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Algebraic Approach to Matchings
Lecturer: Michel X. Goemans

These notes on an algebraic approach to solve the matching problem are based on past notes
scribed by Zhenyu Liao. Our goal is to derive an algebraic test for deciding if a graph G = (V,E)
has a perfect matching. We may assume that the number of vertices is even since this is a necessary
condition for having a perfect matching. First, we will define a few basic needed notations.

Definition 1 A skew-symmetric matrix A is a square matrix which satisfies AT = −A, i.e. if
A = (aij) we have aij = −aji for all i, j.

For a graph G = (V,E) with |V | = n and |E| = m, we construct a n×n skew-symmetric matrix
A = (aij) with an entry aij = −aji for each edge (i, j) ∈ E and aij = 0 if (i, j) is not an edge; the
values aij for the edges will be specified later.

Recall:

Definition 2 The determinant of matrix A is

det(A) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

aiσ(i)

where Sn is the set of all permutations of n elements and the sgn(σ) is defined to be 1 if the number
of inversions in σ is even and −1 otherwise.

Note that for a skew-symmetric matrix A, det(A) = det(−AT ) = (−1)n det(A). So if n is odd
we have det(A) = 0. Consider K4, the complete graph on 4 vertices, and thus

A =


0 a12 a13 a14
−a12 0 a23 a24
−a13 −a23 0 a34
−a14 −a24 −a34 0

 .

By computing its determinant one observes that

det(A) = (a12a34 − a13a24 + a14a23)2.

First, it is the square of a polynomial q(a) in the entries of A, and moreover this polynomial has
a monomial precisely for each perfect matching of K4. This is not a coincidence and this will be
proved and exploited in this lecture.

Given any permutation σ of Sn where n is even, we can associate to it a perfect matching M by
letting

M = {(σ(2i− 1), σ(2i)) : 1 ≤ i ≤ n/2}.

Notice that this map is surjective; several permutations will correspond to the same matching. Given
a permutation σ and associated matching M and a skew-symmetric matrix A, define the weight of
M as follows:

wt(M) = sgn(σ)

n/2∏
i=1

aσ(2i−1),σ(2i).

We claim that the weight of M is well-defined, in the sense that it is independent of the per-
mutation defining M . If two permutations σ1, σ2 correspond to same M , we can obtain one from
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the other by a series of elementary moves consisting of (i) switching σ(2k − 1), σ(2k) for some k
(changing the order of the vertices of an edge) or of (ii) switching σ(2j − 1), σ(2j) with σ(2k − 1)
and σ(2k) (i.e., switching two edges of the matching). For the first elementary move, the sign of
permutation gets changed, while, at the same time, the corresponding aij gets multiplied by −1.
The second type of elementary move has no effect on the sign of the permutation. So, for both types
of moves, the weight is unaffected.

Definition 3 Let A = (aij) be a n × n skew-symmetric matrix with n even. The Pfaffian of A is
defined by

Pf(A) =
∑

M∈Mn

wt(M)

where Mn is the set of all perfect matchings.

We are now able to state our main theorem by Cayley.

Theorem 1 (Cayley 1842) If An×n is skew symmetric with n even, det(A) = (Pf(A))2.

The core of the proof of this theorem is a bijection between permutations with only even cycles
and (ordered) pairs of perfect matchings. This is stated in the next lemma.

Lemma 2 Let ξn = {σ ∈ Sn : every cycle has even length}. Then there exists a bijection T :
ξn →Mn ×Mn.

This means that |ξn| = |Mn|2. To prove the lemma, we define the map T (σ) = (M,M ′) as follows.
For each even cycle in σ, consider the smallest index u, and assign the edge (u, σ(u)) to M . Then
assign (σ(u), σ(σ(u))) to M ′. Keep repeating this along the cycle, and for each cycle of σ. This
is well defined since every cycle of σ is even. Note that T is a bijection since you can construct a
permutation from a pair of matchings by reversing the construction procedure of T . More precisely,
given two matchings M and M ′ consider their union. Now orient each cycle such that the lowest
indexed vertex has an arc from M directed away from it. This produces the permutation σ. Notice
that T not only maps a permutation σ to a pair (M,M ′) of perfect matchings, but also implicitly
give an orientation of each edge in M and M ′.

Example 1 Let n = 4,ξn = {(12)(34), (13)(24), (14)(23), (1234), (1243), (1324), (1342), (1423), (1432)}.
Mn = {M1 = (1, 2), (3, 4),M2 = (1, 3), (2, 4),M3 = (1, 4), (2, 3)}. Consider T ((1423)) = (M,M ′),
by definition, the smallest index is 1 and σ(1) = 4, thus assign (1, 4) to M . Then assign (4, σ(4)) =
(4, 2) to M ′. Continuing we get (2, 3) ∈ M and (3, 1) ∈ M ′. Finally, M = {(1, 4), (2, 3)} (corre-
sponding to M3) and M ′ = {(4, 2), (3, 1)} (corresponding to M2).

Proof: By definition det(A) =
∑
σ∈Sn

sgn(σ)
∏n
i=1 aiσ(i). We will first divide this summation into

three parts.
For those permutations such that σ(i) = i for some i, the contribution to the sum is zero since

aii = 0.
Consider σ ∈ Sn \ ξn, i.e σ = (C1)(C2)...(Ck) where the Ci’s are the cycles of σ. Taking the odd

cycle (if any) in σ involving the element with smallest index, say Ci, and by only reversing Ci, we
get a new permutation σ′ with the property that (σ′)′ = σ, sgn(σ′) = sgn(σ) but

∏
j∈Ci

aj,σ(j) =
−
∏
j∈Ci

aj,σ′(j). So the contribution of such pairs will cancel in the determinant.
Therefore,

det(A) =
∑
σ∈ξn

sgn(σ)

n∏
i=1

aiσ(i). (1)

Now, consider the Pfaffian:

(Pf(A))2 =
∑

(M,M ′)∈Mn×Mn

wt(M)wt(M ′).
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Take now the permutation σ with T (σ) = (M,M ′). Let σ = (C1)(C2)...(Ck), where each cycle is
even, by assumption. To get a permutation α corresponding to M , we write down the elements of
each cycle in turn, starting from the lowest index (of each cycle). We see that

wt(M) = sgn(α)

n/2∏
i=1

aα(2i−1)α(2i).

For M ′, we use as representative permutation α′ the one corresponding to composing α with each
cycle in turn. Thus sgn(α′) = sgn(α)(−1)k. Also,

wt(M) = sgn(α′)

n/2∏
i=1

aα′(2i−1)α′(2i).

Therefore,

wt(M)wt(M ′) = sgn(α) sgn(α′)

n∏
i=1

aiσ(i) = (−1)k
n∏
i=1

aiσ(i).

Comparing this with (1) completes the proof of the theorem since sgn(σ) = (−1)k (as it consists of
k even cycles). �

Example 2 In the example above (continued), we have C1 = (1423),

α =

(
1 2 3 4
1 4 2 3

)
while

α′ =

(
1 2 3 4
4 2 3 1

)
,

with sgn(α) = 1 and sgn(α′) = −1. Therefore,wt(M) = a14a23 and wt(M ′) = −a42a31 = −a42a31,
and indeed wt(M)wt(M ′) = −a14a23a31a42 since sgn((1423)) = −1.

In order to get a test for the existence of a perfect matching from the abve theorem, we consider
the entries of A to be indeterminates: aij = xij (say) and aji = −xij . The determinant and the
Pfaffian of A are now polynomials in these indeterminates {xe : e ∈ E}. We can thus derive the
following known as Tutte’s theorem.

Theorem 3 det(A(x1, ..., xm)) ≡ 0 if and only if G has no perfect matching.

In order to check whether det(A(x1, ..., xm)) ≡ 0 or not efficiently, we provide a randomized
algorithm. The idea (due to Lovász) is to try random values (from a given field F ) for the indeter-
minates xij , but we need to make sure that if the determinant of A is not identically zero (i.e. that
the graph has a perfect matching) then the probability that the determinant cancels to 0 is small.
For this, we use the Schwartz-Zippel lemma.

Lemma 4 (Schwartz-Zippel) Let p(x1, x2, ..., xm) ∈ Fq[X1, ..., Xm] be a non-zero polynomial with
total degree no larger then d over a finite field with q elements. Let r = (r1, ..., rm) be chosen
uniformly from Fmq . Then

P[p(r1, r2, ..., rm) = 0] ≤ d/q.
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Proof: By induction on the number of variables m. For m = 1, this holds since a polynomial
of degree d has no more then d roots. We assume that the lemma holds for polynomials with
m − 1 variables. Consider now a polynomial with m variables, and we can write p(x1, ..., xm) =∑d
i=0 pi(x1, ..., xm−1)xim. Therefore, there exists i such that pi with degree ≤ d − i is a non-zero

polynomial and assume that i is the largest index satisfying this property. By induction, we know

P[pi(r1, ..., rm−1) = 0] ≤ (d− i)/q.

If pi(r1, ..., rm−1) 6= 0, then the degree of p(r1, r2, · · · , rm−1, xm) seen as a polynomial in xm is i. So
P[p(r1, ..., rm) = 0|pi(r1, ..., rm−1) 6= 0] ≤ (i/q). In all, we get

P[p(r1, r2, ..., rm) = 0] ≤ i

q
(1−P[pi(r1, ..., rm−1) = 0])+P[pi(r1, ..., rm−1) = 0] ≤ i

q
+(1− i

q
)
d− i
q

<
d

q

which finishes the proof. �

In our case, the determinant is a polynomial of total degree n (where n is the number of vertices
of the graph) and thus, if we choose q = 2n, the probability of not identifying that the graph has
a perfect matching while it does is ≤ 1

2 . To decrease this probability, we can repeat this random
experiment k times (and thus with c log n trials, we can bound the probability of not detecting the
existence of a perfect matching when there is one to ≤ n−c).

Until now, we obtain a randomized algebraic test Has-Perfect(G) to check whether there is a
perfect matching in a graph G. This can be used to find a perfect matching in G as the property is
self-reducible. First, check that whether there is a perfect matching in this graph. Then, pick any
edge e = (u, v). If there still exists a perfect matching in G − e, delete e from G and continue. If
there is no perfect matching in G− e, add e to the matching, delete both vertices u and v (and all
edges adjacent to it) and recurse on the smaller graph. This will terminate with a perfect matching
in G.

Here are some additional results that were briefly discussed in lecture. Harvey has shown that a
more clever algorithm allows to find the perfect matching in time O(nω) where this is the time to
multiply two n × n matrices (ω ∼ 2.3). One can also use the algebraic approach discussed here to
find the largest matching in a graph. Indeed, one can show:

Theorem 5 (Tutte)
max

matching M
|M | = rank(A(x1, · · · , xm)).

The algorithms as described are Monte Carlo (one-sided error). One can also make them Las
Vegas (i.e. these are algorithms that always give the correct answer and run in expected polynomial
time) by constructing the Edmonds-Gallai decomposition. This was done by Karloff (1986). Geelen
(2000) has shown further that the algebraic approach can be made purely deterministic.

Exact Matching

There is an extension of maximum or perfect matching for which the only known approach is the
randomized, algebraic approach discussed in these lectures. In the Exact Matching, or Red-
Blue Matching, we are given a graph G = (V,E) in which the edges are colored blue or red, we
are also given an integer k, and the problem is to decide whether a perfect matching exists with
precisely k red edges (and find one if such a matching exists). This is one of the very few problems
for which a randomized polynomial-time algorithm is known (even in RNC) while no deterministic
polynomial-time algorithms are known. To use the algebraic approach, consider the skew symmetric
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matrix A with indeterminates where

aij =

 ±xij (i, j) ∈ E blue
±xijz (i, j) ∈ E red
0 otherwise.

Observe that det(A[x1, x2, · · · , xm, z]) is now a polynomial

q(x1, x2, · · · , xm, z) =

n∑
i=0

qi(x1, · · · , xm)zi.

Similarly,

Pf(A) =

n/2∑
j=0

pj(x1, x2, · · · , xm)zj .

From Cayley’s theorem 1, we derive that

Corollary 6 G has a perfect matching with exactly k red edges iff pk(x1, · · · , xm) 6≡ 0.

How can we find pk? For given values for x1, · · · , xm, we can evaluate all the qi’s by computing
det(A) in n+ 1 values for z and using extrapolation (as det(A) is a polynomial of degree ≤ n in z.
And once we have evaluated all the pi, we can also evaluate all the qj ’s (by taking the square root
of a polynomial in one varaiable). Thus, for any values x1, · · · , xn, we can evaluate pk(x1, · · · , xn).
But pk is a polynomial of total degree at most n/2. Thus if we choose the xi’s uniformly at random
from a field with q values, the probability of finding pk(r1, · · · , rm) = 0 while pk(x1, · · · , xm) 6≡ 0
is at most n/2q, and we can use the same approach as before. As mentioned earlier, it is an open
question to find a deterministic algorithm for this problem.

Counting Perfect Matchings

In some cases, we can also use Cayley’s theorem to count the number of perfect matchings. Re-
member that Pf(A) has a term wt(M) for each perfect matching M . If all aij = ±1 for the edges
(i, j) ∈ E then wt(M) = ±1. If we could choose the sign of aij so that all perfect matchings have

weight +1 (or all −1) then we could easily count the perfect matchings as
√

det(A). Notice by the
way that det(A) changes as we flip the sign on an edge. To keep track of the signs on the edges, it

is convenient to orient the edges of E into ~E and let

aij =

 +1 (i, j) ∈ ~E

−1 (j, i) ∈ ~E
0 otherwise.

Definition 4 (V, ~E) is a Pfaffian orientation of (V,E) if for all perfect matchings M and M ′, we
have wt(M) = wt(M ′).

If you consider the cycle on 4 vertices 1−2−3−4−1 and take the (cyclic) orientation for which
1− 2− 3− 4− 1 is a directed cycle then the two perfect matchings have opposite weights and this
is not a Pfaffian orientation. However, if you switch the orientation of (4, 1) to (1, 4) then one can
check this is a Pfaffian orientation. The importance of Pfaffian orientations is due to the following
which follows directly from Cayley’s theorem.

Theorem 7 If G = (V,E) has a Pfaffian orientation ~E with associated skew-symmetric matrix A
then the number of perfect matchings equals

√
det(A).
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Unfortunately, not all graphs admit a Pfaffian orientation. For example, K3,3 does not. The
fact that not all graphs have a Pfaffian orientation is not surprising as the problem of counting the
number of perfect matchings is #P−hard in general. Testing if a bipartite graph admits a Pfaffian
orientation is known to be polynomial, but the question is open for general graphs.

The main result we will be discussing is that planar graphs admit a Pfaffian orientation. This is
a classical result of Kastleyn, a statistical physicist.

Theorem 8 (Kastleyn 1963) Every planar graphs has a Pfaffian orientation.

Before we prove this theorem, we need to better understand which orientations are Pfaffian. In
the definition of Pfaffian orientations, we only need to consider two perfect matchings M and M ′ that
differ in only one cycle C = M∆M ′. Observe that such a cycle C has (i) |C| even and also is such that
(ii) G[V \V (C)] admits a perfect matching. The converse is also true: any cycle C satisfying (i) and
(ii) arises from the symmetric difference of two perfect matchings. Now, how do wt(M) and wt(M ′)
differ? Consider two permutations σ and σ′ associated with M and M ′ such that σ′ is obtained by
composing σ with C. Thus, sgn(σ′) = − sgn(σ). Furthermore, wt(M)wt(M ′) = sgn(σ) sgn(σ′)(−1)k

where k is the number of backward oriented arcs along C. Thus, this number must be odd for the
orientation to be Pfaffian (and thus also the number of forward oriented arcs will also be odd).
Summarizing,

Lemma 9 An orientation ~E of G = (V,E) is Pfaffian if for every cycle C with G \ V (C) having a
perfect matching, the number of backward oriented arcs along C is odd.

For planar graphs, we will be able to exhibit an even stronger type of orientation.

Theorem 10 Let G = (V,E) be a planar graph with a given planar embedding. Suppose G admits an

orientation ~E such that for every internal face F , the number of forward arcs in clockwise traversal
is odd. Then ~E is Pfaffian.

Proof: We first claim that for any (simple) cycle (not necessarily corresponding to a face), the
number f of forward clockwise arcs plus the number k of vertices inside C is odd. The proof of
the claim is by induction on k. For k = 0, this is the hypothesis of the theorem. Now suppose C
encloses more than one face. One can view C as being obtained by gluing together 2 cycles C1 and
C2 such that the faces enclosed by Ci partition the faces enclosed by C. Let f1, k1 (resp. f2, k2) be
the number of forward clockwise arcs and internal vertices for C1 (resp. C2). By induction, we can
assume that f1 + k1 = 1 (mod 2) and f2 + k2 = 1 (mod 2). Consider the path P shared by C1 and
C2 and let b its number of internal vertices. Observe that k = k1 +k2 +b and f = f1 +f2− (b+1) as
every arc along P is either clockwise forward in C1 or in C2. Thus k+ b = k1 + k2 + f1 + f2− 1 = 1
(mod 2).

Now that the claim is proved, it is easy to show that the orientation is Pfaffian. Indeed, consider
any even cycle C such that G \ V (C) has a perfect matching. Using planarity, this means that the
number of vertices inside C is even (as they must be perfectly matchable) and therefore the claim
implies that the number of forward arcs in the orientation is odd. This means that the orientation
is Pfaffian. �

For planar graphs, it is easy to find an orientation that satisfies the above lemma. Take any tree,
and orient its edges in any way. Now consider all the remaining edges in order in which they close
faces (i.e. they are minimal in the sense that no other edge inside it has not been considered yet)
and orient it appropriately for the enclosed face to have an odd number of forward clockwise arcs.
This orientation is thus Pfaffian.
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