Problem Set 1

This problem set is due in class on Thu Feb 27, 2020.

- 1. Show that any 3-regular 2-edge-connected graph G = (V, E) (not necessarily bipartite) has a perfect matching. (A 2-edge-connected graph has at least 2 edges in every cutset; a cutset being the edges between S and $V \setminus S$ for some vertex set S.)
- 2. A graph G = (V, E) is said to be *factor-critical* if, for all $v \in V$, we have that $G \setminus \{v\}$ contains a perfect (i.e. covering all vertices) matching.

Given a graph H = (V, E), an *ear* is a path $v_0 - v_1 - v_2 - \cdots - v_k$ whose endpoints $(v_0$ and $v_k)$ are in V and whose internal vertices $(v_i \text{ for } 1 \leq i \leq k-1)$ are not in V. We allow that v_0 be equal to v_k , in which case the path would reduce to a cycle. Adding the ear to H creates a new graph on $V \cup \{v_1, \cdots, v_{k-1}\}$. The trivial case when k = 1 (a 'trivial' ear) simply means adding an edge to H. An ear is called *odd* if k is odd, and even otherwise; for example, a trivial ear is odd.

- (a) Let G be a graph that can be constructed by starting from an odd cycle and repeatedly adding odd ears. Prove that G is factor-critical.
- (b) Prove the converse that any factor-critical graph can be built by starting from an odd cycle and repeatedly adding odd ears.
- 3. Let G = (V, E) be a graph and $T \subseteq V$. In this exercise, a path is called a *T*-path if its endpoints are *distinct* vertices of *T* and no internal vertex belongs to *T*. Notice that if T = V, a *T*-path is just a matching. Let τ be the maximum number of (vertex) disjoint *T*-paths.
 - (a) Show that

$$\tau \le \min_{U \subseteq V} |U| + \sum_{K \in \mathcal{C}(G \setminus U)} \left\lfloor \frac{|K \cap T|}{2} \right\rfloor$$

where $\mathcal{C}(G \setminus U)$ denotes the connected components of $G \setminus U$.

(b) Use the Tutte-Berge formula (in a modified graph G' = (V', E')) to prove equality:

$$\tau = \min_{U \subseteq V} |U| + \sum_{K \in \mathcal{C}(G \setminus U)} \left\lfloor \frac{|K \cap T|}{2} \right\rfloor$$

(Corrected hint: Let $B = V \setminus T$. One construction for G' is to start from G and first add a disjoint copy of G[B] on a new vertex set B'. Any $v \in B$ has a corresponding $v' \in B'$ and we connect each v' to v and to all neighbors of v in G. Thus $V' = V \cup B'$ and $E' = E \cup \{(u', v') | (u, v) \in G[B]\} \cup \{(u, v') | \text{ either } u = v \text{ or } (u, v) \in E\}$.)

- 4. Let $\mu(G)$ be the size of a max matching in G. Prove that G is factor-critical iff G is connected and $\mu(G) = \mu(G \setminus \{v\})$ for all $v \in V$.
- 5. Consider the problem of counting the number $\phi(G)$ of perfect matchings in a graph G = (V, E). For any orientation \vec{E} , we can associate a skew-symmetric matrix A_s where

$$A_s(i,j) = \begin{cases} 1 & (i,j) \in \vec{E} \\ -1 & (j,i) \in \vec{E} \end{cases}$$

Show that

$$\mathbb{E}(\det(A_s)) = \phi(G),$$

when the orientation is chosen uniformly among all $2^{|E|}$ orientations. Deduce that there exists an orientation \vec{E} with

$$\phi(G) \le \det(A_s) \le (\phi(G))^2$$

(However, it is not known how to find such an orientation.)