
Operations Research Letters 22 (1998) 111–118

A primal–dual interpretation of two 2-approximation algorithms
for the feedback vertex set problem in undirected graphs

Fabi�an A. Chudak a;1, Michel X. Goemans b;2, Dorit S. Hochbaum c;3, David P. Williamson d;∗
aSchool of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY 14853, USA

bCORE, 34 Voie du Roman Pays, B-1348 Louvain-La-Neuve, Belgium
cUniversity of California, Department of IEOR, 4135 Etcheverry Hall, Berkeley, CA 94720, USA

dIBM T.J. Watson Research Center, Room 33-219, P.O. Box 218, Yorktown Heights, NY 10598, USA

Received 1 August 1996; revised 1 March 1998

Abstract

Recently, Becker and Geiger and Bafna, Berman and Fujito gave 2-approximation algorithms for the feedback vertex
set problem in undirected graphs. We show how their algorithms can be explained in terms of the primal–dual method
for approximation algorithms, which has been used to derive approximation algorithms for network design problems. In
the process, we give a new integer programming formulation for the feedback vertex set problem whose integrality gap is
at worst a factor of two; the well-known cycle formulation has an integrality gap of �(log n), as shown by Even, Naor,
Schieber and Zosin. We also give a new 2-approximation algorithm for the problem which is a simpli�cation of the Bafna
et al. algorithm. c© 1998 Elsevier Science B.V. All rights reserved.

Keywords: Approximation algorithms; Combinatorial optimization; Feedback vertex set

Given an undirected graph G=(V; E) and non-
negative weights wv for the vertices v∈V , the
minimum-weight feedback vertex set problem (FVS)
is to �nd a minimum-weight set of vertices F that
meets every cycle of G. Alternatively, the problem
is to �nd a minimum-weight F such that G[V − F]

∗ Corresponding author.
1 Research partially supported by NSF grants CCR-9307391 and

DMI-9157199.
2 On leave from MIT. Research supported in part by NSF

contracts 9302476-CCR and 9623859-CCR, DARPA contract
N00014-92-J-1799, and a Sloan fellowship.
3 Research supported in part by ONR contract N00014-91-J-

1241.

is acyclic, where G[S] denotes the subgraph of G
induced by the vertex set S. We say that a set of
vertices F is an fvs if it is a feasible solution to the
problem.
The minimum-weight feedback vertex set prob-

lem has long been known to be NP-hard (see
[5], Problem GT7); hence, researchers have at-
tempted to �nd approximation algorithms for the
problem. An �-approximation algorithm for FVS
runs in polynomial time and �nds an fvs whose
weight is no more than � times the weight of
an optimal fvs. The value � is sometimes called
the performance guarantee of the algorithm. The
�rst non-trivial approximation algorithm was given

0167-6377/98/$19.00 c© 1998 Elsevier Science B.V. All rights reserved
PII: S0167 -6377(98)00021 -2

112 F.A. Chudak et al. / Operations Research Letters 22 (1998) 111–118

by Bar-Yehuda, Geiger, Naor and Roth [2], and
has a performance guarantee of log n, where n is the
number of vertices. Recently, two slightly di�erent
2-approximation algorithms were given by Bafna,
Berman and Fujito [1] and Becker and Geiger [3].
The goal of this note is to present the two

2-approximation algorithms in terms of the primal–
dual method for approximation algorithms. This
method has been very successful in deriving approx-
imation algorithms for network design problems (see
Goemans and Williamson [7] for a survey); it has
also been used to design approximation algorithms
for feedback-style problems in planar graphs [6]. The
method begins with an integer programming formula-
tion of the problem under consideration. The standard
primal–dual algorithm then simultaneously constructs
a feasible integral solution and a feasible solution to
the dual of the linear programming relaxation. If it
can be shown that the value of these two solutions is
within a factor of �, then an �-approximation algo-
rithm is obtained. This approach has also been called
the “dual feasible” approach (see [8]).
The integrality gap of an integer program is the

worst-case ratio between the optimum value of the in-
teger program and the optimum value of its linear re-
laxation. A consequence of the primal–dual method is
a proof that the integrality gap of the integer program
under consideration is bounded by �. As part of our
proof, we give a new integer programming formula-
tion for FVS, along with a proof that its integrality
gap is at most two. A previous integer programming
formulation of FVS (the well-known “cycle formula-
tion”) is known to have an integrality gap of �(log n)
[4].
Finally, we also give a new 2-approximation algo-

rithm for FVS which is a simpli�cation of the algo-
rithm of Bafna et al. in that it does not involve search-
ing for “semidisjoint” cycles.
This note is structured as follows. In Section 1, we

prove a series of key inequalities which we need for
the proofs of the algorithms. In Section 2, we give a
new integer programming formulation of FVS. In Sec-
tion 3, we show how the inequalities, the formulation,
and the primal-dual method give the 2-approximation
algorithm of Bafna et al. Section 4 gives our new 2-
approximation algorithm. In Section 5 we show how
a slight modi�cation of previous arguments leads to
the algorithm of Becker and Geiger.

1. Some inequalities

We begin by giving some inequalities we will need
in proving the performance guarantees of the algo-
rithms and in giving the new integer programming for-
mulation. We �rst need some notation and terms. For a
given graphG=(V; E), we let � denote the cardinality
of the smallest fvs for G. Let d(v) denote the degree
of vertex v in G. Given a subset S of vertices, let E[S]
denote the subset of edges that have both endpoints
in S. Let G[S] denote the subgraph (S; E[S]) induced
by S, and let dS(v) denote the degree of v in G[S]. We
let b(S)= |E[S]|−|S|+1 (so that b(V)= |E|−|V |+1).
We say that an fvs F is minimal if for any v∈F ,

F − v is not an fvs. An fvs F is almost minimal if
there is at most one v∈F such that F − v is an fvs.
Following [1], we say that a cycle is semidisjoint if it
contains at most one vertex of degree greater than 2.
We can now state our theorem.

Theorem 1.1. Let F denote any fvs of a graph
G=(V; E); where E 6= ∅. Then
∑
v∈F

[d(v)− 1]¿ b(V); (1)

∑
v∈F

d(v)¿ b(V) + �: (2)

If every vertex of G has degree at least two; and FM
is any minimal fvs; then

∑
v∈FM

d(v)6 2(b(V) + �)− 2: (3)

If every vertex has degree at least two and the graph
contains no semidisjoint cycles or is itself a cycle; and
FAM is any almost minimal fvs; then

∑
v∈FAM

[d(v)− 1]6 2b(V)− 1: (4)

Observe that inequalities (2) and (3) imply

∑
v∈FM

d(v)6 2
∑
v∈F

d(v)− 2; (5)

F.A. Chudak et al. / Operations Research Letters 22 (1998) 111–118 113

while inequalities (1) and (4) imply

∑
v∈FAM

[d(v)− 1]6 2
∑
v∈F

[d(v)− 1]− 1: (6)

Observe also that the condition under which in-
equality (4) holds is satis�ed if the graph is 2-
vertex-connected. Inequalities (2) and (1) will be
used in giving new integer programming formula-
tions, while inequalities (4) and (3) will be used
to prove the performance guarantees of the vari-
ous algorithms. Inequality (1) is stated in Lemma
3 of Bafna et al. [1], while inequality (4) is a
strengthening of their Lemma 4. Inequality (5) is
Theorem 4 of Becker and Geiger [3]. Our proofs here
are somewhat di�erent from those given in [1, 3].

Proof. Inequality (2) clearly follows from inequality
(1). To prove inequality (1), we consider two cases. If
F =V then the hypothesis that E 6= ∅ ensures that the
inequality holds. If F 6=V , observe that the removal
of F from G gives an acyclic subgraph. The number
of edges in this subgraph is thus less than its number
of vertices, i.e. this subgraph contains at most |V | −
|F | − 1 edges. Moreover, by removing the vertices in
F , we have removed at most

∑
v∈F d(v) edges (the

“at most” comes from the fact that an edge could be
counted twice in the sum of the degrees). The total
number of edges being |E|, we therefore derive that
|V | − |F | − 1 + ∑

v∈F d(v)¿ |E|. Rearranging the
terms gives the desired inequality.
Our proofs of the two remaining inequalities are

similar in structure, and hence we use F to denote
either FM or FAM, as appropriate for the particular in-
equality. We �rst observe that

∑
v∈V d(v)= 2|E|. Let

k be the number of connected components ofG[V−F]
and note that the edges in G[V −F] contribute exactly
2(|V | − |F | − k) to∑v =∈F d(v). By these observations
and rearranging terms, inequalities (3) and (4) can be
rewritten as

|�(FM)|¿ 2|FM|+ 2k − 2�; (7)

|�(FAM)|¿ |FAM|+ 2k − 1; (8)

respectively, where �(S) is the set of edges with
exactly one endpoint in S. To prove these inequalities,

we consider the weighted bipartite graph H obtained
by shrinking in G every connected component of
G[V − F] and by removing all the edges of G[F].
The weight of an edge is the number of edges from
the respective node in F to the nodes in the respec-
tive connected component of G[V − F]. For the two
inequalities, we need to show that the total weight of
this bipartite graph H is at least 2|FM| + 2k − 2�, or
|FAM|+ 2k − 1, respectively.
We �rst observe that for each vertex v∈FM,

there must be some witness cycle Cv of G such that
Cv ∩FM = {v}; otherwise FM would not be minimal.
Thus in H there must be at least one edge of weight
at least 2 incident to every vertex of FM; we designate
one such edge for each vertex in FM and call it a pri-
mary edge. The statement is also true for all vertices
in FAM − x, where x is the one vertex of FAM (if any)
such that FAM − x is an fvs. Indeed, by the de�nition
of an almost minimal fvs, for any w∈ (FAM − x),
FAM − w is not an fvs implying the existence of a
witness cycle Cw such that Cw ∩FAM = {w}.
To prove inequality (7), let T be a maximum col-

lection of vertex-disjoint witness cycles, and let F̃ de-
note the vertices of FM whose witness cycles are not
in T . Notice that |T |6 �, so that the inequality is im-
plied if the weight of H is at least 2|F̃ | + 2k. By the
properties of T , it must be the case that for every con-
nected component of G[V − FM] adjacent to a vertex
v∈ F̃ via a primary edge, it must also be adjacent to a
vertex of FM − F̃ via a primary edge, since otherwise
we would be able to add the witness cycle of v to T .
Thus, if we remove the primary edges adjacent to the
vertices of F̃ from H (which account for weight at
least 2|F̃ |), there still must be weight two adjacent to
each component of G[V − FM]. Hence the weight of
edges in H is at least 2|F̃ |+ 2k.
To prove inequality (8), we �rst observe that if G

is a cycle then |FAM| and k must be 1, and hence
inequality (8) is satis�ed. Now, we consider the case
k =1, where we need to prove that

|�(FAM)|¿ |FAM|+ 1: (9)

The existence of at least |FAM| − 1 primary edges
imply that |�(FAM)|¿ 2(|FAM| − 1)¿ |FAM| + 1, if
|FAM|¿ 3. On the other hand, if |FAM|=1, inequality
(9) follows from the fact that every vertex has degree
at least 2, while for |FAM|=2, inequality (9) follows
from the existence of a primary edge and the fact that

114 F.A. Chudak et al. / Operations Research Letters 22 (1998) 111–118

x∈FAM cannot be adjacent only to the other vertex in
FAM.
Now, assume that k¿1. First decrease the weight of

each primary edge by one; this accounts for |FAM|−1
of the weight of the edges of the graph. We claim
that, incident to every connected component of G[V−
FAM], there are either at least two (distinct) edges
(independent of their weight) or one edge of weight at
least 3 in H . Then there must be weight 2 remaining
incident to each connected component, and the overall
total weight is therefore at least |FAM|+ 2k − 1. The
claim follows since if some connected component C
of G[V − FAM] had a unique neighbor in F , say v,
through an edge of weight at most 2, then since no
vertex can have degree 1, the component C and vmust
form a semidisjoint cycle in G.

2. A new integer programming formulation

Having shown the inequalities of the previous sec-
tion, we turn to giving a new integer programming
formulation of the minimum-weight feedback vertex
set problem in undirected graphs. The standard cycle
formulation of the problem is as follows:

(CYC) Min:
∑
v∈V

wvxv

s:t:
∑
v∈C

xv¿ 1; ∀C ∈C;

xv ∈{0; 1}; v∈V;

where C is the set of all node sets C of all cycles of
the graph. Even, Naor, Schieber and Zosin [4] have
shown that the integrality gap of this integer pro-
gram is
(log n); Bar-Yehuda et al. [2] had previously
shown that it was O(log n).
Observe that if F is a feedback vertex set forG, then

clearly F ∩ S is a feedback vertex set for G[S]. Hence
we have the following corollary of inequality (1).

Corollary 2.1. Let F be any feedback vertex set.
Then for any S ⊆V such that E[S] 6= ∅;
∑
v∈F∩S

(dS(v)− 1)¿ |E[S]| − |S|+ 1= b(S):

Our new integer programming formulation is as fol-
lows:

(IP) Min:
∑
v∈V

wvxv

s:t:∑
v∈S
(dS(v)− 1)xv¿ b(S); S ⊆V : E[S] 6= ∅;

xv ∈{0; 1}; v∈V:

By Corollary 2.1, clearly any fvs is a feasible
solution to the integer program. To see that any fea-
sible integer solution x must be an fvs, suppose the
contrary: namely, that there is some cycle on the set
of vertices C such that xv=0 for all v∈C. Then
consider the constraint corresponding to the set of
vertices C. The left-hand side of the constraint must
be 0, while since E[C] contains a cycle, |E[C]|¿ |C|.
Thus the right-hand side of the constraint is at least
1, contradicting the feasibility of x. This proves
that (IP) is an integer programming formulation
of the minimum-weight feedback vertex set
problem.

3. The Bafna-Berman-Fujito algorithm

We now give a primal–dual 2-approximation al-
gorithm using our integer programming formula-
tion. This algorithm is essentially the algorithm of
Bafna et al.
In our algorithm we construct a feasible solution to

the dual of the linear programming relaxation of (IP).
The linear programming relaxation is

(LP) Min:
∑
v∈V

wvxv

s:t:∑
v∈S
(dS(v)− 1)xv¿ b(S); S ⊆V : E[S] 6= ∅;

xv¿ 0; v∈V;

F.A. Chudak et al. / Operations Research Letters 22 (1998) 111–118 115

and its dual is

(D) Max:
∑
S

b(S)yS

s:t:∑
S:v∈S

(dS(v)− 1)yS6wv; v∈V;

yS¿ 0; S ⊆V : E[S] 6= ∅:
The algorithm is given in Fig. 1. The three algorithms
we present have the same structure but di�er in a
single subroutine (called VIOLATION); the subroutine
used in the Bafna et al. algorithm is given in ver-
sion A. The overall algorithm starts with F = ∅, the
feasible dual solution y=0, and the original graph
(V ′; E′)= (V; E). Given a set F , if it is not a fvs, there
must exist a cycle in (V ′; E′). We �rst recursively re-
move degree one vertices and incident edges from V ′

and E′. We now choose some set S that corresponds
to a violated constraint of (IP); we call S a “violated
set”. To choose S, we call the subroutine VIOLATION.
In [1], there are two cases for a choice of S. The sub-
routine �rst looks for a semidisjoint cycle in (V ′; E′).
If it �nds such a cycle, it lets S correspond to the
vertices of the cycle, and returns S. Otherwise, it re-
turns S =V ′. The algorithm then increases the dual
variable yS as much as possible until some dual in-
equality becomes tight for some vertex in S, say for
vertex v; that is,

∑
T :v∈T (dT (v)− 1)yT =wv. The al-

gorithm adds vertex v to F . It then removes vertex
v from V ′ and attached edges from E′, and contin-
ues. When F is an fvs, the algorithm goes through
the vertices of F in the reverse of the order in which
they were added, and removes any extraneous ver-
tices (that is, when vertex v is considered, we re-
move it from F if we still have a feasible fvs with-
out v). We let F ′ denote the �nal fvs given by the
algorithm.
The primal–dual structure of this algorithm (i.e.,

increasing duals, choosing the solution elements cor-
responding to the tight dual constraints, performing a
�nal “clean-up” step in reverse) is the same as that
used in a number of other algorithms for rather di�er-
ent problems (e.g., [9, 10, 6]).
It is not di�cult to see that this algorithm is ef-

fectively equivalent to the following: Start with
F = ∅ and the graph G. Look �rst for a semidis-

Fig. 1. Primal–dual algorithm.

joint cycle S; if none is found, set S to be the
remaining vertices. Pick the vertex v∈ S that
achieves the minimum �= minv∈S wv=(dS(v) − 1).
Add v to F , and set wu←wu − �(dS(u) − 1)
for all u∈ S. Remove v from the graph, then
recursively remove all degree one vertices and
incident edges. Repeat until F is a fvs. Per-
form the “reverse delete” step to obtain F ′. This
algorithm is essentially the Bafna et al. algo-
rithm. A straightforward implementation of this

116 F.A. Chudak et al. / Operations Research Letters 22 (1998) 111–118

algorithm takes O(mn) time, where m is the num-
ber of edges in the graph and n is the number of
vertices.
We now prove that the algorithm is a 2-

approximation algorithm. Notice that for any feasible
solution y for the dual program (D),

∑
S b(S)yS is

a lower bound on the value of the optimal integer
solution.

Theorem 3.1. The algorithm of Fig. 1, version A,
constructs an fvs F ′ and a solution y feasible for (D)
such that∑
v∈F′

wv6 2
∑
S

b(S)yS −
∑
S

yS :

Hence the algorithm is a 2-approximation algorithm.

Proof. We reduce the proof of the theorem to inequal-
ity (4). By construction of the algorithm,

∑
v∈F′

wv =
∑
v∈F′

∑
S:v∈S

(dS(v)− 1)yS

=
∑
S

[∑
v∈S∩F′

(dS(v)− 1)
]
yS:

Thus, if we can show that for any yS¿0∑
v∈(S∩F′)

(dS(v)− 1)6 2b(S)− 1;

then the theorem statement will follow. In order to
apply inequality (4), it is su�cient to argue that S ∩F ′

is a minimal fvs for the graph G[S], and that G[S]
has the requisite properties; although the inequality al-
lows S ∩F ′ to be almost minimal, we will not need
this fact for this version of the algorithm. By construc-
tion of the algorithm F ′ is a minimal fvs. Also by
construction, at the point in time in which the algo-
rithm chooses the violated set S, none of the vertices
in F ′ ∩ S is currently in F ; they are added at some
later point in the algorithm. Therefore, because the �-
nal step of the algorithm deletes redundant vertices
in the reverse of the order in which they were added,
F ′−F , for the current value of F , must be a minimal
fvs for the current graph (V ′; E′). Thus, whether S is a
semidisjoint cycle in (V ′; E′) or S =V ′, we have that

F ′ ∩ S is a minimal fvs for G[S] and inequality (4)
applies.

Let Z∗
IP be the optimal value of (IP) and let Z

∗
D be

the optimal value of (D). We obtain the following
corollary, which proves that the integrality gap is no
more than 2.

Corollary 3.2. Z∗
IP=Z

∗
D6 2.

An anonymous referee has observed that this gap is
essentially tight: on the complete graph Kn with wv=1
for all v∈V , the solution xv= 1

2 is a feasible solution
to the linear programming relaxation, but the value of
a minimum-weight fvs is n− 2.

4. A new algorithm

We can get a somewhat simpler algorithm than the
one above by using a di�erent VIOLATION subroutine.
The subroutine for the Bafna et al. algorithm looks
for a semidisjoint cycle in (V ′; E′). If it �nds one,
it sets S to be the vertices of the cycle, otherwise
S =V ′. Our VIOLATION subroutine avoids searching
for these semidisjoint cycles by a di�erent choice of
S. Here, given a decomposition of (V ′; E′) into its
2-vertex-connected components, we set S to be an
endblock, so that S contains at most one cutvertex.
We give the algorithm in Fig. 1, version B, and prove
the following.

Theorem 4.1. The algorithm of Fig. 1, version B,
constructs an fvs F ′ and a solution y feasible for (D)
such that∑
v∈F′

wv6 2
∑
S

b(S)yS −
∑
S

yS :

Hence the algorithm is a 2-approximation algorithm.

Proof. As in Theorem 3.1, we can reduce the proof
to showing that∑
v∈(S∩F′)

(dS(v)− 1)6 2b(S)− 1:

We wish to apply inequality (4). By the choice of S,
G[S] is 2-vertex-connected and thus inequality (4) ap-
plies, so all we need to show is that S ∩F ′ is an almost

F.A. Chudak et al. / Operations Research Letters 22 (1998) 111–118 117

minimal fvs for G[S]. As in the proof of Theorem 3.1,
given the value of F at the current point in the algo-
rithm, F ′ − F is a minimal fvs for (V ′; E′). The set
S is chosen to be an endblock of (V ′; E′). Hence, the
witness cycles for vertices in F ′ ∩ S must lie entirely
within G[S] except possibly the witness cycle for a
cutvertex x. Thus each vertex in F ′ ∩ S except possi-
bly x is necessary for F ′ ∩ S to be an fvs for G[S]; this
implies that F ′ ∩ S is almost minimal for G[S].

5. The Becker–Geiger algorithm

Finally, we show that the primal–dual approach can
be extended to the Becker–Geiger algorithm as well.
Denote by �(S) the cardinality (not the weight) of the
smallest feedback vertex set in G[S]. By inequality
(2) we have the following.

Corollary 5.1. Let F be any feedback vertex set.
Then for any S ⊆V such that E[S] 6= ∅,∑
v∈F∩S

dS(v)¿|E[S]| − |S|+ 1 + �(S)= b(S) + �(S):

By reasoning similarly to that in Section 2, the fol-
lowing integer program is also a formulation of the
feedback vertex set problem:

(IP′) Min:
∑
v∈V

wvxv

s:t:∑
v∈S

dS(v)xv¿ b(S) + �(S); S ⊆V : E[S] 6= ∅;

xv ∈{0; 1}; v∈V:
The dual of its linear programming relaxation is:

(D′) Max:
∑
S

(b(S) + �(S))yS

s:t:
∑
S:v∈S

dS(v)yS6wv; v∈V;

yS¿0; S ⊆V : E[S] 6= ∅:
We would like to point out that the objective

function of the dual is not well characterized, but
this will not cause any problem for the algorithm.
We can run a primal–dual algorithm with this re-
laxation just as before; the only di�erences here are

that the VIOLATION subroutine returns S =V ′, and
that we use a slightly di�erent dual increase step
(line 9), corresponding to the slightly di�erent dual
constraints on (D′). See Fig. 1, version C, for a
description of the algorithm. The algorithm is e�ec-
tively the following: start with graph G and F = ∅.
Recursively remove any degree one vertices and
associated edges from the graph. Pick the vertex
v that achieves the minimum �= minv∈S wv=d(v).
Add v to F , and set wu←wu − �d(u) for all
u∈V . Remove v from the graph, and repeat un-
til F is a fvs. Perform the “reverse delete” step
to obtain F ′. This algorithm is essentially the Becker–
Geiger algorithm. A straightforward implementation
of this algorithm can be performed in O(mn) time.

Theorem 5.2. The algorithm of Fig. 1, version C,
constructs an fvs F ′ and a solution y feasible for (D)
such that

∑
v∈F′

wv6 2
∑
S

(b(S) + �(S))yS − 2
∑
S

yS :

Hence the algorithm is a 2-approximation algorithm.

Proof. As argued in the proof of Theorem 3.1, we
only need to show that

∑
v∈(S∩F′)

dS(v)6 2(b(S) + �(S))− 2:

This follows from inequality (3) since S ∩F ′ is a min-
imal fvs for G[S] (as in the proof of Theorem 3.1) and
since all vertices in G[S] have degree at least two by
construction.

One important di�erence between this algorithm
and the previous two is that here we cannot evaluate
the value of the dual solution constructed. Neverthe-
less, a corollary similar to Corollary 3.2 still holds.

Acknowledgements

We thank David Shmoys for several useful conver-
sations.

118 F.A. Chudak et al. / Operations Research Letters 22 (1998) 111–118

References

[1] V. Bafna, P. Berman, T. Fujito, Constant ratio approximation
of the weighted feedback vertex set problem for undirected
graphs, in: J. Staples, P. Eades, N. Katoh, A. Mo�at (Eds.),
ISAAC ’95 Algorithms and Computation, number 1004 in
Lecture Notes in Computer Science, Springer, Berlin, 1995,
pp. 142–151.

[2] R. Bar-Yehuda, D. Geiger, J. Naor, R.M. Roth,
Approximation algorithms for the vertex feedback set problem
with applications to constraint satisfaction and Bayesian
inference, in: Proc. 5th Ann. ACM-SIAM Symp. on Discrete
Algorithms, 1994, pp. 344–354.

[3] A. Becker, D. Geiger, Approximation algorithms for the
loop cutset problem, in: Proc. 10th Conf. on Uncertainty in
Arti�cial Intelligence, 1994, pp. 60–68.
Update: A. Becker, D. Geiger: Optimization of Pearl’s method
of conditioning and greedy-like approximation algorithms for
the vertex feedback set problem, Arti�cial Intelligence 83
(1996), 167–188.

[4] G. Even, J. Naor, B. Schieber, L. Zosin, Approximating
minimum subset feedback sets in undirected graphs with
applications, in: Proc. 4th Israel Symp. on Theory of
Computing and Systems, 1996, pp. 78–88.

[5] M.R. Garey, D.S. Johnson, Computers and Intractability,
W.H. Freeman and Company, New York, 1979.

[6] M.X. Goemans, D.P. Williamson, Primal–dual approximation
algorithms for feedback problems in planar graphs, in:
W.H. Cunningham, S.T. McCormick, M. Queyranne (Eds.),
Integer Programming and Combinatorial Optimization,
number 1084, in Lecture Notes in Computer Science,
Springer, Berlin, 1996, pp. 147–161, to appear in
Combinatorica.

[7] M.X. Goemans, D.P. Williamson, The primal–dual method
for approximation algorithms and its application to network
design problems, in: D.S. Hochbaum (Ed.), Approximation
Algorithms for NP-hard Problems, Ch. 4, PWS, Boston, 1996.

[8] D.S. Hochbaum, Approximating covering and packing
problems: Set cover, vertex cover, independent set, and
related problems, in: D.S. Hochbaum (Ed.), Approximation
Algorithms for NP-hard Problems, Ch. 3, PWS, Boston, 1996.

[9] P. Klein, R. Ravi, When cycles collapse: a general
approximation technique for constrained two-connectivity
problems, in: Proc. 3rd MPS Conf. on Integer Programming
and Combinatorial Optimization, 1993, pp. 39–55, also
appears as Brown University Technical Report CS-92-30, to
appear in Algorithmica.

[10] D.P. Williamson, M.X. Goemans, M. Mihail, V.V. Vazirani,
A primal–dual approximation algorithm for generalized
Steiner network problems, Combinatorica 15 (1995) 435–454.

