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Deformable Polygon Representation and

Near-Mincuts

András A. Benczúr∗ and Michel X. Goemans†

We derive a necessary and sufficient condition for a symmetric family of sets
to have a geometric representation involving a convex polygon and some of its
diagonals. We show that cuts of value less than 6/5 times the edge-connectivity of
a graph admit such a representation, thereby extending the cactus representation
of all mincuts.

1. Introduction

Given an undirected graph G = (V, E) possibly with multiple edges (or
nonnegative weights on the edges), let d(S) represent the size (or the weight)
of the cut (S : S) = {(i, j) ∈ E :

∣

∣{i, j} ∩ S
∣

∣ = 1} (where S = V \ S).

The edge-connectivity λ of G is equal to min∅6=S 6=V d(S), and any cut (S, S)
achieving the minimum is called a mincut. A cut (S, S) for which d(S) < αλ
for some α > 1 is called an α-near-mincut. In 1976, Dinitz, Karzanov and
Lomonosov [4] have given a compact representation of all mincuts; this is
known as the cactus representation. Informally, the cactus representation
is a multigraph H in which every edge is in exactly one cycle1 and every
vertex of G is mapped to a node2 of H (see Figure 1). This mapping does
not need to be bijective, surjective or injective. A node of H can correspond
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0148.
1In descriptions of the cactus representation, the cycles of length 2 are sometimes

replaced by a single edge (bridge) of weight 2.
2To easily distinguish them, we use vertices for the graph G and nodes for the cactus H.
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to one, several or even no vertex of G; in the latter case, the node is said
to be empty. The set of all mincuts of size 2 in H, i.e. those obtained
by removing any two edges of the same cycle, correspond to the set of all
mincuts in G. Because of the presence of empty nodes, observe that several
mincuts in H can correspond to the same cut in G.

Fig. 1. A cactus of a graph with vertex set V = {a, b, c, d, e, f, g, h, i, j}.

The cactus is not necessarily unique, and Nagamochi and Kameda [15]
describe two canonical cactus representations, one with no cycles of length
3 and the other without precisely 3 cycles meeting at the same empty node.
Nagamochi and Kameda also show that these canonical representations (and
many others) have at most n = |V | empty nodes. A cactus representation
can be constructed efficiently, see [11, 8, 20, 16, 3, 7, 18, 17]. A 2-level
cactus representing all cuts of value λ and λ+1 in an unweighted graph has
been derived by Dinitz and Nutov [5].

In this paper, we consider extensions of the cactus representation to ar-
bitrary symmetric3 families F ⊆ 2V , in which every cycle is replaced by a
convex polygon P with some of its diagonals drawn and the elements of V
are mapped to the cells defined by the diagonals within the polygon, see
Figure 2. A cell can have 0, 1 or many elements mapped to it. To every
diagonal, one can associate a pair (S, S) of complementary sets correspond-
ing to those elements mapped to either side of the diagonal. Furthermore,
we will focus on the situation when the existence of the mapping of V to
the cells of the polygon does not depend on the exact (convex) location
of the polygon vertices; we call such polygons deformable, see Section 2.
Our representation links deformable polygons in a tree fashion, in an al-
most identical way as the cactus links cycles. To derive this tree structure,
we consider the cross graph associated with a symmetric family of sets: Its
vertex set has a representative for each pair of complementary sets in F
and two such pairs (S, S) and (T, T ) are joined by an edge if S and T cross.

3A ∈ F iff A ∈ F .
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Recall that two sets S and T are said to cross if S ∩ T , S ∪ T , S \ T and
T \ S are all non-empty. We show that representations for each connected
component of the cross graph can be linked in a tree structure of linear
size; this is explained in Section 5, where we provide a geometric proof of a
(slightly modified) cactus structure of mincuts.

Fig. 2. A polygon representation. The bold diagonal corresponds to the sets {1, 2, . . . , 9}
and {10, 11}. This polygon is deformable; for example, this will follow from our

characterization.

The main result of this paper is to give a necessary and sufficient condi-
tion for a symmetric family to admit a representation as a tree of deformable
polygons. This characterization is in terms of excluded configurations. We
show that there are 3 families consisting of 4 pairs of complementary sets
each (

(

4
[2]

)

, C1 and C2, see the forthcoming Figure 5), and the family can
be represented by a tree of deformable polygons if and only if none of the
three families appear as an induced subfamily. This is stated in Section 2
and proved in Sections 3 and 5. We also show in Section 4 that for any
(weighted) undirected graph, the family of 6/5-near-mincuts — those cuts
of value less than 6/5 times edge-connectivity λ — satisfies the condition of
our main result, and therefore can be represented by a tree of deformable
polygons. This, for example, implies that there are at most

(

n
2

)

6/5-near-
mincuts, see Section 6; this is already known even for 4/3-near-mincuts
[19, 9].

This paper focuses on a characterization of those families with a tree
of deformable polygons, and does not consider efficient algorithms for its
construction or implications for connectivity problems, such as speeding up
algorithms for graph augmentation problems or the existence of splitting-off
which maintains near-mincuts. This is covered in the Ph.D. dissertation [3]
of the first author, see also [1, 2].
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Many proofs of the existence of the cactus have appeared. The approach
that is most useful in the context of this paper is due to Lehel, Maffray and
Preissmann [12] who show using characterizations of interval hypergraphs
that, for any undirected graph G = (V, E), there exists a cyclic ordering of
V such that every mincut corresponds to a partition of this cyclic ordering
into two (cyclic) intervals. This will be the basis of our construction of
deformable polygons, as we will first place a carefully selected subset of
the elements along the sides of our polygon in a circular way and then add
the remaining elements in cells farther inside the polygon (using Helly’s
theorem).

2. Deformable Polygon Representation

Given an arrangement of lines in R2 and a set V of points in R2 none of
them being on any of the lines, each line partitions R2 into two halfplanes
and hence the set V into two sets S and S̄. We associate to this arrangement
of lines the symmetric family F of all sets defined by these lines. We say
that this family is representable as an arrangement of lines. For example, in
Figure 3:(a), a representation of

(

4
[2]

)

=
{

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4},

{3, 4}
}

, the family of all subsets of {1, 2, 3, 4} of cardinality 2, is given.

Fig. 3. (a): An arrangement of lines representing the family
F =

�
4
[2]

�
= {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}. (b): An equivalent polygon

representation.

A classical result of Schläfli [22] says that the maximum number of
partitions of an n-element set in R2 by lines is

(

n
2

)

+1, and thus at most
(

n
2

)

once we don’t count the trivial partition for which S = ∅ or S = V . This
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provides a bound on the size of any family representable as an arrangement
of lines.

Instead of considering representations as arrangements of lines, we con-
sider a bounded variant of it. In this case, we have a convex polygon
P with vertices a1, a2, . . . , ak (for some suitable k), a subset of diagonals
D ⊆

{

[ai, aj ] : 1 ≤ i < j ≤ k
}

, and the elements of V are placed in the cells
of P \D defined by the diagonals within the polygon. The sets represented
correspond to the sets of elements on either side of a diagonal. We refer to
such a representation as a polygon representation. Clearly, a polygon rep-
resentation can be transformed into an arrangement of lines representation,
and vice versa, see Figure 3 for a simple example.

For certain polygon representations, the polygon can be arbitrarily de-
formed in a convex manner without the cells containing elements of V van-
ishing. In this case, the actual positions of the polygon vertices a1, · · · , ak

are irrelevant, provided they are in convex position. We refer to this as a
deformable polygon representation. This is not the case for the polygon rep-
resentation of

(

4
[2]

)

given in Figure 3:(b), as shown in Figure 4. In fact, it

is easy to show that the family
(

4
[2]

)

does not admit a deformable polygon
representation.

Fig. 4. If the convex polygon is deformed, the cell containing the element 4 might
disappear.

In this paper, we provide a characterization in terms of excluded con-
figurations of those symmetric families that admit a deformable polygon
representation. To state our result, we first need to introduce two fami-
lies that do not have a polygon representation (or a representation by an
arrangement of lines). In fact, they cannot be represented by convex sets,
as any such representation for a symmetric family can be transformed into
a representation as an arrangement of lines by simply considering the line
separating the convex sets assigned to S and S.
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Lemma 1. The following two families of subsets of {1, 2, 3, 4, 5, 6} (see
Figure 5) do not have a polygon representation.

1. C1 =
{

{1, 2, 3}, {1, 2, 3}, {1, 4}, {1, 4}, {2, 5}, {2, 5}, {3, 6}, {3, 6}
}

,

2. C2 =
{

{1, 2, 3}, {1, 2, 3}, {1, 5, 6}, {1, 5, 6}, {2, 4, 6}, {2, 4, 6}, {3, 4, 5},

{3, 4, 5}
}

=
{

{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}, {5, 6, 1}, {6, 1, 2}, {1, 3, 5},
{2, 4, 6}

}

.

Fig. 5. Half of the sets (a) in C1 and (b) in C2. Combs, to be defined in Definition 2,
have either an induced C1 or an induced C2.

Proof. Assume that Ck for either k = 1 or k = 2 has a representation by
an arrangement of lines. We start with some notation for both cases. We
simply let 1, 2, . . . , 6 denote the points in R2 in the cells of the arrange-
ment of lines corresponding to the elements of the ground set. For a pair of
complementary sets (U,U) in Ck, let ℓ(U) = ℓ(U) be the line in the arrange-
ment for Ck separating U from U ; furthermore let ℓ+(U) and ℓ−(U) denote
the open halfplanes containing U and U , respectively. For i ∈ {1, 2, 3}
and j ∈ {4, 5, 6}, let tij ∈ ℓ

(

{1, 2, 3}
)

be the intersection point between
ℓ
(

{1, 2, 3}
)

and the line segment extending between points i and j; tij is
well-defined as i and j are separated by {1, 2, 3} ∈ Ck.

Consider first the arrangement for C1. Consider the points t14, t25 and
t36. As t14 ∈ ℓ+

(

{1, 4}
)

while t25, t36 ∈ ℓ−
(

{1, 4}
)

and similarly for 14
replaced by 25 or 36, the points t14, t25 and t36 are distinct. Without
loss of generality, we can assume that t25 is between t14 and t36. But, by
convexity, t14, t36 ∈ ℓ−

(

{2, 5}
)

implies that t25 ∈ ℓ−
(

{2, 5}
)

contradicting
t25 ∈ ℓ+

(

{2, 5}
)

.

Assume now we have a representation for C2. Consider two complemen-
tary sets in our family, say U = {1, 3, 5} and U = {2, 4, 6}. The fact that
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U ⊂ ℓ+(U) and U ⊂ ℓ−(U) implies that the line segments [t15, t35] and
[t24, t26] do not intersect, and in particular that t15 6= t26. We can simi-
larly deduce that t15 6= t34 6= t26. Without loss of generality, let us assume
that t26 is between t15 and t34. But the disjointness of [t15, t35] and [t24, t26]
implies that t26 /∈ [t15, t35], while the same argument with the complemen-
tary sets {1, 2, 6} and {3, 4, 5} implies that t26 /∈ [t34, t35], which means that
t26 /∈ [t15, t34], a contradiction.

Given a family F of sets on V and a subset S ⊆ V , we define the family
F|S to be the family {F ∩S : F ∈ F}. We say that a family F of V contains

a family G as an induced family or simply contains the induced family G if
there exists S such that F|S contains G, i.e. F|S ⊇ G. In this case, if G
does not have a polygon representation then neither does F , and similarly
for deformable polygon representations. Thus, any family F which contains
(

4
[2]

)

, C1 or C2 as an induced family does not have a deformable polygon
representation. We will show that the converse to that statement is also
true for families with connected cross graph.

Theorem 2. Let F be a symmetric family of sets with connected cross
graph. Then F admits a deformable polygon representation if and only if
F does not contain

(

4
[2]

)

, C1 or C2 as an induced family.

The “only if” part follows from Lemma 1 and the fact that
(

4
[2]

)

does not
admit a deformable polygon representation. The proof of the “if” part is
constructive, and will be the focus of the next section. Here is a brief sketch
of the construction proving the existence of the polygon representation.
First we identify a set O ⊆ V of elements that we would like to place along
the sides of the polygon; we refer to the elements of O as outside elements.
One non-trivial property of this set O is that every set S ∈ F contains
at least one outside element but not all of them; this is indeed a property
to expect if we place these outside elements along the sides of the polygon
and represent sets by diagonals. We then use Tucker’s characterization [23]
of interval hypergraphs to show that there exists a circular ordering of the
outside elements such that any set in F|O corresponds to an interval in that
circular ordering. As a first trial, one could take a k-gon P where k = |O|,
place the outside elements in their circular order along the sides of P , and
for each set S ∈ F add the diagonal that separates S ∩ O from O \ S.
This already provides a polygon representation of F|O. However, placing
the remaining elements of O appropriately inside the polygon in order to
represent F is not always possible for the following reason. Several sets
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of F could have the same intersection with O and thus would be mapped
to the same diagonal. We can, however, show that sets having the same
intersection with O form a chain, and we can then add vertices to the
polygon P so as to make the diagonals distinct (and non-crossing), and still
represent FO. We then need to consider the placement of the remaining
inside elements, those of O. For each inside element v, we know on which
side of each diagonal we would like to place it. We show that the intersection
of all these halfplanes is non-empty by proving that any two or three of
them have a non-empty intersection and then using Helly’s theorem. This
non-empty intersection gives a non-empty cell where to place v, and this
completes the construction and the proof.

In Section 5, we show that the connected components of any cross graph
can be arranged in a tree structure, and when each component can be
represented by a deformable polygon, we obtain a representation that we
call a tree of deformable polygons. If a family contains

(

4
[2]

)

, C1 or C2 as
an induced family then one of the connected components of its cross graph
must contain one of these subfamilies as an induced family. Therefore, after
proving Theorem 2 and deriving our tree structure, we will have shown the
following theorem.

Theorem 3. Let F be a symmetric family of sets. Then F admits a
representation as a tree of deformable polygons if and only if F does not
contain

(

4
[2]

)

, C1 or C2 as an induced family.

We would like to point out that we do not know of any necessary
and sufficient condition for the existence of a (not necessarily deformable)
polygon representation (or a representation by an arrangement of lines).

3. Construction and its Proof

In this Section, we focus on the case where the symmetric family has a
connected cross graph, or if this is not the case, we redefine F to be the
family corresponding to a single connected component of the cross graph.

Before we start, observe that we can group together any pair or set of
elements which are not separated by any set in our family. Indeed, this does
not affect the existence of a polygon representation as all these equivalent
elements would fall in the same cell defined by the diagonals of the polygon.
More formally, define two elements u and v to be equivalent if, for every
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set Si in our family, u ∈ Si iff v ∈ Si. Let the equivalence classes be called
atoms. Our representation is on the atoms of our family. For simplicity, for
the rest of this section, we simply refer to them as the elements; we’ll use
atoms when we consider several connected components of the cross graph
in Section 5.

We will first restate Theorem 2 without using any induced families. For
this, we need a few definitions.

Definition 1. 3 subsets C1, C2 and C3 form a 3-cycle (see figure 6) if (i)
C1 ∪ C2 ∪ C3 6= ∅ and (ii) (Ci ∩ Ci+1) \ Ci−1 6= ∅, for all i ∈ {1, 2, 3}.

Everywhere in the paper, indices should always be considered cyclic; for
example, C4 represents C1 in the above definition.

Fig. 6. A 3-cycle. Solid dots in a Venn diagram denote non-empty intersections; other
intersections could be empty or not.

Observe that a symmetric family F contains 3 sets that form a 3-cycle
if and only if it contains an induced

(

4
[2]

)

. We also need to define another
configuration of sets.

Definition 2. Four subsets H, T1, T2 and T3 form a comb with handle H
and teeth T1, T2 and T3 if (i) either H ∩

(

Ti \ (Ti−1 ∪ Ti+1)
)

6= ∅ for all
i = 1, 2, 3 or H ∩ (Ti−1 ∩ Ti+1 \ Ti) 6= ∅ for all i = 1, 2, 3 and (ii) the same
holds for H replaced by H̄.

The above definition is such that any family of sets which contains (sets
forming) a comb must contain either an induced C1 or an induced C2, and
vice versa, see Figure 5; in both cases, the handle H gets restricted to
{1, 2, 3} or {4, 5, 6}. Thus, alternatively, we could reformulate Theorem 2
as follows.

Theorem 4. Let F be a family of sets with connected cross graph. Then
F admits a deformable polygon representation if and only if F does not
contain any 3-cycle or comb.

More generally, we define a k-cycle for k > 3 as follows.
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Definition 3. k subsets C1, . . . , Ck for k > 3 form a k-cycle (or simply

cycle) if (i) ∪k
i=1Ci 6= ∅, (ii) Pi = (Ci ∩ Ci+1) 6= ∅ for i = 1, . . . , k, and

(iii) Ci and Cj are disjoint for j /∈ {i − 1, i, i + 1}. See Figure 7.

Fig. 7. A 5-cycle.

Because of condition (iii) in the definition of a k-cycle for k > 3 (which
we didn’t have for a 3-cycle), a family could contain an induced k-cycle but
no k-cycle itself. However, the next proposition shows that when there are
no 3-cycles and combs, we do not need to differentiate between cycles and
induced cycles.

Proposition 5. Consider a collection F of sets that does not contain any 3-
cycle or comb. Then any induced cycle C1, . . . , Ck contains a subcollection
which forms a cycle.

The proof is technical and can be skipped at first reading.

Proof. We assume that the collection is minimal, i.e. no subcollection of
the Ci’s forms an induced cycle. Let W be such that the Ci’s induce a cycle
in W . Define

Pi = W ∩
[

(Ci ∩ Ci+1)
]

= W ∩

[

(Ci ∩ Ci+1) \
⋃

j /∈{i,i+1}

Cj

]

6= ∅

for i = 1, . . . , k, the last equality following from the fact that Ci ∩ W and
Cj ∩ W are disjoint if i and j are neither consecutive nor equal.

Assume there exist two indices i and j /∈ {i − 1, i, i + 1} such that
(

Ci \ (Ci+1 ∪ Ci−1)
)

∩ Cj 6= ∅, i.e. (Ci ∩ Cj) \ (Ci+1 ∪ Ci−1) 6= ∅. If j
is i − 2, we have a 3-cycle consisting of Cj , Ci−1 and Ci, a contradiction.
Similarly, if j is i+2, we have the 3-cycle (Cj , Ci, Ci+1). Thus we can assume
j /∈ {i − 2, i − 1, i, i + 1, i + 2}. We claim we have a comb with handle Ci

and teeth Ci−1, Ci+1 and Cj , a contradiction. This is because the following
sets are all non-empty:
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•
(

Cj \ (Ci+1 ∪ Ci−1)
)

∩ Ci = (Ci ∩ Cj) \ (Ci+1 ∪ Ci−1) 6= ∅,

•
(

Ci+1 \ (Cj ∪ Ci−1)
)

∩ Ci ⊇ Pi as j /∈ {i, i + 1},

•
(

Ci−1 \ (Cj ∪ Ci+1)
)

∩ Ci ⊇ Pi−1 as j /∈ {i − 1, i},

•
(

Cj \ (Ci+1 ∪ Ci−1)
)

∩ Ci ⊇ Pj as j /∈ {i − 2, i − 1, i, i + 1},

•
(

Ci+1 \ (Cj ∪ Ci−1)
)

∩ Ci ⊇ Pi+1 as j /∈ {i + 1, i + 2},

•
(

Ci−1 \ (Cj ∪ Ci+1)
)

∩ Ci ⊇ Pi−2 as j /∈ {i − 2, i − 1}.

We can thus assume that for all i and all j /∈ {i − 1, i, i + 1}, we have

(1) Ci ∩ Cj ⊆ (Ci−1 ∪ Ci+1).

Observe that the Ci’s form a cycle unless condition (iii) of Definition 3
is violated, i.e. there exists i and j /∈ {i − 1, i, i + 1} with Ci ∩ Cj 6= ∅.
Combining this with (1), we can assume that there exist i and j with
j /∈ {i− 1, i, i + 1} such that ∅ 6= Ci ∩Cj ⊆ (Ci−1 ∪Ci+1). This means that
either Ci∩Ci+1∩Cj 6= ∅ or Ci−1∩Ci∩Cj 6= ∅. Depending on the value of j
and after possibly changing i, (i) we either have i and j /∈ {i−2, i−1, i, i+1}
with Ci−1 ∩ Ci ∩ Cj 6= ∅, or (ii) we have i with Ci−2 ∩ Ci−1 ∩ Ci 6= ∅. We
consider both cases separately.

1. Assume that Ci−1 ∩ Ci ∩ Cj 6= ∅ for some i and j with j /∈ {i − 2,
i − 1, i, i + 1}. We claim that Ci−1, Ci and Cj form a 3-cycle, again a
contradiction. Indeed Ci−1 ∩Ci ∩Cj 6= ∅, Ci−1 \ (Ci ∪Cj) ⊇ Pi−2 6= ∅
as j /∈ {i − 2, i − 1}, Ci \ (Ci−1 ∪ Cj) ⊇ Pi 6= ∅ as j /∈ {i, i + 1}, and
Cj \ (Ci−1 ∪ Ci) ⊇ Pj−1 6= ∅ as j /∈ {i − 1, i, i + 1}.

2. Assume that Ci−2∩Ci−1∩Ci 6= ∅ for some i. If Ci−1 \(Ci−2∪Ci) 6= ∅,
we have a 3-cycle (Ci−2, Ci−1, Ci). Thus assume that Ci−1 ⊆ Ci−2∪Ci.
Furthermore, we can assume that Ci−2 ∩ Ci = Ci−2 ∩ Ci−1 ∩ Ci

since, otherwise, Ci−2, Ci−1 and Ci would form a 3-cycle. By our
minimality assumption, we cannot remove Ci−1 from our collection
and still have an induced cycle; this implies that Ci−2 ∩ Ci−1 ∩ Ci =
Ci−2 ∩ Ci ⊆ [

⋃

j /∈{i−2,i−1,i} Cj]. Thus, let l /∈ {i − 2, i − 1, i} be such

that Cl∩Ci−2∩Ci−1∩Ci 6= ∅. If k > 4 then Ci−2, Ci and Cl can be seen
to form a 3-cycle (since we have (Ci−2 ∩Ci) \Cl = Ci−2 ∩Ci ∩Cl 6= ∅,

(Ci−2 ∩ Cl) \ Ci ⊇ Pi−2, (Ci ∩ Cl) \ Ci−2 ⊇ Pi−1, and Ci ∪ Cl ∪ Ci−2

contains either Pl or Pl−1). On the other hand, if k = 4 and thus
l = i + 1 then Ci−2, Ci−1, Ci and Ci+1 form a comb with Ci−1 as
handle. Indeed, we have



12 A. A. Benczúr and M. X. Goemans

•
(

Ci−2 \ (Ci ∪ Ci+1)
)

∩ Ci−1 ⊇ Pi−1,

•
(

Ci \ (Ci−2 ∪ Ci+1)
)

∩ Ci−1 ⊇ Pi−2,

•
(

Ci+1 \ (Ci−2 ∪ Ci)
)

∩ Ci−1 = Ci−2 ∩ Ci−1 ∩ Ci ∩ Ci+1 6= ∅,

•
(

(Ci−2 ∩ Ci) \ Ci+1

)

∩ Ci−1 = Ci−2 ∪ Ci−1 ∪ Ci ∪ Ci+1 6= ∅,

•
(

(Ci ∩ Ci+1) \ Ci−2

)

∩ Ci−1 ⊇ Pi+1,

•
(

(Ci−2 ∩ Ci+1) \ Ci

)

∩ Ci−1 ⊇ Pi.

Definition 4. An element v ∈ V of the family F ⊂ 2V is said to be inside

if there exists a cycle C1, . . . , Ck of F such that v /∈ ∪iCi. Otherwise, v is
said to be outside. The set of outside elements is denoted by O.

A few remarks are in order. Given Proposition 5, we can replace “cycle”
by “induced cycle” in the above definition, provided that F does not contain
any comb or 3-cycle. For the rest of this section, we assume throughout
that F has no 3-cycle or comb, even if it is not explicitly stated. Also,
at this point, it is not obvious that O is non-empty; this will follow from
Proposition 10. This would not be true if our family could have 3-cycles;

(

4
[2]

)

for example has no outside elements. In fact, we will deduce from Corollary
14 that either |O| ≥ 4 or our family with its connected cross graph consists
of only one pair of complementary sets (S, S) (thus separating two outside
elements/atoms from each other). The latter case trivially gives rise to a
deformable polygon; just take a 4-gon with one diagonal. Therefore, we will
often implicitly assume in this Section that our family consists of more than
one complementary pair. Observe also that if our family does not contain
any cycles (as is the case for the family of mincuts in a graph, see Section 4)
then all elements are outside, i.e. O = V .

As a first step towards the contruction of the polygon representation,
we show now that the family restricted to the outside elements, F|O, is a
circular representable hypergraph [21] or a circular arc hypergraph, i.e. there
exists a circular ordering of O such that all sets in F|O correspond to arcs
of the circle. This is similar to the proof of the existence of the cactus
representation of all minimum cuts due to Lehel et al. [12].

Proposition 6. Consider a symmetric family F of sets with no cycles or
combs. Then F is a circular representable hypergraph.

By definition of outside elements, we can then derive the following
Corollary.
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Corollary 7. Consider a symmetric family F of sets that does not contain
any 3-cycle or comb, and let O be its set of outside elements. Then F|O is
a circular representable hypergraph.

Proposition 6 and Corollary 7 follow easily from Tucker’s characteriza-
tion [23] of interval hypergraphs, i.e. hypergraphs (or families of sets) for
which there exists a total ordering of the elements of the ground set such
that every hyperedge (set) corresponds to an interval in the ordering. Tucker
gives a necessary and sufficient condition for a 0-1 matrix to have the con-
secutive 1’s property, see Duchet [6] for a short proof of Tucker’s result in
terms of hypergraphs.

Theorem 8 (Tucker [23]). A family of sets define an interval hypergraph
if and only if it does not contain any of the families listed in Figure 8 as an
induced subfamily.

Fig. 8. List of excluded subhypergraphs for interval hypergraphs: Cn for n ≥ 3, O1, O2,
Nn for n ≥ 1 and Mn for n ≥ 1. Solid dots represent non-empty intersections.

Proof of Proposition 6. Select an element v0 arbitrarily and consider the
family C = {S ∈ F : v0 /∈ S}. We need to show that C is an interval hyper-
graph. By Tucker’s Theorem, we only need to show that C does not contain
any of the subfamilies of Figure 8. Observe that Cn is an induced cycle
not containing v0, and therefore is not present by assumption. Similarly,
an induced cycle can be obtained from Mn and Nn by complementing the
large sets; these cycles do not contain the element marked X in Figure 8.
O2 is a comb, and a comb can be obtained from O1 by complementing the
4-element set which would then contain the special element v0. As we have
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no comb in our family, O1 and O2 cannot arise. Therefore, C is an interval
hypergraph, and F is a circular representable hypergraph.

To construct the polygon representation, we start with a convex k-gon
with vertices a1, a2, . . . , ak (clockwise) where k = |O|, and place the outside
elements along the k sides in the circular order given by Proposition 7
so that any diagonal of the k-gon partitions the outside elements into 2
intervals in the circular ordering. From Proposition 10 stated and proved
below, we can derive that any set S ∈ F partitions O non-trivially, i.e.
S ∩ O 6= ∅ and O \ S 6= ∅. This means that we can associate with S one
of the diagonals of our polygon, corresponding to the way it partitions the
outside elements. Since we were assuming that any two elements (including
consecutive elements of O in the circular ordering) were separated by a set
S ∈ F (by our definition of atoms at the beginning of this Section), we have
at least one diagonal incident to every vertex of our k-gon.

The trouble though is that several pairs of complementary sets might
be assigned to the same diagonal. As an example, consider F4 consisting of
a 4-cycle together with the complementary sets:

F =
{

{1, 2}, {2, 3}, {3, 4}, {1, 4}, {3, 4, 5}, {1, 4, 5}, {1, 2, 5}, {2, 3, 5}
}

.

Element 5 is inside, while 1,2,3 and 4 are outside; however {1, 2}, {3, 4, 5}
and {1, 2, 5}, {3, 4} separate O = {1, 2, 3, 4} in the same way, and there is
no space between the corresponding diagonals to place element 5. We will
prove in Proposition 15 that all sets S having the same intersection with
O, say S ∩ O = A, form a chain S1 ⊇ S2 ⊇ · · · ⊇ Sp. So far, all these sets
correspond to the same diagonal, say from au to av. We modify the polygon
by replacing au by p vertices, say a1

u, . . . , ap
u clockwise, by replacing av by

p vertices, say a1
v, . . . , a

p
v anticlockwise and by assigning Si to the diagonal

[ai
u, ai

v] for i = 1, . . . , p, see Figure 9. The sets S1, . . . , Sp are now assigned
to p non-crossing diagonals (i.e. which do not intersect in the interior of
the polygon). Other diagonals incident to au, like [au, aw], are moved to be
incident to either a1

u if w is between v and u (clockwise) or to ap
u if w is

between u and v (clockwise), see Figure 9. The same process is repeated
for every diagonal which corresponds to more than one set. Overall, this
creates a polygon with |O| + |F| −

∣

∣F|O
∣

∣ vertices. To reduce this number
of vertices, we could have replaced only au (or av) by p vertices instead of
replacing both; the proofs also carry through in that case.
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Fig. 9. For sets S having the same intersection with O, we expand the polygon and
introduce non-crossing diagonals.

In the example of F4 (4-cycle plus the complementary sets), we first
take a (convex) quadrilateral as there are 4 outside elements and then add
4 additional vertices to duplicate the two diagonals, see Figure 10.

Fig. 10. Construction of the polygon and placement of the outside elements for the
symmetrized 4-cycle; observe that there is a shaded cell to correctly place element 5.

At this point, we have constructed a convex q-gon a1, . . . , aq, placed all
the outside elements, and assigned every set S ∈ F to one of its diagonal, say
ℓ(S) = [ai(S), ai(S)] for some indices i(S), i(S). Observe that this polygon

has the following important property (in addition to representing F|O):

Proposition 9. Let S1, S2 ∈ F . Then the corresponding diagonals ℓ(S1)
and ℓ(S2) do not cross (i.e. do not intersect in the interior of P ) if and only
if the sets S1 ∩ O and S2 ∩ O do not cross in O (i.e. S1 ∩ O ⊆ S2 ∩ O,
S2 ∩ O ⊆ S1 ∩ O, S1 ∩ S2 ∩ O = ∅, or S1 ∪ S2 ⊇ O).

Indeed, this is true for our initial k-gon with k = |O|, and remains true
as we introduce additional vertices and diagonals.

We now need to prove (i) every S ∈ F partitions O non-trivially and
(ii) that sets that have the same intersection with O form a chain, and then
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prove that (iii) our (deformable) polygon representation can be correctly
completed, i.e. that inside elements can be placed appropriately within cells
of the arrangement of diagonals of our polygon and this should be true
independently of the position of the vertices a1, . . . , aq. We start with a
stronger statement than (i) which will be also useful for (ii) and (iii).

Proposition 10. Consider a family F of sets with a connected cross graph
that does not contain any 3-cycle or comb. Let S be a minimal set in F .
Then S ⊆ O.

This is the first time we require that the family has a connected cross
graph. This proposition implies that any (not necessarily minimal) set
S ∈ F must contain outside elements since all elements in any minimal
subset of S will be outside. Applying the same proposition to S̄, we see
that every set S ∈ F partitions O non trivially.

As a first (and main) step in the proof, we show the following lemma.

Lemma 11. Consider a family F that does not contain any 3-cycle or comb.
Let S ∈ F contain an inside element v, and let C1, . . . , Ck be a cycle for v
(i.e. v /∈ (∪Ci)). Then either

1. there exists i such that Ci ⊂ S, or

2. S is disjoint from ∪iCi.

Observe that we did not impose that the cross graph was connected. In
fact, in Lemma 12, we will show that 2. can only happen if S and the cycle
belong to different connected components of the cross graph.

Proof. Let us assume that Ci 6⊂ S for all i = 1, . . . , k. We proceed in several
steps.

Claim 1. For all i, (Ci ∩ Ci+1) \ S 6= ∅. If not (see Figure 11, (a)), there
exists i such that Ci∩Ci+1 ⊂ S and we claim that Ci, Ci+1 and S̄ form
a 3-cycle. Indeed Ci ∩ Ci+1 ∩ S = Ci ∩ Ci+1 6= ∅, v ∈ S \ (Ci ∪ Ci+1),
Ci \ (Ci+1 ∪ S) = Ci \ S 6= ∅ by our assumption, and similarly
Ci+1 \ (Ci ∪ S) 6= ∅.

Claim 2. For all i,
(

S \ (Ci−1 ∪ Ci+1)
)

∩ Ci = ∅. If not (see Figure 11,
(b)), we have a comb with handle Ci and teeth Ci−1, Ci+1 and S.
Indeed,

[

Ci∓1 \ (Ci±1 ∪ S)
]

∩ Ci = [Ci∓1 \ S] ∩ Ci 6= ∅ by claim 1,
[

S \ (Ci−1 ∪ Ci+1)
]

∩ Ci 6= ∅ by assumption,
[

Ci∓1 \ (Ci±1 ∪ S)
]

∩
Ci = [Ci∓1 \ S] ∩ Ci ⊇ (Ci∓1 ∩ Ci∓2) \ S 6= ∅ by claim 1, and
v ∈

[

S \ (Ci−1 ∪ Ci+1)
]

∩ Ci.
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Fig. 11. Cases in the proof of Lemma 11.

Claim 3. For all i, S is disjoint from Ci. If not, there exists i with
S ∩ Ci 6= ∅. By Claim 2, ∅ 6= S ∩ Ci = S ∩ Ci ∩ (Ci−1 ∪ Ci+1) =
(S ∩ Ci ∩ Ci−1) ∪ (S ∩ Ci ∩ Ci+1). Thus, S ∩ Cl−1 ∩ Cl 6= ∅ for l = i
or l = i + 1. This implies that Cl−1, Cl and S̄ form a 3-cycle (see Fig-
ure 11, (c)) since v ∈ S\(Cl−1∪Cl), Cl\(Cl−1∪S) ⊇ (Cl∩Cl+1)\S 6= ∅
by claim 1 and Cl−1 \ (Cl ∪S) ⊇ (Cl−1 ∩Cl−2)\S 6= ∅ also by claim 1.

This completes the proof of the lemma.

Lemma 12. Consider a family F of sets with a connected cross graph
that does not contain any 3-cycle or comb. Let S ∈ F contain an inside
element v, and let C1, . . . , Ck be a cycle for v. Then there exists i such that
Ci ⊂ S.

Proof. From Lemma 11, assume that S is disjoint from all Ci’s. Since
the cross graph is connected, there exists a path in the cross graph from
S to one of the Ci’s. Take a shortest path from S to one of the Ci’s and
consider the last two sets P and Q on it (P might be S), see Figure 12.
We therefore have P disjoint from all Ci’s, Q crossing one of them, and P
and Q crossing. By Lemma 11 applied to Q and Q̄, we derive that Q ⊃ Cs

for some s and that Q is disjoint from Ct for some t. Therefore, we can
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find two non-consecutive (and hence disjoint) sets Ci and Cj which both
cross Q. However, this is a contradiction since we now have three sets, Ci,
Cj and P , all disjoint and all crossing Q, which therefore form a comb.

Fig. 12. Setting in the proof of Lemma 12.

Proposition 10 now follows straightforwardly from Lemma 12. We now
need to consider the intersection of two sets in our family; this will be useful
both for showing (ii) that sets having the same intersection with O form
a chain, and (iii) that inside elements can be placed appropriately in the
interior of the polygon. Throughout the rest of this section, we assume that
F ⊂ 2V is a symmetric family of sets with a connected cross graph that
does not contain any 3-cycle or comb. For brevity, the assumption will not
be stated in every statement.

Proposition 13. Let S1, S2 be two sets in F with S1∩S2 6= ∅ and minimal
in the following sense: there are no S3, S4 ∈ F with S3 ⊆ S1, S4 ⊆ S2 and
∅ 6= S3 ∩S4 6= S1 ∩S2. Then either S1 ∪S2 = V or S1 ∩S2 ⊆ O, i.e. S1 ∩S2

only contains outside elements.

Proof. Assume that S1 ∩S2 contains an inside element v, corresponding to
a cycle C1, . . . , Ck. We would like to show that S1 ∪ S2 = V . By Lemma
12 applied to S1 and S2, we know the existence of Cs ⊂ S1 and Ct ⊂ S2.
We claim that Cs ⊆ S1 \S2; if not, replacing S1 by Cs would contradict the
minimality of S1, S2 as Cs ∩ S2 ( S1 ∩ S2. Similarly, Ct ⊆ S2 \ S1.

Let p and q be such that Cp+1, . . . , Cs, . . . , Cq−1 ⊆ S1 \ S2, but Cp 6⊆
S1 \ S2 and Cq 6⊆ S1 \ S2. Since p and q cannot be consecutive (because of
the existence of t), we have that Cp and Cq are disjoint. Moreover, because
of minimality, we also have that Cp 6⊂ S1 and Cq 6⊂ S1. The fact that
Cp crosses Cp+1 ⊆ S1 \ S2 implies that (a) Cp ∩ (S1 \ S2) 6= ∅ and (b)
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S1 \ (S2 ∪ Cp) 6= ∅, and the same holds for Cp replaced with Cq (and Cp+1

replaced with Cq−1).

We consider two cases.

1. Assume first that Cp \ (S1 ∪S2) 6= ∅. If Cq ∩ (S2 \S1) 6= ∅ then Cq, S1

and S2 would form a 3-cycle, a contradiction: (S1 ∩ Cq) \ S2 6= ∅ by
(a) for Cq, (S2 ∩ Cq) \ S1 6= ∅ by assumption, (S1 ∩ S2) \ Cq 6= ∅ as it
contains v, and S1 ∪ S2 ∪ Cq ⊇ Cp \ (S1 ∪ S2) 6= ∅ since we assumed
it.

Thus we can assume that Cq ∩ (S2 \ S1) = ∅, which implies that
Cq \ (S1 ∪S2) = Cq \S1 6= ∅. We now claim that the teeth Cp, Cq and
S2 together with the handle S1 form a comb, a contradiction. Indeed,
the following six sets are non-empty:

•
(

Cp \ (Cq ∪ S2)
)

∩ S1 = Cp ∩ (S1 \ S2) 6= ∅ by (a),

• similarly for
(

Cq \ (Cp ∪ S2)
)

∩ S1,

•
(

S2 \ (Cp ∪ Cq)
)

∩ S1 as it contains v,

•
(

Cp \ (Cq ∪ S2)
)

∩ S1 = Cp \ (S1 ∪ S2) 6= ∅ by our assumption,

•
(

Cq \ (Cp ∪ S2)
)

∩ S1 = Cq \ (S1 ∪ S2) 6= ∅ as we have derived,

•
(

S2 \ (Cp ∪ Cq)
)

∩ S1 = S2 \ (S1 ∪ Cp ∪ Cq) = S2 \ (S1 ∪ Cp) ⊇
Ct\Cp 6= ∅ (the second equality following from Cq∩(S2\S1) = ∅).

2. We can therefore assume that Cp ⊆ (S1∪S2) and Cq ⊆ (S1∪S2). Now,
S1, S2 and Cp (or Cq) form a 3-cycle (v ∈ S1∩S2 \Cp, Cp∩S1 \S2 6= ∅
by (a), Cp ∩ S2 \ S1 = Cp \ S1 6= ∅) unless S1 ∪ S2 = V , proving the
result.

Corollary 14. Let S1, S2 be two sets in F with S1 ∩ S2 6= ∅. Then either
S1 ∪ S2 = V or S1 ∩ S2 ∩ O 6= ∅.

The corollary follows from Proposition 13 by considering a minimal pair
(S3, S4) within (S1, S2).

As a side remark, Corollary 14 implies that if there exists an inside
element v then we must have at least 4 outside elements; a cycle C1, . . . , Ck

for v (where k ≥ 4) shows the existence of outside elements in each Ci∩Ci+1.
On the other hand, if we have no inside element and fewer than 4 outside
elements then we must have |V | = |O| = 2 as a family on 3 elements could
not have a connected cross graph.

We can also deduce from Corollary 14 that sets with the same intersec-
tion with O form a chain.
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Proposition 15. Let A ⊆ O, and let C = {S ∈ F : S ∩ O = A}. Then C is
a chain, i.e. the members of C can be ordered such that S1 ⊂ S2 ⊂ · · · ⊂ Sp.

Proof. Consider any two members S and T in C, and let S\T 6= ∅ (if S ⊆ T
then simply exchange S and T ). By applying Corollary 14 to S and T , we
obtain that S ∪ T = V , i.e. T ⊆ S. As this is true for any two sets in C, we
have that C is a chain.

What remains now is to show that any inside element v can be placed
in one of the cells of P \

{

ℓ(S) : S ∈ F
}

. Fix an inside element v, and
let Fv = {S ∈ F : v ∈ S}. For any S ∈ F , let R(S) be the intersection
of the interior of the polygon with the open halfplane on the left of the
line through aS and aS (i.e. the halfplane already containing the elements
S ∩ O). To prove that v can be placed adequately, we need to prove that
∩S∈Fv

R(S) 6= ∅. Interestingly, this is an implication of Helly’s theorem in
2 dimensions (see e.g. [14]):

Theorem 16 (Helly). Let a collection of convex subsets of Rd have the
property that any collection of up to d + 1 of them have a non-empty
intersection. Then all of them have a common intersection.

To apply Helly’s theorem, we first consider the intersection of two such
regions, and then show that the intersection of three regions essentially
reduces to the intersection of two regions. In the proofs below, cl(·) denotes
the closure operator.

Proposition 17. Let S1, S2 ∈ Fv. Then R(S1) ∩ R(S2) 6= ∅.

Proof. If S1∪S2 = V then, by Proposition 9, the diagonals ℓ(S1) and ℓ(S2)
do not cross. If R(S1) and R(S2) were disjoint then the fact that S1 ∪ S2

contains all outside elements would imply that S1 and S2 have identical
intersections with O. But this case was taken care of when we introduced
additional polygon vertices, as we made sure that if S1 ∩ O = S2 ∩ O
and S1 ∩ S2 6= ∅ then R(S1) ∩ R(S2) 6= ∅. In fact, R(S1) ∩ R(S2) is a
strip extending between ℓ(S1) and ℓ(S2); more formally, ℓ(Si) ⊂ cl

(

R(S1)∩
R(S2)

)

for i = 1, 2.

If S1∪S2 6= V then Corollary 14 implies that S1∩S2 contains an outside
element w, and the result follows trivially as the cell containing w will be
in R(S1) ∩ R(S2).
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Finally, we consider the intersection of 3 regions defined by sets in Fv.

Proposition 18. Let S1, S2, S3 ∈ Fv. Then R(S1) ∩ R(S2) ∩ R(S3) 6= ∅.

Proof. If S1 ∩ S2 ∩ S3 contains an outside element, we are done. Thus, we
assume that S1 ∩ S2 ∩ S3 ∩ O = ∅. We consider two cases.

Case 1. For every pair (i, j), Si ∪ Sj 6= V . In this case, Corollary 14 im-
plies that Tij = Si ∩ Sj ∩O 6= ∅ for 1 ≤ i < j ≤ 3. As the intersection
of any two of the Tij ’s is empty (S1∩S2∩S3∩O = ∅), we have that the
three sets Si−1∩Si+1 \Si are non-empty for i ∈ {1, 2, 3}. As S1, S2, S3

do not form a 3-cycle, we must have that S1 ∪ S2 ∪ S3 = V . We also
know that S1, S2, S3 do not form a 3-cycle, and as v /∈

⋃

i Si, we have
that Si ∩ Sj \ Sk = ∅ for some permutation i, j, k of {1, 2, 3}. The
fact that

⋂

l Sl = ∅ then implies that Si ∩Sj = ∅, i.e. that Si ∪Sj = V
contradicting our assumption.

Case 2. Si ∪ Sj = V for some i, j ∈ {1, 2, 3}, i 6= j. As in the first part
of the proof of Proposition 17, we derive that both diagonals ℓ(Si)
and ℓ(Sj) are in cl

(

R(Si) ∩ R(Sj)
)

. Let k be the remaining index.
If ℓ(Sk) crosses either ℓ(Si) or ℓ(Sj) then a segment of ℓ(Sk) is in
cl

(

R(S1)∩R(S2)∩R(S3)
)

showing non-emptyness of the intersection.
On the other hand, if ℓ(Sk) crosses neither ℓ(Si) nor ℓ(Sj) then either
R(Sk) ⊇ R(Si) ∩ R(Sj) (and we are done) or R(Sk) ∩ R(Si) = ∅ or
R(Sk) ∩ R(Sj) = ∅. In these latter cases, we obtain a contradiction
from Proposition 17.

Helly’s theorem thus shows that every inside element can be placed in
one of the cells. As we did not make any assumptions on the position
of the vertices a1, . . . , aq (except that they are in convex position), the
polygon representation obtained is deformable, and this completes our proof
of Theorem 2.

We now state a few more properties of the polygon representation. First,
we can strengthen Proposition 9.

Proposition 19. Consider a symmetric family with a connected cross graph
and no 3-cycles or combs, and consider its deformable polygon representa-
tion. Let S1, S2 ∈ F . Then the following are equivalent:

1. the diagonals ℓ(S1) and ℓ(S2) do not cross,

2. the sets S1 ∩ O and S2 ∩ O do not cross in O,

3. the sets S1 and S2 do not cross.
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Indeed, Proposition 9 says that 1. and 2. are equivalent, 3. always im-
plies 2., and 1. implies 3. simply by the existence of the polygon represen-
tation.

In Proposition 15, we have shown that sets with the same intersection
with O form a chain, and this was the basis for introducing new polygon
vertices after having placed the outside elements. We now show that this
can only happen if we have 4-cycles.

Proposition 20. If S1, S2 ∈ F with S1 6= S2 and S1 ∩ O = S2 ∩ O then F
contains a 4-cycle.

Proof. By Proposition 15, we can assume that S1 ⊂ S2. Let v ∈ S2 \ S1;
v must be inside as (S2 \ S1) ∩ O = ∅. Let C1, . . . , Ck be a cycle for v.
Remember that O ⊆ ∪iCi and that Ci ∩ Ci+1 ∩ O 6= ∅ (by Corollary 14).
Thus, there is an index i so that Ci contains elements of both A and O \A,
where A = S1∩O = S2∩O. If Ci contains all elements of A then Ci and S2

do not cross in O (as S2∩O = A), and by Proposition 19, they do not cross
(in V ); thus either S2 ⊆ Ci or Ci ⊆ S2. This is a contradiction as v ∈ S2\Ci

and S2∩O ( Ci∩O. Therefore, Ci crosses S1 and S2. Similarly, this implies
that there exists another index j such that Cj crosses S1 and S2. If i and
j are consecutive then we have a 3-cycle Ci, Cj and S1, a contradiction.
Otherwise, we have a 4-cycle composed of Ci, S1, Cj and S2.

If we have a chain S1 ⊂ · · · ⊂ Sk with S1 ∩ O = Sk ∩ O, we say that
the inside elements in Sk \ S1 are sandwiched by this chain. The next
proposition shows that any inside element can be sandwiched by at most
2 chains; otherwise, we would have a 3-cycle, a contradiction. This will
be useful when establishing a tight bound on the size of families with no
3-cycles or combs in Proposition 26.

Proposition 21. For v ∈ V , let A =
{

{A, O \A} : ∃ S1, S2 ∈ F s.t. v /∈ S1,
v /∈ S2, S1 ∩ O = A, and S2 ∩ O = O \ A

}

. Then |A| ≤ 2.

Proof. Assume on the contrary that a given v ∈ V is sandwiched by 3
chains. Thus, we have Sik ∈ F for i = 1, 2, 3 and k = 1, 2 with v /∈ Sik for
all i and k, Si1 ∩ O = Ai for all i, Si2 ∩ O = O \ Ai for all i, and the 6 sets
Ai’s and O \Ai’s are all distinct. Furthermore, possibly exchanging Si1 and
Si2 (replacing Ai by O \Ai), we can assume that w ∈ A1 ∩A2 ∩A3 for some
w ∈ O.
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We claim that, for any i, j ∈ {1, 2, 3} with i 6= j, Ai and Aj cross in O.
Otherwise, suppose that Ai ⊂ Aj . Applying Proposition 19 to Si2 and Sj1

(recall that Si2 ∩ O = Ai and Sj1 ∩ O = Aj , we get that Si2 ⊂ Sj1, a
contradiction as v ∈ Si2 \ Sj1.

Therefore, the Ai’s are pairwise mutually crossing in O and correspond
all to circular intervals of O containing w. This means that their start
elements (of their circular interval) in O are distinct, so are their end
elements, and these elements are ordered in the same way among the 3 sets.
Say that A2 corresponds to the middle interval. Then A1, O \ A2 and
A3 are such that the intersection of any two of them minus the third one
is non-empty. This implies that S11, S22 and S31 form a 3-cycle for v, a
contradiction.

4. Mincuts and Near-Mincuts

In this section, we show that the main configurations discussed in the pre-
vious sections do not exist for families of cuts of sufficiently small value
compared to the edge-connectivity. In particular, we show that each con-
nected component of the cross graph of 6/5-near-mincuts has a deformable
polygon representation. Recall that λ denotes the edge-connectivity and an
α-near-mincut is a cut whose value is (strictly) less than αλ.

In what follows, let d(X, Y ) denote the total weight of edges connecting
X, Y ⊂ V in a weighted graph G = (V, E). We first show that sufficiently
near-mincuts have no short cycles as defined in Definitions 1 and 3.

Lemma 22 (Excluded Cycles). Let k δ-near-mincut sides Ci for i ≤ k form
a k-cycle. Then δ > 1 + 1/k.

Proof. For k = 3 the result follows from 3-way submodularity of the cut
function, see Lovász [13], exercise 6.48 (c):

3δλ > d(C1) + d(C2) + d(C3) ≥ d(C1 ∩ C2 \ C3) + d(C1 ∩ C3 \ C2)

+ d(C2 ∩ C3 \ C1) + d(C1 ∪ C2 ∪ C3) ≥ 4λ.

3-way submodularity can be established by observing that the contribution
of any edge is at least as large on the left-hand-side as on the right-hand-
side.
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For k ≥ 4, a similar edge counting argument gives:

d(∪iCi) +
∑

i≤k

d(Ci ∩ Ci+1) ≤
∑

i≤k

d(Ci).

Indeed, (i) an edge that contributes to the left-hand-side also contributes to
the right-hand-side,(ii) no edge contributes more than twice to the left-hand-
side, and (iii) an edge that contributes twice to the left-hand-side must be
either between some Ci∩Ci+1 and ∪jCj or between Ci∩Ci+1 and Cj ∩Cj+1

for i 6= j; in all cases, it contributes at least twice to the right-hand-side.
Since d(Ci) < δλ, d(Ci ∩ Ci+1) ≥ λ for i ≤ k and d(∪iCi) ≥ λ, the above
inequality implies that δ > 1 + 1

k as required.

In particular, 6/5-near-mincuts may not contain k-cycles for k ≤ 5, 4/3-
near-mincuts have no 3-cycles, and mincuts contain no cycles at all.

Lemma 23 (Excluded Combs). There are no four 6/5-near-mincut sides
T1, T2, T3 and H which form a comb as defined in Definition 2.

Proof. Definition 2 gives 3 disjoint and nonempty subsets C1, C2 and C3

of H: Either Ci is H ∩
(

Ti \ (Ti−1 ∪ Ti+1)
)

or Ci is H ∩ (Ti−1 ∩ Ti+1 \ Ti).
Similarly, it gives 3 disjoint nonempty subsets D1, D2 and D3 of H. By a
counting argument, one observes that

(2) d(T1) + d(T2) + d(T3) + 2d(H)

≥ d(C1) + d(C2) + d(C3) + d(D1) + d(D2) + d(D3).

Indeed, either an edge does not cross H and the counting argument is similar
to the derivation of 3-way submodularity, or the edge crosses H in which
case its multiplicity is at most 2 on the right-hand-side and at least 2 on
the left-hand-side. Inequality (2) now implies that 5δλ > 6λ.

We have thus derived that the symmetric family of 6/5-near-mincut sides
does not contain any comb and any k-cycles for k ≤ 5. Thus each connected
component of its cross graph admits a deformable polygon representation.
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5. Tree Hierarchy

In this section, we show that the connected components of the cross graph
of any symmetric family F ⊆ V of sets can be arranged in a tree struc-
ture. We first derive it for families with no combs and cycles, and in so
doing, rederive the tree structure of a (slightly modified) cactus representa-
tion. Then we show that the tree structure depends only on the connected
components of the cross graph and thus can be applied to arbitrary sym-
metric families, including those having deformable polygon representations
for each connected component of the cross graph. This tree structure will
then be used to derive bounds on the size of the representation and (in the
next section) on the cardinality of symmetric families with no 3-cycles or
combs.

To fix notation, let F1, . . . ,Fq represent the sets in each of the connected
components of the cross graph. Also, for any 1 ≤ i ≤ q, let Pi denote the
partition of V induced by Fi, i.e. the members of Pi correspond precisely to
the atoms of Fi as defined at the beginning of Section 3. Observe that, for
any i, the number of atoms in Pi can either be 2 or greater or equal to 4.
Indeed, if |Pi| was 3 the corresponding pairs of sets would not be crossing.

The tree structure on the connected components essentially follows from
laminarity. It is similar to the usual cactus representation for the mincuts
of a graph, except that, there, the cuts represented by a cycle of the cactus
do not quite form a single connected component of the cross graph. Indeed
the cut corresponding to a single atom (i.e. two consecutive edges of the
cycle) does not cross any of the other cuts represented by the cycle and
thus do not belong to the same connected component of the cross graph.
Here, however, we redefine the cactus representation and assume that the
cuts represented by a cycle of length k with k 6= 2 of the cactus are the cuts
obtained by removing two non-consecutive edges of the cycle. The rest of
the definition is unchanged. It is rather easy to see using classical arguments
that the mincuts of a graph admit a cactus representation for this slightly
modified notion of a cactus representation. For completeness, we provide
here a somewhat different proof, of a geometric nature as in the rest of this
paper. For generality and to be able to later apply it to our deformable
polygons, we state it in terms of symmetric families with no cycles or combs
(recall that from Lemmas 22 and 23, mincut sides do not have any cycles
or combs).
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Proposition 24. Let F ⊆ 2V be a symmetric family of sets with no cycles
and no combs. Let Fi be the connected components of its cross graph and
let Pi be the partition of V corresponding to the atoms of Fi. Then there
exists a cactus H = (N, A) and a mapping φ : V → N such that

1. H has no cycle of length 3,

2. there is a 1-to-1 correspondence between the connected components
Fi of the cross graph and the cycles Ci of H,

3. the removal of the edges of Ci = u1 − u2 · · · − uk − u1 break H
into k (depending on i) connected components, A1, . . . , Ak ⊂ N where
uj ∈ Aj such that Pi =

{

φ−1(Aj) : 1 ≤ j ≤ k
}

,

4. for each set S ∈ F , there is a unique cycle Ci in H and two edges
of Ci which are non-consecutive if the cycle is not of length 2, whose
removal partitions N into U and N \ U with S = φ−1(N).

To complete the proof that mincuts admit a (modified) cactus repre-
sentation, it remains to show that the removal of any 2 edges of a cycle
– non-consecutive if the cycle has length different from 2 – gives a min-
cut of G. This follows from submodularity of the cut function (union or
intersection of crossing mincuts is a mincut); this is left to the reader.

Proof. From Proposition 6 and Lemmas 22 and 23, we know that F is
a circular representable hypergraph. Consider one such circular ordering
v1, . . . , vn where n = |V |. If there are several, take one in which the
elements in each atom of F appear consecutively in the ordering (one could
for example first shrink the atoms of F).

We provide a geometric construction of the cactus. Take a circle and
divide it into n arcs representing the vertices in the circular ordering. For
each pair of complementary sets S, S, draw the corresponding chord that has
S on one side and S on the other. Observe that two chords corresponding
to S1 and S2 will cross in the geometric sense (i.e. will have an intersection
in their relative interior) if and only if the sets S1 and S2 cross.

Consider any of the connected components of the cross graph, say Fi

with partition Pi. The chords defining Fi connect k = |Pi| points on the
circle, say p1, p2, . . . , pk, and the arcs between these points correspond to
the sets in Pi. See Figure 13. Let Ri be the convex hull of these points. The
fact that sets from different components do not cross imply that the chord
for a set of a different component Fj can only intersect Ri on its boundary.
This means that the relative interiors of any two such regions, Ri and Rj ,
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will be disjoint. Replace all the chords corresponding to Fi by a star with
root ri and k spokes connected to p1, . . . , pk. To make sure that the stars
for different components do not cross, place ri in the relative interior of Ri.
This gives a plane graph D with the outside region delimited by our circle.
Now define H to be its dual graph except that we do not create a node of H
for the outside face of D. The nodes of H corresponding to the inside faces
of D along the circle are labelled with the atoms of F . The node set N of
H is thus the set of bounded faces of D. Observe that H will be the union
of cycles, one for each vertex ri. Furthermore, every edge is in precisely one
cycle; thus, H is a cactus. All the claims in the statement of the Proposition
follow easily from the construction itself.

This construction of this modified cactus representation has slightly
more empty nodes than the usual constructions; the size is still linear as
shown below.

Proposition 25. The modified cactus representation for a symmetric family
F ⊆ 2V with no cycles and no combs has at most 3n− 4 nodes and at most
5n − 8 edges where n = |V | ≥ 2.

Proof. Let Np(n) and Ep(n) resp. represent the maximum number of nodes
and edges resp. of our cactus representation for families with at most p non-

trivial connected components, where we define a connected component as
non-trivial if it contains more than one pair of complementary sets. We
proceed by induction on p.

If F has no crossing sets (p = 0) then the number of chords in our
construction is at most 2n−3 (the maximum cardinality of a laminar family
with no complementary sets). Each chord will lead to 2 edges of the cactus
and the cactus will be a tree of cycles of length 2. Thus, its number of edges
will be at most E0(n) = 4n− 6 ≤ 5n− 8 for n ≥ 2 and the number of nodes
will be at most N0(n) = 2n − 2 ≤ 3n − 4.

Suppose F has p non-trivial connected components for p > 0. Let Fi

be a connected component of the cross graph which induces a partition
Pi with k ≥ 4 atoms. Let n1, . . . , nk be the cardinalities of these atoms.
Geometrically, we can partition F \Fi into k symmetric families G1, . . . ,Gk

in a natural way: for the jth family Gj , we only keep those chords that are
on the side of [pj , pj+1] opposite to Ri. Observe that [pj , pj+1] might be one
of the chords represented by this family. Collectively, the representations for
the Gj ’s account for all nodes and edges of the representation for F , except
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Fig. 13. Obtaining a cactus. (a): The cyclic ordering. The sets are represented by
chords. There are 12 connected components, the dashed one, the dotted one, and 10

others with only one chord. The dashed component connects p1, . . . , p5. (b): Replacing
every component by a star with root ri. (c): Inside faces along the circle are labelled

with the atoms of F , and the dual graph is the cactus.
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for the k edges of the cycle corresponding to Fi. Gj has at most nj + 1
atoms (and fewer non-trivial components), and by induction, we therefore
get that:

Np(n) ≤
k

∑

j=1

Np−1(nj + 1) ≤
∑

j

(3nj − 1) = 3n − k ≤ 3n − 4

and

Ep(n) ≤
k

∑

j=1

Ep−1(nj + 1) + k ≤
∑

j

(5nj − 3) + k = 5n − 2k ≤ 5n − 8,

since k ≥ 4.

The bounds given in Proposition 25 are tight whenever n is even, and
this is achieved when we have (n − 1)/2 disjoint cycles of length 4 in the
cactus linked by cycles of length 2, see Figure 14.

Fig. 14. A cactus with 3n − 4 nodes and 5n − 8 edges for a symmetric family with no
cycles or combs defined on a ground set of size n = 2k.

This cactus representation provides a way to combine representations
(i.e. cycles on partitions of V ) for each connected component of the cross
graph in a tree structure in which certain atoms of different connected
components (i.e. cycles) are identified (those corresponding to the same
node of the cactus). To highlight the tree T (and get rid of the cycles),
we can replace each cycle of the cactus H by a star rooted at a new node
representing this connected component of the cross graph. In other words,
the nodes of T consist of (i) one node in C for each connected component
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of the cross graph and also (ii) one node in N for each node of the cactus;
the latter ones correspond to atoms that have been identified from one or
several connected components of the cross graph. T has an edge between
a node c in C and a node u in N if one of the atoms of the connected
component corresponding to c is associated with node u of the cactus.

This can be generalized to any symmetric family (independently of
whether each connected component of the cross graph can or cannot be
represented by polygons). For any symmetric family F , consider the con-
nected components Fi of the cross graph and let Pi be the atoms of Fi.
Now, for each i, arbitrarily choose a cyclic ordering on the atoms in Pi and
define Gi to be the family of sets (with the same atoms as Fi) correspond-
ing to cyclic intervals containing at least 2 and at most ki − 2 of the atoms
in Pi, where ki = |Pi| ≥ 4 is the number of atoms of Fi; if ki = 2 (i.e.
the component is trivial), we simply let Gi = Fi. Observe that the family
G = ∪Gi has no cycles or combs since (i) the connected components of the
cross graph of G are still the Gi’s, (ii) any cycle or comb would need to be
contained within a connected component of the cross graph and (iii) the
Gi’s have no combs or cycles by construction. By Proposition 24, the family
G has a cactus representation, and this means that atoms of different con-
nected components of the cross graph of G, and thus of F , are identified.
This gives a tree T for G and thus also for F . If each connected component
of the cross graph has a deformable polygon representation, these polygon
representations together with the tree T form our representation as a tree

of deformable polygons.

6. Size of the Family

In this section, we deduce from the representation as a tree of deformable
polygons that any symmetric family of sets F ⊂ 2V with no 3-cycles and
no combs has at most

(

n
2

)

complementary pairs where n = |V |. For near-
mincuts, this shows that there are at most

(

n
2

)

6/5-near-mincuts, although
this is known even for 4/3-near-mincuts [19, 9] and a direct proof is simpler.
See also [10] for a proof that there are at most O(n2) 3/2-near-mincuts.

Proposition 26. Let F ⊆ 2V \ {∅, V } be a symmetric family of sets with
no 3-cycles or combs. Then |F| ≤ n(n − 1) where n = |V |, i.e. the number
of complementary pairs is at most

(

n
2

)

.
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Proof. We will first focus on a connected component Fi of the cross graph
with k ≥ 4 atoms, and show that our construction of a deformable polygon
gives rise to at most k(k − 3)/2 diagonals. Let kout ≥ 4 and kin be the
number of outside and inside atoms respectively; thus k = kout + kin. If
Fi has no 4-cycles then our polygon has kout sides (see Proposition 20) and
its number of diagonals is at most kout(kout − 3)/2 ≤ k(k − 3)/2. If we
have 4-cycles then by Proposition 21, the number of diagonals is at most
kout(kout−3)/2+2kin ≤ k(k−3)/2 as (kout+1)(kout−2)/2−kout(kout−3)/2 ≥
2 for kout ≥ 3. Thus, a connected component of the cross graph on k ≥ 4
atoms has at most k(k − 3)/2 diagonals.

Consider now the various connected components of the cross graph and,
as in the proof of Proposition 25, we proceed by induction on p, the num-
ber of non-trivial connected components. Let Sp(n) denote the maximum
number of complementary pairs for families with at most p non-trivial com-
ponents. If p = 0 then we have S0(n) ≤ 2n− 3 ≤

(

n
2

)

complementary pairs,
see Proposition 25. If p > 0, let Fi be one of those non-trivial components
on k ≥ 4 atoms with cardinalities n1, . . . , nk where n =

∑k
j=1 nj . We use

the same notation as in Proposition 25. From the tree structure, we get
that:

Sp(n) ≤
k

∑

j=1

Sp−1(nj + 1) +
k(k − 3)

2
≤

k
∑

j=1

(

nj + 1

2

)

+
k(k − 3)

2

≤ (k − 1) +
(n − k + 2)(n − k + 1)

2
+

k(k − 3)

2

=

(

n

2

)

− (n − k)(k − 2) ≤

(

n

2

)

,

the third inequality follows from the fact that the maximum of a convex
function over nj ≥ 1 for j = 1, . . . , k and

∑

j nj = n is attained for all but
one nj equal to 1.

We should point out that the existence of a (non-deformable) polygon
representation is not enough to prove the bound of

(

n
2

)

; for example, all
cuts of K4 admit a representation as a tree of (non-deformable) polygons
although there are 7 >

(

4
2

)

of them. One can, however, prove a slightly
weaker bound by observing that a connected component of the cross graph
on k atoms has at most

(

k
2

)

complementary pairs (by Schläfli’s result)
and the same argument as in the proof above gives an overall bound of
(

n
2

)

+ 2n − 4.
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7. Conclusion

We have derived a representation for symmetric families that do not contain
3-cycles or combs, and this applies to the family of 6/5-near-mincuts in
a graph. We refer the reader to the Ph.D. thesis [3] of the first author
for algorithmic issues and applications of this representation. It would be
interesting to find a representation for families that may contain combs but
do not have 3-cycles; this would allow to represent 4/3-near-mincuts.
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