
tices k-edge connected if they are not separated by any cut

of in-degree k (equivalently, the maximum flow between the
vertices in both directions is at least k).

Lemma 4.4. Consider a gadget occurring as an induced
subgraph H of a graph G. Let a be an arbitrary value, 0 ≤
a ≤ k/2.

(i) Suppose the edges entering H at v1 have total weight a, as
do the edges leaving H at v1. Then the generic weights for a
are the unique values that make every vertex of H and every
interval [v1, x], x ∈ V(H) − u2 have in- and out-degree both
equal to k.

(ii) Suppose the edges containing a vertex of H have the generic
weights for a. Suppose the subgraph G − E(H) contains a
collection of edge-disjoint paths consisting of v1u2-paths of
total weight a, u2v1-paths of total weight a and u2v2-paths of
total weight k − a. Then every pair of vertices of H is k-edge
connected in G.

Proof. (i) It is easy to check that the generic weights
make the in- and out-degree of every set {x}, x ∈ V(H) and
[v1, x], x ∈ V(H)−u2 both equal to k. The rest of the argument
is devoted to showing the weights are unique.

We first deduce the weights of the gadget edges, using
induction. For the base case observe that w(v1u1) = k − a.
This follows from the constraint δ(v1) = k.

For the inductive step consider a typical kite of the gadget,
as in Fig. 3b. Edge vu is not drawn—it is considered part of
the previous kite (for the first kite it is treated in the base case
v1u1). Similarly u′v′ is not drawn—it is part of the next kite
(for the last kite it does not exist).

Assume the edges incident to the kite have the weights
shown. For instance the total weight of all edges entering
(leaving) the kite at v is exactly a (arbitrary) respectively.
The label k − a at vertex u means the total weight of edges
entering u from the left is exactly k − a. (This is consistent
with the convention that vu is not in the current kite; rather it
contributes to this label k − a. Note this label is correct for
the first kite by the base case.) The edge entering the kite at
v′ represents a horizontal edge and, if the kite is not the last
one, a diagonal edge.

We assert that the above assumptions imply that the edges
of the kite have the weights shown. More precisely, the label
on each edge gives its weight followed by an integer (1–6)
indicating the order in which we will deduce that weight. For

8 NETWORKS—2009—DOI 10.1002/net

FIG. 4. (a) Even cylinder Y for the digraph lower bound. (b) Y with a gadget replacing two edges.

example edge v′u labeled a, 1 has weight a and it will be the
first weight deduced.

Observe that once we deduce all the weights as shown,
then by induction the weights of all gadget edges are deter-
mined: The weight of vu is deduced as that of v′u′ in the
previous kite. The weight of u′v′ is deduced as that of uv
in the next kite, unless u′v′ does not exist, i.e., the last kite.
Also the values shown for one kite imply the weights assumed
for the next kite: For instance for u, k − a = (k − 2a) + a.
For the two labels of 0, the gadget has no corresponding
edges.

Deduce that w(v′u) = a using the constraint ρ(u) = k.
Use this, plus the constraint ρ([v1, u]) = k, to deduce
w(v′v) = k − 2a. The four remaining deductions are based
on these constraints: ρ(v) for uv, δ(v′) for v′u′, δ([v1, v′]) for
uu′, and δ(u) for uv′.

Now by induction the weights of all the gadget edges have
been deduced. It remains to deduce the weights of the edges
incident to the gadget at v2 and u2. For this use the constraints
on ρ(v2), ρ(u2) and δ(u2).

(ii) We will construct a family of edge-disjoint cycles of
total weight k, each cycle passing through every vertex of
H. Clearly this implies every two vertices of H are k-edge
connected.

Split the gadget edge v1u1 into two edges weighing a and
k − 2a. Now every gadget edge has weight a or k − 2a; we
will use the terms a-edge and (k − 2a)-edge accordingly.

Form k − 2a cycles by starting with the v2u2-path of (k −
2a)-edges and adding on k − 2a of the k − a hypothesized
u2v2-paths. Form a cycles by starting with the v1u2-path of
a-edges and adding on the a hypothesized u2v1-paths. Finally
form a more cycles by starting with the v2v1-path of a-edges
and adding on the a hypothesized v1u2-paths followed by the
remaining a hypothesized u2v2-paths. It is easy to see that no
gadget edge occurs twice in this family of cycles. ■

The Path Principle is valid in a digraph G even when P is
a path in the undirected version of G, i.e., directions of edges
are ignored. We will apply the principle to alternating paths
of the digraph, i.e., each internal vertex has its two edges both
entering or both leaving. This is natural since we can have

constraints on the total weight of edges entering or leaving a
given vertex.

Consider the cylinder Y illustrated in Fig. 4(a). Y is con-
structed from two cycles Ch, h even, and has the weights
shown, for a an arbitrary real value, 2k/h ≤ a ≤ k. Y has the
following properties (a)–(d):

(a) Y is k-edge connected. To prove this, split each weight k edge
into edges of weight a and k − a. Then the edges can be
partitioned into a top cycle of weight k − a, a bottom cycle
of weight k − a, and a Hamiltonian cycle of weight a. This
implies the vertices of the top cycle are k-edge connected, as
are the vertices of the bottom cycle. The assumption ah/2 ≥ k
then implies all vertices are k-edge connected.

(b) Every vertex has in-degree k and out-degree k.
(c) Fixing the weight of one weight a edge, the remaining weights

shown are the unique values satisfying property (b). To prove
this, it is clear that (b) forces the weight k edges. The remaining
weights follow from the Path Principle applied to the edges of
weight �= k (they form an alternating Hamiltonian cycle).

(d) If ha = 2k (i.e., our assumption holds with equality) then Y
is an optimum extreme point of LP (1) (where each ue = ∞).
In fact the weights shown are the unique values satisfying (b)
and making both cycles have in-degree k. Property (b) implies
total weight kn which is optimum.

The lower bound extreme point for digraphs is illustrated
by Figs. 4b and 3a. Call this graph G. In brief construct G by
starting with Y , deleting two consecutive edges of the upper
cycle and replacing them with the gadget of Fig. 3a, and
rotating an upward directed cylinder edge to the right into
vertex v1 as shown. Assume 2k/h ≤ a ≤ k/2. For now we
leave unspecified both the parameter h for Y and the number
of vertices in the gadget. G satisfies analogs of properties
(a)–(d):

(a′) G is k-edge connected. G contains the collection of paths
hypothesized in Lemma 4.4(ii). (In fact the paths exist even
if we decrease the weight of every edge in the lower cycle of
Fig. 4b by k − a.) Hence the vertices of H are all k-edge con-
nected. Contracting H in G gives a graph that is a contraction
of Y , and hence is k-edge connected. We conclude G is k-edge
connected.

(b′) Every vertex of G and every interval of Lemma 4.4(i) has
in- and out-degree k.

NETWORKS—2009—DOI 10.1002/net 9

FIG. 5. Hardness gadget for undirected graphs. (a) Gadget for edge xy (solid edges) and x’s chain (dashed edges).
(b) Degree reduction on vertex xe1. (c) Three states of a gadget.

(c′) Fixing the weight of the cylinder edge entering v1 to be a,
the remaining weights shown are the unique values satisfying
(b′). The Path Principle applied to the length three alternating
path starting and ending at v1 determines the weights of these
three edges. Now the hypothesis of Lemma 4.4(i) is satisfied.
Hence, the weights of all the gadget edges and the cylinder
edge entering u2 are determined. The remaining cylinder edges
are determined as in (c) (the remaining edges of weight �= k
form an alternating u2v2-path).

(d′) If ha = 2k then G is an optimum extreme point of LP (1)
(where each ue = ∞).

Imagine extending the gadget with a new kite. This adds
six new edges, four of weight a and two of weight k −2a. Let
α = a mod 1 and assume 0 < α < 1/2. When we round up
the extreme point these edges increase the objective function
by 4(1 − α) + 2(2α) = 4. (Note that for 1/2 ≤ α < 1 the
objective increases by only 2.)

In summary, define the graph G by taking h = 6k and
a = 2k/h = 1/3. G is an optimum extreme point. Let the
gadget contain 4 + g vertices, where g is an even integer
that will approach infinity. So the gadget is built by starting
with the initial kite (on vertices v1, u1, u2, v2) and extending
it by g/2 kites. Since α = a = 1/3 < 1/2 rounding up the
extreme point increases the objective function by ≥ 4(g/2) =
2g. Since G has n = g + O(k + 1) vertices the increase is
≥ 2n − O(k).

We can assume that the input graph also contains a directed
Hamiltonian cycle of weight k edges. (In fact adding just the
edge from v2 to the cylinder vertex below v1 completes a
Hamiltonian cycle. The cycle traverses all gadget vertices
except v2 on a v1u2-path, continues along the top cylinder
cycle to v2, and uses the new edge to traverse the bottom
cylinder cycle and return to v1.) Thus the smallest k-ECSS
has the same size as the LP optimum, kn. Hence the approxi-
mation ratio for the rounded solution is ≥ 1 + 2/k − O(1/n).
As g tends to infinity so does n. This gives the ratio claimed
in Theorem 4.1.

5. HARDNESS RESULTS

We begin by sketching the proof of Fernandes [3] that the
smallest 2-ECSS problem is MAXSNP-hard for undirected
graphs.1 The proof is an L-reduction from VC3, the problem
of finding a smallest vertex cover of a graph G having maxi-
mum degree at most 3. The graph H for smallest 2-ECSS is
constructed as follows. Each edge e = xy of G gives rise to
the gadget illustrated by the six solid edges in Fig. 5a. A gad-
get consists of four vertical edges and two diagonal edges.
The diagonal incident to xe1 (ye1) is x’s (y)’s diagonal.

1 The argument is an adaptation of the proof that the smallest 1-ECSS prob-
lem is MAXSNP-hard by Khuller et al. [13]. They in turn attribute the
fundamentals of their argument to Karp [11].

10 NETWORKS—2009—DOI 10.1002/net

In addition to the gadget vertices, H contains one other
vertex r. In addition to the gadget edges, H contains for each
vertex x of G a chain of edges stringing together the gadgets
for the edges incident to x. The chain for x is illustrated by the
two dashed edges in Fig. 5(a), and is constructed as follows:
Order the edges of G arbitrarily. For the first edge incident to
x, say e, H contains the edge rxe1. For every two consecutive
edges incident to x, say e = xy followed by f = xz, H contains
edge ye3xe1. For the last edge incident to x, say e = xy,
H contains the edge ye3r.

Let m be the number of edges of G. We shall also use the
notation C for a vertex cover of G and K for a 2-ECSS of H.
We shall think of K as a set of edges (rather than a subgraph),
so |K| denotes the number of edges in K . We will show that
a smallest vertex cover C∗ of G and a smallest 2-ECSS K∗
of H satisfy

|K∗| = 6m + |C∗|, (7)

by showing how to transform a vertex cover into a 2-ECSS
of appropriate size and vice versa.

A vertex cover C of G gives a 2-ECSS K of H containing
6m +|C| edges, as follows: K contains the chain edges of all
vertices of C, the diagonal edges of all vertices of G−C, plus
the vertical edges of all gadgets. Since C is a vertex cover,
for any gadget the edges in K are as illustrated in Fig. 5c.1
or c.2. Figure 5c.2 corresponds to the case of x ∈ C, y /∈ C;
the symmetric edges are chosen when x /∈ C, y ∈ C. K is
an edge-disjoint union of cycles through r. (To show this,
first observe that every vertex other than r has degree 2 in K .
Hence K is a collection of cycles. If we start in any gadget and
traverse edges in the direction of increasing edge number, we
must eventually reach r. Hence every cycle contains r.) Thus
K is 2-edge connected. Furthermore K has exactly 6m + |C|
edges. (To show this, associate each gadget with six edges—
those shown in Fig. 5c.1–2 except for the one or two edges
on the bottom leaving the gadget. This gives 6m edges in K .
The remaining edges are each the last edge of the chain of a
vertex of C, and hence they number |C|.)

Next we show that a 2-ECSS K gives a vertex cover of
size ≤ |K| − 6m. We start by executing a procedure called
degree reduction which ensures that every vertex of K − r
has degree exactly 2: As illustrated in Fig. 5b, if a gadget
vertex has degree 3 in K we discard its incident diagonal
edge, and add the corresponding edge leaving or entering
the gadget, if it is not already in our subgraph. (Note that
Fig. 5b illustrates one of the four symmetric cases for degree
reduction.) Repeating this process as long as some gadget
vertex has degree 3, we eventually get a new subgraph K ′
with no degree 3 vertices. (It is clear that the degree reduction
process eventually terminates, since each iteration decreases
the number of diagonal edges.)

Figure 5c.3 shows a gadget with no incident (chain) edges.
K ′ does not contain such a gadget, since it cannot be created
by degree reduction. It is easy to see that Fig. 5c gives all
the possibilities for a gadget in K ′, since each gadget vertex
has degree 2. Hence each gadget is as shown in Fig. 5c.1 or

FIG. 6. Padding edges for vertex x(= xei) in gadget for edge e. h+ (h−)

denotes �k/2� (�k/2�).

c.2. This implies that K ′ is an edge-disjoint union of cycles
through r (by the same argument as before). Furthermore the
chain edges in K ′ are the union of the chain edges for some
set of vertices C. C is a vertex cover of G (since a chain edge
is incident to each gadget). Also |C| ≤ |K| − 6m as claimed.

Our two transformations establish the relation (7). This
implies the MAXSNP-hardness of the smallest 2-ECSS
problem because our construction satisfies the two defin-
ing properties of an L-reduction: Starting with vertex cover
C, the corresponding 2-ECSS has size 6m + |C| ≤ 19|C|
(m/3 ≤ |C| since G has maximum degree 3). And starting
with 2-ECSS K , containing � more edges than a smallest 2-
ECSS, the corresponding vertex cover has ≤ � more edges
than a minimum vertex cover.

Now we extend this construction to reduce VC3 to small-
est undirected k-ECSS, for any fixed k > 2. The reduction
starts by forming the graph H defined above. Then for every
gadget, say for edge e, we introduce a new vertex ze along
with two other vertices, plus four edges forming length 2
paths from ze to r—these are the dashed edges in Fig. 6, hav-
ing the multiplicities shown. Note that h− − 1 ≥ 0. Also for
each of the six vertices in the gadget, say vertex x, we add
two new vertices plus four edges forming length two paths
from x to ze—these are the solid edges in Fig. 6, having the
multiplicities shown (these are the same multiplicites as the
dashed edges). Note that ze has degree 7k +10 while the four
other padding vertices of Fig. 6 have degree exactly k. Fig. 7
illustrates the complete reduction.

Let H denote the new k-ECSS graph. The number of
gadget or padding edges in H is

M = (6[1 + 2k] + 2k)m = (6 + 14k)m.

Similar to the previous reduction we will show that a smallest
vertex cover C∗ of G and a smallest k-ECSS K∗ of H satisfy

|K∗| = M + |C∗|, (8)

by transforming a vertex cover into a k-ECSS of appropriate
size and vice versa.

We construct a k-ECSS K from a vertex cover C as follows.
Just as before K contains the chain edges of all vertices of C,
the diagonal edges of all vertices of G − C, and the vertical
edges of all gadgets; in addition K contains all padding edges.
Counting edges as before it is easy to see |K| = M + |C|.

We show K is k-edge connected in the following three
steps. As before the nonpadding edges of K partition into
edge-disjoint cycles that span all gadget vertices and r.

NETWORKS—2009—DOI 10.1002/net 11

FIG. 7. Example of reduction of VC3 to smallest k-ECSS: (a) Graph for
VC3. (b) Transformed graph. The chain edges for vertices a, b and c are
dashed. Multiplicities of the padding edges are omitted and are specified
in Fig. 6.

(a) Any gadget vertex x is k-edge connected to r: The cycle
through x gives two xr-paths. The padding edges for x give
k −2 xr-paths (of length 4), since (h− −1)+(h+ −1) = k −2
and h+ + 1 ≥ h− − 1, h− + 1 ≥ h+ − 1.

(b) Each vertex ze is k-edge connected to r: The dashed padding
edges give k − 2 zer-paths (of length 2). The solid padding
edges give k − 2 ≥ 1 zexei-paths (of length 2), for i =
1, 2. This gives a total of k paths to r’s k-edge connected
component.

(c) Now each of the four other padding vertices in Fig. 6 have
their k edges going to r’s k-edge connected component.

We construct a vertex cover C from a k-ECSS K as follows.
Every gadget vertex xe2, ye2 has degree exactly k in H, as do
all the padding vertices except the ze vertices. So K contains
all their incident edges, i.e., all padding edges and all vertical
edges. These edges number (4 + 14k)m.

Now execute the degree reduction procedure on the non-
padding edges of K , obtaining a new graph K ′. Observe
that no gadget is in state Fig. 5c.3 in K ′: Such a gad-
get has no nonpadding edges incident to it in K ′, which
implies it had no nopadding edges incident to it in K . But
then the 19 vertex set, formed from the six gadget vertices
plus each of their two neighboring padding vertices plus ze,
has exactly k − 2 incident edges (coming from two dashed
edges in Fig. 6). This contradicts the k-edge connectedness
of K .

As before the nonpadding edges of K ′ partition into cycles
containing r, and the chain edges in those cycles belong to the
vertices of a vertex cover C. Each gadget can be associated
with two chain or diagonal edges of K ′, giving 2m+|C| edges
total. So |K| ≥ |K ′| = (4 + 14k)m + 2m + |C| = M + |C|.

We conclude that (8) holds. We get the following two
results.

Theorem 5.1. The smallest k-ECSS problem on undirected
multigraphs is MAXSNP-hard for any fixed integer k ≥ 2.

Proof. As before the construction satisfies the two defin-
ing properties of an L-reduction: Starting with vertex cover
C, the corresponding k-ECSS has size

M + |C| ≤ (3[6 + 14k] + 1)|C| = (19 + 42k)|C|.
And starting with k-ECSS K , containing � more edges than
a smallest k-ECSS, the corresponding vertex cover has ≤ �

more edges than a minimum vertex cover. ■

Theorem 5.2. There exists a constant c > 0 such that
for any fixed integer k ≥ 2, no polynomial-time algorithm
approximates the smallest k-ECSS on undirected multigraphs
to within ratio 1 + c/k unless P = NP.

Proof. Suppose an algorithm approximates smallest k-
ECSS to within ratio 1 + c/k, where k is some fixed integer
≥ 2 and for the moment c is an arbitrary but fixed constant.
We will show how to approximate VC3 to within ratio 1+52c.
Since VC3 is MAXSNP hard there is a constant ε > 0 such
that approximating VC3 to within factor 1 + ε imples P =
NP. Hence the same can be said for approximating smallest
k-ECSS to within factor 1 + ε/(52k).

Given an instance of VC3, transform it as above to an
instance of smallest k-ECSS. We have noted above the rela-
tion |K∗| = M +|C∗| ≤ (19 + 42k)|C∗|. Hence the approxi-
mation algorithm finds a k-ECSS of size ≤ (1 + c/k)|K∗| ≤
(M+|C∗|)+c(19/k+42)|C∗| ≤ M+|C∗|(1+52c). As above
this gives a vertex cover of size ≤ |C∗|(1 + 52c). Clearly the
entire procedure takes polynomial time. ■

Digraphs

The same two results can be deduced for multidigraph
k-ECSS. We could use a directed version of the previous
reduction but it is simpler to work with Khuller et al.’s reduc-
tion for directed 1-ECSS [13]. Figure 8(a)–(c) is the analog

FIG. 8. Reduction for multidigraphs.

12 NETWORKS—2009—DOI 10.1002/net

of Fig. 5, for an L-reduction of VC3 to smallest directed 1-
ECSS. Figure 8(a) shows the gadget for edge xy in the vertex
cover problem. Equation (7) becomes |K∗| = 2m + |C∗|.
Degree reduction (Fig. 8(b)) is done on any gadget vertex of
in- or out-degree 2. Figure 8d gives the new padding graph,
the analog of Fig. 6. Here each edge, drawn undirected, repre-
sents a pair of antiparallel directed edges, both directed edges
having the multiplicity shown. Now the number of gadget or
padding edges in H is M = (2 + 12k)m.

Corollary 5.3. Theorems 5.1–5.2 hold for multidigraphs,
with the condition on k loosened to k ≥ 1.

Proof. The argument is analogous to the undirected case
and so is omitted. Note that to establish the analog of con-
nectivity property (b) we use the inequality k − 1 ≥ 1, valid
since we assume k > 1. ■

Similar reductions for k-VCSS (vertex connected span-
ning subgraph) are presented in [5].

Acknowledgments

The first author learned of work on this topic by the
other authors in an anonymous communication. We are very
grateful for this assistance. We also thank Guy Kortsarz for
suggesting the possibility of a hardness result.

REFERENCES

[1] J. Cheriyan and R. Thurimella, Approximating minimum-
size k-connected spanning subgraphs via matching, SIAM J
Comput 30 (2000), 528–560.

[2] G. Cornuéjols, J. Fonlupt, and D. Naddef, The traveling sales-
man problem on a graph and some related integer polyhedra,
Math Program 33 (1985), 1–27.

[3] C. Fernandes, A better approximation ratio for the min-
imum size k-edge-connected spanning subgraph problem,
J Algorithms 28 (1998), 105–124.

[4] A. Frank, Submodular functions in graph theory, Discr Math
111 (1993), 231–243.

[5] H. Gabow, On the difficulty of k-connected spanning sub-
graph problems, unpublished notes.

[6] H. Gabow, Special edges, and approximating the smallest
directed k-edge connected spanning subgraph, Proc 15th
Ann ACM-SIAM Symp Discr Algorithms, New Orleans,
Louisiana, 2004, pp. 227–236.

[7] H. Gabow, An improved analysis for approximating the
smallest k-edge connected spanning subgraph of a multi-
graph, SIAM J Disc Math 19 (2005), 1–18.

[8] H. Gabow, On the l∞-norm of extreme points for crossing
supermodular directed network LPs, Math Program B 110
(2007), 111–144.

[9] K. Jain, A factor 2 approximation algorithm for the gener-
alized steiner network problem, Combinatorica 21 (2001),
39–60.

[10] D. Karger, Random sampling in cut, flow, and network design
problems, Math OR 24 (1999), 383–413.

[11] R. Karp, “Reducibility among combinatorial problems”,
Complexity of computer computations, R. Miller and J.
Thatcher (Editors), Plenum Press, NY, 1972, pp. 85–103.

[12] S. Khuller and B. Raghavachari, Improved approximation
algorithms for uniform connectivity problems, J Algorithms
21 (1996), 434–450.

[13] S. Khuller, B. Raghavachari, and N. Young, Approximating
the minimum equivalent digraph, SIAM J Comput 24 (1995),
859–872.

[14] V. Melkonian and E. Tardos, Algorithms for a network design
problem with crossing supermodular demands, Networks
43, (2004), 256–265.

[15] A. Schrijver, Combinatorial optimization: Polyhedra and
efficiency, Vol. A, Springer, NY, 2003.

[16] V. Vazirani, Approximation algorithms, Springer-Verlag,
NY, 2001.

NETWORKS—2009—DOI 10.1002/net 13

