
An Algorithmic Framework for Wireless
Information Flow

Michel X. Goemans
Department of Mathematics,

MIT,
Cambridge, USA.

Email: goemans@math.mit.edu

Satoru Iwata
RIMS,

Kyoto University,
Kyoto, Japan.

Email: iwata@kurims.kyoto-u.ac.jp

Rico Zenklusen
Institute for Operations Research,

ETH Zurich,
Zurich, Switzerland.

Email: rico.zenklusen@ifor.math.ethz.ch

Abstract—We consider the wireless relay network model as in-
troduced by Avestimehr, Diggavi and Tse [2] for approximating
Gaussian relay channels and show that it is a special case of
a more abstract flow model that we introduce in this paper.
This flow model is based on linking systems, a combinatorial
structure with a tight connection to matroids. A main advantage
of this flow model is that properties and algorithms can
easily be derived from existing theory on matroids and linking
systems. In particular we show a max-flow min-cut theorem
and submodularity of cuts. Furthermore, efficient algorithms
for matroid intersection or for matroid partition can be used
for finding a maximum flow and a minimum cut. Thus, this
approach can profit from well-established matroid (intersection
or partition) algorithms, leading to faster algorithms for large
capacity networks. Another advantage of our approach is that it
is easy to extend or adapt it to similar problems. In particular,
the algorithm we present for finding maximum flows can easily
be adapted to find a maximum flow with minimum costs when
costs are introduced on the inputs and outputs of the relays.

I. INTRODUCTION

We consider the deterministic wireless relay channel model
as introduced by Avestimehr, Diggavi and Tse [2], which
we call the ADT model. This model incorporates two key
features of wireless relay networks, namely broadcasting
and superposition and it can be used as a deterministic
approximation to Gaussian relay channels. The signals are
considered to be elements of a finite field and the interac-
tions between the signals are assumed to be linear. A main
advantage of the ADT model compared with the Gaussian
model is its relatively simple structure, which makes it easier
to analyze. In particular, Avestimehr, Diggavi and Tse have
shown [3] a max-flow min-cut theorem for the ADT model.
Recently, Amaudruz and Fragouli [1] have presented an
efficient algorithm, based on augmenting paths, for finding
a maximum flow in an ADT model, i.e., a relay encoding
strategy that achieves the min-cut value. Both the max-flow
min-cut result as well as the efficient algorithm for finding an
encoding strategy are rather technical. In parallel to this work,
Sadegh Tabatabaei Yazdi and Savari [9] developed another
polynomial algorithm for finding a maximum flow in an ADT
model, which is based on an extended Rado-Hall transversal
theorem.

This work was partially supported by NSF contract CCF-0829878 and by
ONR grant N00014-05-1-0148.

In this article we introduce a new flow network, called linking
network, that generalizes the ADT model. Linking networks
consist of combined linking systems, a notion introduced by
Schrijver [10] in 1978 that has tight relations to matroids. An
important advantage of reducing the ADT model to linking
networks is that long-standing results on matroids and linking
systems can be used to derive properties of linking networks
and efficient algorithms, typically leading to clean results
with simple proofs. In particular, we show a max-flow min-
cut theorem and submodularity of the cut-value function; this
property allows us to find a minimum cut by applying a
standard algorithm for minimizing submodular functions. For
finding a maximum flow in a linking network, we present two
algorithms that reduce the problem to the matroid intersection
and partition problems. These problems are well-studied in
matroid theory and many efficient algorithms are known
to solve them. The algorithm presented by Amaudruz and
Fragouli [1] for finding a maximum flow in an ADT model
as well as an algorithm of Schrijver [10], which finds a
maximum flow in a linking network (Schrijver calls this the
cascading problem) can be seen as particular ways of solving
the matroid problems we present. The algorithms we derive
are considerably faster than previous algorithms on large-
capacity networks.

Using the linking network formulation of the ADT model
allows us to easily extend and adapt the results to similar
problems. In particular, the maximum flow algorithm can be
adapted to find a maximum flow with minimum cost when
costs are introduced on the inputs and outputs of the relays.
The approach presented in this paper can also be extended
to a capacitated network model by using polylinking systems
instead of linking systems. To simplify the presentation we
only consider the uncapacitated case where linking systems
are sufficient.

The article is organized as follows. In Section II, we recall
the ADT model. In Section III, the new flow model based
on linking networks is presented and we show why the ADT
model can be seen as special case of linking networks. In
Section IV, properties and algorithms for linking networks
are presented, including a max-flow min-cut theorem and
efficient algorithms based on matroid theory for finding a
maximum flow, a minimum cut and a minimum cost flow.



II. THE ADT MODEL

The ADT flow model was introduced in [2] as a linear
deterministic approximation of Gaussian relay channels in
a wireless setting. It takes into account broadcasting and
interference effects. The random noise of a Gaussian channel
is approximated by introducing between every pair of relays
a threshold on the number of bits that can be transmitted from
one relay to the other. A principal motivation for introducing
the ADT flow model was to approximately determine the
capacity of networked Gaussian channels. Whereas very little
is known of how to compute the capacity of nontrivial
combinations of Gaussian channels, in the ADT model the
capacity can be determined in polynomial time.
Given is a collection of relays N = {N1, . . . , Nq}, also
called nodes, each of which is a set of 2b vertices for some
global constant b ∈ N. For each node N ∈ N , its vertices are
partitioned into two groups of b vertices, called outputs and
inputs. For a node N i ∈ N , we denote by {vi

1, . . . , v
i
b} its

inputs and by {wi
1, . . . , w

i
b} its outputs. We call the set of all

vertices V , the set of all outputs O and the set of all inputs
I . The nodes are partitioned into layers T1, . . . , Tr, where
T1 = {N1} and Tr = {Nq}. The node N1 is called sender
and Nq is called receiver. The goal is to send signals in some
finite field Fp from the sender to the receiver. Every input
can send a signal to outputs of nodes in the next layer. How
the signals are sent from the inputs of nodes in one layer to
the outputs of the nodes in the next layer is described by a set
of arcs A ⊆ I ×O given as follows. For every pair of nodes
N i, N j such that N i is in the layer immediately preceding
the layer containing N j , a number nij ∈ {0, . . . , b} is given
and the arcs of A connecting inputs of N i to outputs of N j

are given by {(vi
1, w

j
b+1−nij

), . . . , (vi
nij
, wj

b)}. If nij = 0
then there are no arcs connecting inputs of N i to outputs of
N j . The constants nij represent the number of bits that relay
N j can receive from relay N i. Thus, a small value for nij

models that signals sent from relay N i to N j suffer a high
noise. We call the triple G = (V,A,N ) an ADT network.
See Figure 1 for an illustration of an ADT network.

Figure 1: Example of an ADT network with q = 6.
The rectangles represent nodes. The vertices contained
in the left half of each node are outputs and the ones
in the right half are inputs. In this example we have
n12 = 5, n13 = 2, n24 = 5, n25 = 3, n34 = 4, n35 =
2, n46 = 3, n56 = 4.

We denote by Ii the inputs in layer i and Oi the outputs in
layer i, i.e., Ii = I ∩ (∪N∈Ti

N), Oi = O ∩ (∪N∈Ti
N). See

Figure 2 for an illustration.

Figure 2: Representation of the output sets Oi and input
sets Ii.

Signals are sent in the following way. At each input w1
l of the

sender, a signal s ∈ Fp can be broadcast to the next layer.
The signal is sent to all outputs in the next layer that are
connected by an arc to w1

l . This models broadcasting, i.e.,
a signal in the wireless network cannot be directed towards
a single particular output but may reach other outputs as a
side effect. If an output receives signals from different inputs,
interference between the received signals happens which is
modeled as follows. The output receives the sum in Fp of
the incoming signals. Every node receiving signals at its
outputs can resend them over its inputs. A signal received
at a particular output can be resent over any input of the
same node. However, every input can be used at most once.
Not every output has to be linked to an input and thus not
every input has to be used. The assignment of inputs of a
given node to its outputs is called wiring. Finally, the receiver
receives at its outputs a set of linear combinations of the
signals sent by the sender. The signals have to be sent in
such a way that the receiver can decode the original signals,
i.e., if k signals are sent from the sender, then to properly
decode the signals, the receiver needs to receive k signals
that are linearly independent combinations (over Fp) of the
k signals sent by the sender. The task is to send the largest
number of decodable signals from the sender to the receiver.
As observed in [2], decodability of the signal does not depend
on the exact wiring inside the nodes but only on the set of
outputs and inputs that are used inside the nodes. Since the
exact wiring is not important, a flow in an ADT network
can be defined as the set of vertices used for receiving or
sending signals as follows. For some set U ⊆ V , we denote
by M [U ] ∈ F(U∩I)×(U∩O)

p the matrix such that for i ∈ U ∩I
and j ∈ U ∩ O, M [U ]ij = 1 if (i, j) ∈ A and M [U ]ij = 0
otherwise. A flow F in the ADT network G = (V,A,N) is
a subset of the vertices V such that:

i) For every node N ∈ N , |F ∩ N ∩ O| = |F ∩ N ∩ I|,
i.e., the number of used outputs in every node equals the
number of used inputs.

ii) The matrix M [F ] has full rank (in Fp).
The first condition makes sure that for every node N ∈ N , it



is possible to wire the signals received at its outputs N∩O∩F
to the inputs N∩I∩F . The second condition guarantees that
the signals received at the outputs F ∩Nq of the receiver are
linearly independent combinations of the signals sent by the
sender and thus are decodable. Since the network is layered,
the second condition can also be restated as a condition that
has to hold for every pair of consecutive layers.
ii’) For every i = 1, · · · , r−1, M [F ∩ (Ii∪Oi+1)] has full

rank.
The value of a flow F is measured by |F ∩N1| = |F ∩Nq|.
For finding a flow of maximum value in the ADT model,
Amaudruz and Fragouli give a combinatorial algorithm. The
running time is bounded by O(n|A|(φ∗)5), where φ∗ is the
capacity of the network, i.e, the maximum flow value [1,
Proposition 3.3].
In [2] the following notion of a source-destination cut was
introduced, which we call an ADT cut. An ADT cut is a set
C ⊆ V such that for every node N ∈ N , either N ⊆ C or
N∩C = ∅, and N1 ⊆ C, Nq∩C = ∅. With every ADT cut C
a value is associated which is given by

∑r−1
i=1 rank(M [(C ∩

Ii) ∪ (Oi+1 \ C)]). It is relatively easy to observe that the
value of any ADT cut is an upper bound on the value of
a maximum ADT flow. Furthermore, Avestimehr et al. [3]
show that the value of a minimum ADT cut equals the value
of a maximum ADT flow.

III. A NEW FLOW MODEL BASED ON LINKING SYSTEMS

Before introducing the new flow model based on linking
systems, we recall some results about matroids and linking
systems. For proofs and further information, see [12] for
matroids and [10], [11] for linking systems.

A. Preliminaries on matroids and linking systems

For k ∈ N, we use the notation [k] = {1, . . . , k}. Let S be
a finite set. For a subset A ⊆ S and x ∈ RS , we denote by
x(A) the sum of the components of x corresponding to A,
i.e., x(A) =

∑
a∈A x(a). A function f from the subsets of S

to the reals is called submodular if f(A∪B) + f(A∩B) ≤
f(A) + f(B) for all A,B ⊆ S.
Matroids: A matroid is a pair M = (S, I) where S is a finite
ground set and I ⊆ 2S is a nonempty family of subsets of
S which are called independent sets and have to satisfy the
following conditions:

i) If I ∈ I and J ⊆ I then J ∈ I,
ii) if I, J ∈ I with |I| > |J | then ∃z ∈ I\J with J∪{z} ∈
I.

The bases of a matroid are its maximal independent sets
and it is well-known that all bases of a matroid have the
same cardinality. To every matroid M = (S, I), a rank
function ρ : 2S → Z+ is associated; it is defined by
ρ(I) = max{|J | | J ⊆ I, J ∈ I}. The rank function
completely describes the underlying matroid since a set
I ⊆ S is independent if and only if |I| = ρ(I). The rank
function of a matroid can be shown to be submodular. An
important algorithmic result in matroid theory is that the
greedy algorithm allows to find an independent set of a
matroid that is maximum with respect to some given weight

c : S → R. Furthermore, for two matroids M1 = (S, I1)
and M2 = (S, I2) that share the same ground set, there are
efficient algorithms for finding a set of maximum weight that
is independent in both matroids; this is the weighted matroid
intersection problem. Similarly, there are efficient algorithms
to find a maximum weight common base of two matroids that
share the same ground set, respectively to determine that no
common base exists.
Linking systems and linking functions: Linking systems were
introduced by Schrijver [10]. They are functions that map
subsets of one finite ground set to subsets of another finite
ground set while preserving some useful structures. In this
work, linking systems are used to describe how signals can
be sent from one layer of inputs to the next layer of outputs
and for the wiring inside nodes. Two key examples of linking
systems are given just after the formal definition below.
A linking system is a triple (V1, V2,Λ), where V1 and V2 are
finite sets, called ground sets, and Λ ⊆ 2V1 × 2V2 such that
the following conditions are satisfied:

i) If (P1, P2) ∈ Λ, then |P1| = |P2|,
ii) if (P1, P2) ∈ Λ and Q1 ⊆ P1, then ∃Q2 ⊆ P2 with

(Q1, Q2) ∈ Λ,
iii) if (P1, P2) ∈ Λ and Q2 ⊆ P2, then ∃Q1 ⊆ P1 with

(Q1, Q2) ∈ Λ,
iv) if (P1, P2), (Q1, Q2) ∈ Λ, then ∃(R1, R2) ∈ Λ such that

P1 ⊆ R1 ⊆ P1 ∪Q1 and Q2 ⊆ R2 ⊆ P2 ∪Q2.
If two sets P1 ⊆ V1 and P2 ⊆ V2 satisfy (P1, P2) ∈ Λ then
we say that P1 is linked to P2 (by Λ). In the following we
give two examples of linking systems, which we later use
to model ADT flows. For proofs and further information,
see [10].

Example 1 (Linking systems induced by bipartite graphs).
Let G = (V1, V2, E) be an undirected bipartite graph and let
Λ ⊆ 2V1 ×2V2 be such that (P1, P2) ∈ Λ if and only if there
exists a matching M in G such that the set of vertices that
are adjacent to edges in M is P1 ∪P2. Then (V1, V2,Λ) is a
linking system.

Example 2 (Linking systems induced by matrices). Let F be
a field and A ∈ FV1×V2 be a matrix over the field F where V1

and V2 are two finite sets representing the rows and columns
of A. Let Λ ⊆ 2V1 × 2V2 such that (P1, P2) ∈ Λ if and only
if the submatrix of A generated by the rows P1 and columns
P2 has full rank. Then (V1, V2,Λ) is a linking system.

Notice that the definition of a linking system is symmetric
with respect to the two ground sets. For a linking system
(V1, V2,Λ) we denote by (V2, V1,Λ) the linking system
defined by Λ = {(P2, P1) | (P1, P2) ∈ Λ}.
To every linking system (V1, V2,Λ), a corresponding linking
function λ : 2V1 × 2V2 → R+ is associated that is defined by

λ(P1, P2) = max{|Q1| | Q1 ⊆ P1, Q2 ⊆ P2, (Q1, Q2) ∈ Λ}.

Thus, λ(P1, P2) is the maximum size of an element lying in
P1 that can be linked to an element lying in P2. A linking
function completely describes the underlying linking system
because two sets P1 ⊆ V1, P2 ⊆ V2 are linked if and only if
|P1| = |P2| and λ(P1, P2) = |P1|. In this article, we assume



that the linking function can be evaluated in polynomial time.
This is the case for all linking systems used in this paper.
The following proposition gives a characterization of linking
functions. This proposition as well as those following in this
section are proved in Schrijver [10].

Proposition 1. Let V1, V2 be two finite sets and let λ :
2V1 × 2V2 → Z+. Then λ is the linking function of a linking
system on ground sets V1 and V2 if and only if it satisfies the
following conditions for all P1, Q1 ⊆ V1 and P2, Q2 ⊆ V2.

i) λ(P1, P2) ≤ min{|P1|, |P2|},
ii) if Q1 ⊆ P1 and Q2 ⊆ P2 then λ(Q1, Q2) ≤ λ(P1, P2),

iii) λ(P1∩Q1, P2∪Q2)+λ(P1∪Q1, P2∩Q2) ≤ λ(P1, P2)+
λ(Q1, Q2).

The third condition in the above proposition is called bisub-
modularity. The following proposition shows that a linking
system can be seen as a particular way of representing a
matroid. This tight link between linking systems and matroids
allows to deduce many results for linking systems from
results in matroid theory.

Proposition 2. Let (V1, V2,Λ) be a linking system with
disjoint ground sets. Then the set BΛ = {P1 ∪ (V2 \ P2) |
(P1, P2) ∈ Λ} forms the set of bases of a matroid on the
ground set V1 ∪ V2.

For a linking system (V1, V2,Λ) with disjoint ground sets
we denote by MΛ the matroid corresponding to the bases
BΛ, and by ρΛ the rank function of MΛ. The following
proposition shows the relation between the rank function ρΛ

and the linking function λ.

Proposition 3. Let (V1, V2,Λ) be a linking system with
disjoint ground sets and with linking function λ. For P1 ⊆ V1

and P2 ⊆ V2,

ρΛ(P1 ∪ P2) = λ(P1, V2 \ P2) + |P2|.

Combining linking systems: Two linking systems that share
one of the ground sets can be chained together to obtain a
new linking system. This operation is called the product of
linking systems and is defined as follows.

Proposition 4. Let (V1, V2,Λ1) and (V2, V3,Λ2) be two
linking systems, with linking functions λ1 and λ2 and define

Λ1 ? Λ2 = {(P1, P3) ∈ 2V1 × 2V3 | ∃P2 ⊆ V2 with

(P1, P2) ∈ Λ1, (P2, P3) ∈ Λ2}.

Then (V1, V3,Λ1 ?Λ2) is again a linking system with linking
function

(λ1 ? λ2)(P1, P3) = min
P2⊆V2

{λ1(P1, P2) + λ2(V2 \ P2, P3)}.

B. Linking networks

Let r ≥ 2 be an integer, V1, . . . , Vr be finite disjoint
sets and let (Vi, Vi+1,Λi) be a linking system with linking
function λi for i ∈ [r − 1]. We call the tuple G = (V,Λ),
where V = (V1, . . . , Vr) and Λ = (Λ1, . . . ,Λr−1) a linking
network. The sets V1, . . . , Vr are called the layers of the
network G and elements of these sets are called vertices.

Furthermore, V1 is the source layer and its vertices are called
sources. Similarly, Vr is the destination layer and its vertices
are called destinations or sinks. A flow in a linking network,
or also simply called flow, is a tuple F = (F1, . . . , Fr)
with Fi ⊆ Vi for i ∈ [r] and satisfying (Fi, Fi+1) ∈ Λi

for i ∈ [r − 1]. The value of a flow F is defined by
ν(F ) = |F1|. Notice that by definition of a flow we have
|F1| = |Fi| for i ∈ [r]. A V1 – Vr cut in a linking
network, or also called source-destination cut or simply cut,
is a tuple C = (C1, . . . , Cr) such that Ci ⊆ Vi ∀i ∈ [r],
C1 = V1 and Cr = ∅. The value of a cut C is defined by
φ(C) =

∑r−1
i=1 λi(Ci, Vi+1 \ Ci+1). If there is no danger

of ambiguity we also represent a cut C = (C1, . . . , Cr) by
the set ∪r

i=1Ci and use the cut function φ also for this cut
representation.

C. Reducing the ADT model to a linking network

Consider an ADT network as introduced in Section II with q
layers of nodes. The ADT model is represented by a linking
network defined over the 2q − 2 layers I1, O2, I2, . . . , Oq

using two types of linking systems. For i ∈ [q−1], the linking
system that links Ii to Oi+1 is the linking system induced
by the matrix M [Ii ∪Oi+1]. This ensures that a set of linear
independent signals that are sent from one layer of inputs to
the next layer of outputs results in linear independent signals
at the outputs. Thus the condition ii) of an ADT flow is
satisfied. For i ∈ {2, . . . , q}, the set Oi is linked to Ii by a
linking system induced by the bipartite graph that contains
an edge between a vertex v ∈ Oi and w ∈ Ii if v and w
are in the same node. These linking systems enforce that a
linking flow satisfies property i) of an ADT flow. Hence a
linking flow in this linking network is indeed an ADT flow
in the corresponding ADT model and vice versa.
However, in the thus described linking network used for
representing an ADT network, the notion of cut is slightly
different to the notion of an ADT cut. An ADT cut satisfies
that each node is either included in the cut or excluded,
whereas the definition of a cut in a linking network allows
to contain part of a node. However, we show below that,
from any minimum cut in the linking network, one can easily
deduce a corresponding ADT cut of no greater value (and
hence of minimum value as well). This implies that the value
of a minimum ADT cut is equal to the value of a minimum
cut in the corresponding linking network.
More precisely, let G = (V,Λ) be a linking network with r
layers that stems from an ADT model. Let C = (C1, . . . Cr)
be a minimum cut in G. Assume there is a relay N with
outputs ON in layer i and inputs IN in layer i + 1 such
that (Ci ∩ Ci+1) ∩ N is a proper subset of N . We show
that if |Ci ∩ ON | ≤ |IN \ Ci+1| then excluding the vertices
from node N from the cut results again in a minimum cut,
otherwise the vertices from node N can be included from C
to obtain another minimum cut. Repeating this argument for
every relay N leads to an ADT cut of minimum value as
well.
Assume |Ci∩ON | ≤ |IN \Ci+1| (the other case is analogue).
Thus, λi(Ci∩ON , IN \Ci+1) = |Ci∩ON |. Consider the cut



C ′ = (C1, . . . , Ci−1, C
′
i, C
′
i+1, Ci+2, . . . , Cr) where C ′i =

Ci\N and C ′i+1 = Ci+1\N . Note that Λi is a linking system
induced by a bipartite graph containing an edge between any
output-input pair within any node consisting of vertices in
Oi ∪ Ii+1. Hence,

λi(Ci, Vi+1 \ Ci+1) =
∑

N∈N ,
N⊆Oi∪Ii+1

λi(Ci ∩N,N \ Ci+1),

which implies

λi(C ′i, Vi+1 \ C ′i+1)− λi(Ci, Vi+1 \ Ci+1)
= −λi(Ci ∩N,N \ Ci+1) = −|Ci ∩ON |. (1)

Furthermore, we have

λi−1(C ′i−1, Vi \C ′i)−λi−1(Ci−1, Vi \Ci) ≤ |Ci∩ON |, (2)

since C ′i is obtained from Ci by removing |Ci ∩ ON |
elements and each element that is removed can decrease the
contribution of λi−1 to the value of the cut by at most 1.
Additionally, since Ci+1 ⊆ C ′i+1, we get by monotonicity of
the linking function

λi+1(C ′i+1, Vi+2 \ C ′i+2) ≤ λi+1(Ci+1, Vi+2 \ Ci+2). (3)

Combining (1), (2) and (3) we get φ(C ′) ≤ φ(C).

IV. RESULTS AND ALGORITHMS ON LINKING NETWORKS

In the following we deduce properties and algorithms for
linking networks, and thus also for the ADT model, from the
facts on matroids and linking systems that were presented in
the previous section.

A. Duality theorem and submodularity of cuts

Theorem 5. In any linking network, the value of a maximum
flow is equal to the value of a minimum cut.

Proof: Let G = (V,Λ) be a linking network with r
layers and we define Λ̃ = Λ1 ? · · · ?Λr−1, which is a linking
system by Proposition 4. By the definition of the product
of linking systems we have that there is a linking flow in
G of some given value q ∈ Z+ if and only if there exists
a pair (P1, Pr) ∈ Λ̃ with |P1| = q. Thus, the value of a
maximum linking flow in G is equal to λ̃(V1, Vr), where λ̃
is the linking function corresponding to Λ̃. By Proposition 4
and the definition of the value of a cut we have

λ̃(V1, Vr) = min
{
λ1(V1, V2\P2) +

r−2∑
i=2

λi(Pi, Vi+1\Pi+1)

+ λr(Pr−1, Vr) | P2 ⊆ V2, . . . , Pr−1 ⊆ Vr−1

}
= min

{
φ

(
V1 ∪

r−1⋃
i=2

Pi

)
| P2 ⊆ V2, . . . , Pr−1 ⊆ Vr−1

}
,

which is the value of a minimum cut in G.

Theorem 6. The function φ that associates to every cut its
value is submodular.

Proof: Let G = (V,Λ) be a linking network with
r layers and let C = (C1, . . . , Cr) be a cut in G. By

definition the value of the cut C is given by φ(C) =∑r−1
i=1 λi(Ci, Vi+1 \Ci+1). By the bisubmodularity property

of linking functions, we have that for i ∈ [r−1] the function
gi defined on 2Vi × 2Vi+1 by gi(Pi, Pi+1) = λi(Pi, Vi+1 \
Pi+1) is submodular. Hence, φ(C) is the sum of submodular
functions, and thus submodular.
The above submodularity result has important algorithmic
implications since there exist polynomial algorithms for min-
imizing submodular functions. A minimum cut in a linking
network can then be obtained by minimizing the submodular
cut-value function in O((m4α+m5) log(m)) time, where m
the total number of vertices in the linking network and α
is the time needed to evaluate the value of a given cut [7],
[8]. An efficient algorithm for finding a minimum cut can
easily be transformed into an efficient algorithm for finding
a maximum flow as follows. Consider the vertices in ∪r

i=1Vi

in any order. If removing a vertex from the corresponding
linking system does not decrease the value of a minimum
cut, we remove the vertex from the graph. One can easily
check that the remaining vertices form a maximum flow. In
the following we present a much more efficient and direct
algorithm for obtaining a maximum flow in a linking system.
A minimum cut is obtained as a by-product of the algorithm.
Even if one is just interested in determining the minimum
cut of a linking network, the algorithm to be presented
is considerably faster than a general submodular function
minimization algorithm as mentioned above.

B. Optimizing in linking networks

Here we show how standard matroid algorithms can be used
to efficiently find a maximum flow in a linking network.
We show that one can either use algorithms for matroid
intersection or for matroid partition.
Recall that, for any single linking system (V1, V2,Λ), two
matroids can be defined, MΛ and MΛ; for any (P1, P2) ∈ Λ,
P1∪(V2\P2) is a base of the first matroid while (V1\P1)∪P2

is a base of the second matroid.
Matroid Intersection: Let G = (V,Λ) be a linking network
with r layers. For simplicity, we first consider the case in
which r = 2k is even; this is the case for linking networks
arising from the ADT model. We construct two matroids Mo

(for odd) and Me (for even). Both have ∪r
i=1Vi as ground set.

Mo is defined as the disjoint union MΛ1⊕MΛ3⊕· · ·⊕MΛ2k−1

of the matroids corresponding to the odd-numbered linking
systems; a set I ⊆ ∪r

i=1Vi is independent in matroid Mo if
for any odd integer j with j ∈ [r−1], we have I∩(Vj∪Vj+1)
is independent in MΛj

. Thus, for any flow F = (F1, · · · , Fr)
in G, we have that m(F ) := F1 ∪ (V2 \ F2) ∪ F3 ∪ · · · ∪
(V2k \ F2k) is a base of Mo. In order to define Me, we first
define a dummy free linking system (Vr, V1,Λ0) linking the
last layer to the first, and having all possible pairs (Pr, P1)
with |Pr| = |P1|, Pr ⊆ Vr and P1 ⊆ V1 linked in Λ0. We
define Me as the disjoint union MΛ0

⊕MΛ2
⊕· · ·⊕MΛ2k−2

.
Observe that for any flow F , we also have that m(F ) is a
base of Me; thus, m(F ) is a common base to Me and Mo.
Conversely, consider any common base B to Me and Mo;
by construction of Me and Mo, we can derive a flow F from



B by setting

Fi =
{
B ∩ Vi 1 ≤ i < r, i odd
Vi \B 1 < i ≤ r, i even.

So far, we have assumed that the number r of layers in the
linking network G is even. The case of an odd number of
layers can be treated in several ways. One possibility is to add
a final layer Vr+1 and a free linking system (Vr, Vr+1,Λr)
(i.e. one for which any pair of sets of Vr×Vr+1 of the same
cardinality is linked). This gives a linking network G′ with an
even number of layers, and there is a trivial correspondence
between flows in G and flows in G′.
In the case of an even number of layers, the correspondance
between flows in the linking network G and common bases
to Me and Mo allows us to find a maximum flow in G by
finding a common base B to Me and Mo that maximizes
|B ∩ V1|. This is a particular case of weighted matroid
intersection, where the goal is to find, for every integer k,
a set I of cardinality k independent for two matroids and
which maximizes

∑
e∈I w(e) for some weight vector w. In

summary, the maximum flow in a linking network G can be
found efficiently using any algorithm for weighted matroid
intersection, see [12, Section 41.3].
For example, if we use the simple implementation of the
algorithm of Frank [6], as described in [12, Section 41.3a],
we can derive a maximum flow in time O(nrτ), where
n is the maximum number of elements per layer, and τ
is the time for constructing a certain auxiliary graph with
respect to a common independent set I . For the ADT model
described before, τ can be chosen to be O(rn3), leading
to an overall running time of O(r2n4). With the aid of the
scaling algorithm in [13], one can improve this running time
to O(r1.5n3.5 log(nr)).
The use of weighted matroid intersection to find a flow
of maximum cardinality in a linking network G = (V,Λ)
straightforwardly generalizes to the problem of finding a
maximum flow of minimum cost. In this extension, one is
given a cost c(v) for every v ∈ ∪r

i=1Vi and one would like
to find a maximum flow F = (F1, F2, · · · , Fr) minimizing∑r

i=1

∑
v∈Fi

c(v).
Matroid partition: We now show another reduction allowing
to solve linking flow problems using any matroid partition
algorithm. Given any linking network G = (V,Λ) with r
layers, consider the matroid M∗ defined as the union of the
matroids MΛi

for i ∈ [r−1]. This is a matroid whose ground
set ∪r

i=1Vi is the union of the ground sets of the MΛi
’s, and

whose independent sets are {∪r−1
i=1 Ii : Ii ∈ I(MΛi)} where

I(M) denotes the family of independent sets of matroid
M . The resulting union M∗ is indeed a matroid, see [12,
Chapter 42] for a proof and discussion. The independent sets
of I(M∗) are called partitionable.
The connection between the maximum flow problem in G
and independent sets in M∗ is highlighted in the following
theorem.

Theorem 7. Let M∗ be the matroid described above corre-
sponding to a linking network G = (V,Λ). Then

1) Given a flow F = (F1, · · · , Fr) in G, we have that

F1 ∪
(
∪r−1

i=2Vi

)
∪ (Vr \ Fr) ∈ I(M∗). (4)

2) Given any base B of M∗ such that

B ⊇ ∪r−1
i=2Vi, (5)

and expressed as B = ∪r−1
i=1 Ii with Ii ∈ I(MΛi

) one
can derive a flow of G by letting:

Fi =
{
Ii ∩ Vi i ∈ [r − 1]
Ir \B i = r.

(6)

In particular, F1 = B ∩ V1.

Proof: 1) Given the flow F = (F1, · · · , Fr), we know
that Fi∪(Vi+1\Fi+1) ∈ I(MΛi

) for i ∈ [r−1], and therefore
(4) holds.
2) Consider a base B of M∗ with the required properties.
We claim that each Ii is a base of MΛi

. Since all bases of
a matroid have the same cardinality, this can be verified by
showing that there is one basis of M∗ that is a disjoint union
of bases of MΛi

, for i ∈ [r − 1]. The set ∪r
i=2Vi ∈ I(M∗)

is such a set since Vi+1 is a basis of MΛi
for i ∈ [r − 1].

Defining F by (6), we immediately get that F =
(F1, · · · , Fr) satisfies the definition of a flow. Furthermore,
F1 = I1 ∩ V1 = B ∩ V1.
In M∗ (as in any (non-disjoint) union of matroids), it is not
completely straightforward to test independence of a set. This
is the purpose of matroid partition algorithms which proceed
incrementally. Given disjoint sets Ii ∈ I(MΛi

), I = ∪r−1
i=1 Ii

and given v /∈ I , one fundamental step of a matroid partition
algorithm decides whether I ∪{v} ∈ I(M∗) and if so, finds
disjoint I ′i ∈ I(MΛi) with I ∪ {v} = ∪r−1

i=1 I
′
i . This can be

used to find a maximum flow in a linking network. Indeed,
using Theorem 7, we can start from I = ∪r−2

i=1Vi+1 ∈ I(M∗)
(I consists of all elements except the first and last layers)
and repeatedly first check whether each element of V1 can
be added to our current set I ∈ I(M∗), and then do the same
for Vr. This results in a base of M∗ satisfying (5) and having
as many elements of V1 as possible; therefore, as in the proof
of the theorem, we can extract a maximum flow. Observe that,
for our initial set I , we have a trivial decomposition of it into
∪r−1

i=1 Ii by taking Ii = Vi+1 for i ∈ [r − 2] and Ir−1 = ∅.
We need now to discuss how the fundamental step in a
matroid partition algorithm can be performed. There exist
classical algorithms for the fundamental step, see [12, Section
42.3]. This boils down to constructing a digraph on ∪r

i=1Vi

and finding a shortest directed path in it. The arc set of this
digraph is ∪r−1

i=1Ei with

Ei = {(s, t) | s /∈ Ii, t ∈ Ii, Ii ∪ {s} \ {t} ∈ I(MΛi
)}

⊂ (Vi ∪ Vi+1)× (Vi ∪ Vi+1).

For each i ∈ [r − 1], consider a vertex subset Si = {s ∈
(Vi ∪ Vi+1) \ Ii | Ii ∪ {s} ∈ I(MΛi

)}. The fundamental
step searches for a directed path from v /∈ I to any vertex in
∪r−1

i=1Si with minimum number of arcs. If such a directed path
exists, then I ∪ {v} ∈ I(M∗), and exchanging the elements
along the directed path provides a partition of I ∪ {v} into
disjoint I ′i ∈ I(MΛi

). Otherwise, I ∪ {v} /∈ I(M∗). Since,



for every i ∈ [r − 2], we start from a base Ii = Vi of MΛi
,

we have that Si = ∅ for i ∈ [r−2]; only Sr−1 is non-empty.
For the ADT model, constructing this digraph takes O(rn3),
and this dominates the time to find appropriate directed path
in it. As we are performing at most 2n fundamental steps, this
gives an overall running time of O(rn4). Using the analysis
technique by Cunningham [5], one can show that the total
length of the directed paths in the above matroid partition
algorithm is O(rn log n), which leads to an improved running
time bound O(rn3 log n).
Thus, for ADT networks with large capacity, for example
φ∗ = Θ(n), both algorithms we presented (based on matroid
intersection and matroid union) are considerably faster than
the algorithm of Amaudruz and Fragouli [1].
Finding a minimum source-destination cut: We now show
how a minimum source-destination cut can be obtained as a
by-product of the above matroid partition algorithm (a similar
argument works for the matroid intersection approach).
At the end of the algorithm we get a solution set B = ∪r−1

i=1 Ii
with Ii ∈ I(MΛi

) which is a base of M∗ and corresponds to
a maximum flow by Theorem 7. We now consider the digraph
for the fundamental step of the matroid partition algorithm
that corresponds to this final solution. We know that this
digraph has no directed path from V1 \ I1 to Vr; indeed such
a path from s ∈ V1\I1 to t ∈ Vr would mean that B\{t}∪{s}
is also a base of M∗ implying that the algorithm should have
added s when it considered it. In fact, since the vertices in
V1∩I1 have no outgoing arcs (see the definition of E1), there
are no directed paths from V1 to Vr. Let W ⊂ ∪r−1

i=1Vi be
the set of all vertices that are reachable from the vertices V1

in this digraph; thus W ∩ Vr = ∅ and V1 ⊆W .

Theorem 8. The set W is a minimum source-destination cut.

Proof: Again let M∗ be the union of the matroids MΛi

for i ∈ [r − 1] and let M∗− be the restriction of the matroid
M∗ to the ground set ∪r−2

i=1Vi, i.e., a set I ⊆ ∪r−2
i=1Vi is

independent in M∗− if it is independent in M∗. Since we
considered vertices in V1 prior to those in Vr, B \ Vr is a
base of M∗−. Observe that W also corresponds to the set of
vertices reachable from V1 in the digraph for the fundamental
step of the matroid partition algorithm corresponding to the
matroid M∗− . It is well-known in matroid theory (see for
example [4]) that W corresponds to an optimality certificate,
i.e., it satisfies

|B| = ρ∗−(∪r−1
i=1Vi) = |(∪r−1

i=1Vi) \W |+
r−1∑
i=1

ρΛi
(W ), (7)

where ρ∗− is the rank function of the matroid M∗− and ρΛi

is the rank function of MΛi
for i ∈ [r − 1]. Let φ∗ be the

maximum flow value of the network. By Theorem 7, we have

ρ∗−(∪r−1
i=1Vi) = | ∪r−1

i=2 Vi|+ φ∗. (8)

Let Wi = W ∩ Vi for i ∈ [r]. Notice that W1 = V1 and

Wr = ∅. By Proposition 3 we have
r−1∑
i=1

ρΛi
(W ) =

r−1∑
i=1

(λi(Wi, Vi+1 \Wi+1) + |Wi+1|)

= φ(W ) +
r−1∑
i=2

|Wi|.

Combining this result with (7) and (8), we obtain

φ∗ = |V1 \W1|+ φ(W ) = φ(W ),

which implies that W is a minimum cut of the linking
network.

V. CONCLUSION

We have introduced a new type of flow network, called
linking network, and shown that it can be used to analyze
the ADT model. In particular, using results on matroids and
linking systems, properties like the max-flow min-cut duality
easily follow. The problem of finding a maximum flow and
a minimum cut was reduced to the matroid intersection
or partition problem, which allows us to profit from well-
established matroid optimization algorithms, leading to a
faster algorithm for larger capacity networks. Another ad-
vantage of the presented approach using linking networks,
is its generality, which allows to adapt or extend the ADT
model. In particular, using a weighted matroid intersection
algorithm we can efficiently find minimum cost flows in the
ADT model when costs are introduced for using inputs and
outputs.

REFERENCES

[1] A. Amaudruz and C. Fragouli. Combinatorial algorithms for wireless
information flow. In SODA ’09: Proceedings of the Twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms, 2009.

[2] A. S. Avestimehr, S. N. Diggavi, and D. N. C. Tse. A deterministic
approach to wireless relay networks. In Proceedings of Allerton
Conference on Communication, Control, and Computing, September
2007. http://licos.epfl.ch/index.php?p=research projWNC.

[3] A. S. Avestimehr, S. N. Diggavi, and D. N. C. Tse. Wireless
network information flow. In Proceedings of Allerton Confer-
ence on Communication, Control, and Computing, September 2007.
http://licos.epfl.ch/index.php?p=research projWNC.

[4] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver.
Combinatorial Optimization. Wiley, New York, 1998.

[5] W.H. Cunningham. Improved bounds for matroid partition and
intersection. SIAM Journal on Computing, 15:948–957, 1986.

[6] A. Frank. A weighted matroid intersection algorithm. Journal of
Algorithms, 2:328–336, 1981.

[7] S. Iwata. A faster scaling algorithm for minimizing submodular
functions. SIAM Journal on Computing, 32(4):833–840, 2003.

[8] S. Iwata and J. B. Orlin. A simple combinatorial algorithm for
submodular function minimization. In SODA ’09: Proceedings of
the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1230–1237, Philadelphia, PA, USA, 2009. Society for Industrial
and Applied Mathematics.

[9] S. M. Sadegh Tabatabaei Yazdi and S. A. Savari. A
combinatorial study of linear deterministic relay networks.
http://arxiv.org/abs/0904.2401v1, 2009.

[10] A. Schrijver. Matroids and Linking Systems. PhD thesis, Mathematisch
Centrum, 1978.

[11] A. Schrijver. Matroids and linking systems. Journal on Combinatorial
Theory, Series B, 26(3):349–369, June 1979.

[12] A. Schrijver. Combinatorial Optimization — Polyhedra and Efficiency.
Springer, 2003.

[13] M. Shigeno and S. Iwata. A dual approximation approach to weighted
matroid intersection. Operations Research Letters, 18:153–156, 1995.


