18.455 Advanced Combinatorial Optimization March 2020

Matching Polytope and Totally Dual Integrality

Lecturer: Michel X. Goemans

Based on scribed notes by Debmalya Panigrahi and from past courses.

In this lecture, we will focus on Total Dual Integrality (TDI) and its application on deriving a
complete description of the matching polytope in terms of linear inequalities. We will also introduce
the notion of a Hilbert basis and point out its connection to TDI.

1 The Matching Polytope

Given an undirected graph G = (V, E), a matching M C E is a subset of edges such that no two
edges in M share a common vertex. We can identify M with its incidence vector:

aner® o). ={ 5 heot

0 otherwise.

We define the matching polytope of G, Ppy = Pp(G) to be the convex hull of these incidence vectors,
i.e.

Py (G) = conv{x(M) : M is a matching of G}.

Note that since the number of matchings in G is finite, Py/(G) is a convex polytope.

Our goal is to represent P by a set of linear inequalities defined on a set of |F| variables,
{z. € R}, .. We must have z, > 0, Ve € E. Also, every vertex can have at most one adjacent edge
in any matching, i.e.

A
z(6(v) = Y @ <1,

e€d(v)

where §(v) is the set of edges incident on vertex v. Thus our first attempt at a linear description of
PM is
Te >0 Vee F
P= {(xe €R)ecr L5 <1 VeV }

Since P is a convex subset of RIZ| and X(M) € P for each matching M, it follows from the definition
of convex hull that Py; C P. However, as illustrated by the following example, Py; C P in general
since P can have non-integral extreme points. Consider the triangle (K5)—its matching polytope is

Py = conv{(0,0,0), (1,0,0), (0,1,0), (0,0,1)}.

The point (0.5,0.5,0.5) € P, i.e. it satisfies the constraints above; however it is not in the convex
hull of the matching vectors.

The above example motivates the following family of additional constraints (introduced by Ed-
monds). Observe that for any matching M, the subgraph induced by M on any odd cardinality
vertex subset U has at most (|[U]| — 1)/2 edges. Thus, without losing any of the matchings, we can
introduce the following additional constraints:

Ul-1
rEw)2 Y we< U2l rev 0] s oda,
ecE(U)
where E(U) is the set of edges in the subgraph induced by G on U. These constraints are called the

odd set constraints or blossom constraints. For the triangle, taking U = V = {1,2,3}, we get the
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constraint x1 + xo + 23 < 1. This constraint is violated by the point (0.5,0.5,0.5). Thus, our second
attempt at a linear description of the matching polytope is

Te >0 Vee F
Q=L (2. €R)ecp : x(0(v)) <1 YoeV
2(BEW) <Y vucv : |U|isodd

The following theorem asserts that this description indeed captures the matching polytope.
Theorem 1 (Edmonds, 1965) Q is identical to the Matching polytope, i.e. Py = Q.

Edmonds gave an algorithmic proof for this theorem: for any linear function, he described
an algorithm to find an integer solution in @ (ie. a matching) and used strong duality of linear
programing to prove that it constitutes an optimum solution when minimizing this linear function
over (). This algorithm is a generalization of the algorithm we saw for finding a maximum cardinality
matching in a graph. Instead, we will prove this theorem in a non-algorithmic way over the course
of this and the next lecture using the concept of Total Dual Integrality (TDI).

2 Total Dual Integrality

Recall the standard formulations of a primal and its dual linear program.

: T
. max c'z min b 4
(Primal (P)) st Aw<p () St Aly=c (Dual (D))
o - y>0

We define Total Dual Integrality as follows.

Definition 1 (Total Dual Integrality) A linear system {Ax < b} (with A and b rational) is
Totally Dual Integral (TDI) if for any integral (cost) vector ¢ € Z™ for the primal, such that
max(c'x, Ax < b) is finite (i.e. the primal has a solution), there exists an optimal dual solution
yezZm.

To establish the connection between TDI and Theorem 1, we state the following theorem, which we
will prove later on.

Theorem 2 (Edmonds-Giles, 1979) If a linear system {Ax < b} is TDI, and b is integral, then
{Ax < b} is integral, i.e. all its extreme points are integral.

This theorem implies that if we can prove that the linear system @ is TDI (we prove this in the next
lecture), then all the extreme points of @) are integral. For rational linear systems, this is equivalent
to the polyhedron @) being the convex hull of all integral points contained in it. Hence, this proves
Theorem 1.

It is important to note that TDI is not a property of the polyhedron, but of its representation.
In fact, the following theorem states that any rational (not necessarily integral) polyhedron has a
TDI representation (with a vector b that’s not necessarily integral).

Theorem 3 (Edmonds-Giles, 1979) Let P be a rational polyhedron. Then, 3A,b such that P =
{z : Az <b}, {Az < b} is TDI and A is integral.

To illustrate this point, consider the two-dimensional polytope (refer to Figure 1) defined as

P = conv{(0, 3), (2,2),(0,0),(3,0)}.
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0,3)

(0,0 y=0 (3,0
Figure 1: A primal linear system and a dual cone.

This polytope may have many different representations. For example,

x>0, y=>0
P = r+2y<6
20 +y <6

This linear system, however, is not TDI. For example, if the cost vector is ¢/’ = (1 1), then the primal
maximum is achieved by (2,2). However, (1, 1) cannot be expressed as a linear integer combination
of (1,2) and (2,1), the normals to the tight constraints at (2,2). Thus, there is no integral dual
optimum and P is not TDI.

In Theorem 3, we should emphasize that A is integral, but of course b will only be integral if P
itself is integral, see Theorem 2. In the rest of the lecture, we will prove Theorems 2 and 3.

3 Hilbert Basis

We now need to introduce the concept of a Hilbert basis.

Definition 2 A set of vectors {a1,as,...,ar} with a; € Z™ Vi defines a Hilbert basis if for any
r € CN Z", where

C = cone(ay, ag,...,ar) = {Z)‘iai A >0, \ € RW},

there exists pu1, pia, - . ., fn, such that p; € Z, p; > 0 for each i and x =Y, j1;a;.
The following theorem, then, is a simple consequence of LP duality.

Theorem 4 A linear system {Ax < b} is TDI iff for each face F of P = {x : Ax < b}, the normals
to the tight constraints for F form a Hilbert basis.

In the above theorem, we could have replaced ’each face’ by ’each extreme point’, and the proof
would also follow easily from LP duality, since for every vector ¢, there always exists an optimum
extreme point.

In our previous example (refer to Figure 1), a Hilbert basis for the cone (the dual cone associated
with the vertex (2,2)) defined by the vectors (1,2) and (2,1) is given by the set of vectors H =
{(1,2),(2,1),(1,1)}. We can get the additional vector (1,1) by adding the redundant constraint
r1 + 22 < 4 in the primal.

3-3



In fact, by considering also the dual cones corresponding to the vertices (3,0), (0,3), (2,2) and
(0,0), one can show that the linear system

T1,x2 2 0
I +2£L'2 S 6
201 +2x2 < 6
xr1 + To < 4
X1 S 3
T S 3

is TDI. For example, the cone corresponding to the vertex (3,0) has a Hilbert basis {(1,2), (-1, 0), (0,1)}.
The following theorem, in combination with Theorem 4, proves Theorem 3.

Theorem 5 Any rational polyhedral' cone C has a finite integral Hilbert basis.
Proof: Let C ={>",Nia; : \i >0, \; € R}, a; € Z". Define Q = {3, \ia; : 0 <\, <1}, For

any ce CNZ",

c= Z)\iai = Z(/\l — I_/\zJ)az + ZL)\ljal =z 4w,
where z = >~ (A; — [ Ai])a; and w = >, [ \;]a;. Since a; € Z™ and | ;] € Z for each i, w € Z™. Since
c € 7™, this implies that z € Z". Clearly, z € @Q; hence, z € @NZ". Furthermore, each a; € QNZ".
Hence, c is an integral combination of vectors in Q@ NZ™. Thus, @ NZ"™ is a Hilbert basis for C. O

We now give a proof of Theorem 2.
Proof of Theorem 2: We proceed by contradiction. Consider an extreme point z* of P such
that z7 ¢ Z for some j. We can find an integral vector ¢ such that z* is the unique optimal
solution corresponding to ¢ by picking a rational vector ¢ in the interior of the dual cone (always
full-dimensional) of 2* and scaling appropriately. Consider ¢ = ¢+ lej where ¢ is an integer. Since
the cone is full dimensional, ¢ will be in the interior of the dual cone of x* for a sufficiently large
q. Now it follows that (¢é¢) " z* — (qc)Ta* = x} ¢ Z. This means that at least one of (qé) Tx* and
(qc) Tx* is not integral. By duality and the fact that b is integral, we conclude that one of the
two corresponding dual optimal solutions (say y and ¢) is not integral. This contradicts the TDI
property since both gc and ¢¢ are integral. ([l

4 Alternative Proof of Integrality for TDI systems

Here we give another proof of Theorem 2 using Kronecker’s Approximation Theorem. (This was not
covered in lecture.)

4.1 Kronecker’s Approximation Theorem

We begin by proving a theorem of Kronecker.

Definition 3 Let a1, ,a, be rational vectors. A lattice L(ay,as,...,a,) is the set {d> . a;z; :
x; € Z Vi}, i.e. is an additive group finitely generated by linearly independent vectors.

(The assumption that it is finitely generated by linearly independent vectors is needed; otherwise,
it would not be discrete (consider the 1-dimensional case generated by 1 and v/2).

1i.e. generated by a finite number of vectors
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Theorem 6 (Kronecker Approximation Theorem (1884)) dz € Z™ s.t. Az = b if and only
if Yy,y b is an integer whenever y' A is an integral vector.

Proof: To prove the forward implication, take an integral solution z*. For any v, since y ' Az* =
y'b, if y" A is integral then y"b must be an integer too.

We next prove the converse. First, suppose that Az = b does not have a solution (over the reals).
Then, there is a solution to y" A = 0 (integral) with b # 0 and, by scaling y appropriately, we
can get y' b ¢ Z. Thus, we can assume that Az = b has a solution, and by getting rid of redundant
equalities, we can assume that A has full row rank.

Let a; denote the jth column of A. The statement that 3z € Z" s.t. Ax = b is equivalent to
saying that b € L(ay,...,a,), or L(A), generated by the columns of A. We will perform a series
of column operations to A resulting in the matrix A’ = [B 0], where B is lower triangular. Each
operation will leave the lattice unchanged, i.e. L(A’) = L(A), so that Az = b will have an integral
solution iff A’z = b has an integral solution. The operations will also be shown to preserve integrality
of y"band y" A, so that it will suffice to consider A’ instead of A in showing the result.

Observe that B must be nonsingular because we have assumed that A has full row rank. Stacking
the y " to form a matrix, we have that for all matrices Y, if YA is an integral matrix then Yb is an
integral vector. Letting Y = B~! note that B~1A’ = [ I 0 | is integral. Hence, B~'b must be

integral. Since
-1

we have found an integral solution to the system A’z = b. All that remains is to (a) describe the
operations on the matrix A and show that they preserve integrality, and (b) show how to use them
to produce A’ from A.

(a) The operations are (i) exchanging two columns, (ii) multiplying a column by —1 and (iii)
subtracting an integral multiple of one column from another column. These are unimodular trans-
formations, i.e. A’ = AT where T € Z™ " and det(T) = %1, so T~ € Z"*". Thus, any sequence
of these operations leaves the lattice intact. Indeed if Az = b where x € Z"™ then A’z’ = b for
2 =T 'z € Z", and vice versa if A’2’ = b for ' € Z" then Az = b for x = Ta' € Z". Also, for
any y, yT AT is an integral vector iff y” A is an integral vector, so the operations also preserve the
property that y b € Z whenever y' A € Z.

(b) Using these elementary operations, we can transform A into the form

A=[B 0] @)

with B lower triangular as follows. For the first row, we can take any two non-zero entries, make
them positive by possibly multiplying the column by —1, and compute their ged using Euclid’s
algorithm,
ged(z —y,y) ifx>y
ged(z,y) = § ged(y, z) if w <y (3)
z,y ify=20
Since these operations are elementary, we can perform them on the columns and reduce the first
row to one non-zero entry. We can then put this column as column 1 and proceed to the next row,
leaving column 1 fixed. Proceeding in this manner results in the desired form for A’. ]

4.2 Proof of Theorem 2

Before showing Theorem 2, we give a corollary of Theorem 6 that we use.

Definition 4 H = {2 : ¢"x = a} is a supporting hyperplane of the polytope P = {x € R™ : Az < b}
if HN P is a non-empty face of P.

3-5



Corollary 7 P = {z € R" : Ax < b} is integral if and only if every supporting hyperplane of P
contains an integral vector.

Proof: The forward implication is immediate because every supporting hyperplane contains a
vertex of P. For the converse, suppose z* is a non-integral vertex of P. We will demonstrate a
hyperplane that does not contain any integral vector. Since xz* is a vertex, there exists a subset A
of the rows of A (that define P) such that z* is a unique solution of the system Az = b. Applying
Kronecker’s approximation theorem, (since z* is the unique solution and is not integral) there must
exist a vector y € R™ such that yTE is non-integral and nyl (a vector) is integral. Assuming that
A and b are rational, we can add an integral constant to the components of y to make y nonnegative
while mantaining that yTI; is non-integral and nyl is integral. Let ¢ = ATy and a = yTl;, and
consider H = {z : ¢T2 = a}. Since Az < b for all # € P, multiplying both sides by y” (> 0) we
obtain that yTAx < yTl;7 ie. ¢’z <aforall 2 € P. The inequalities are tight for z*, which is in
H. We conclude that H is a supporting hyperplane of P. However, c is integral and « is not, so it
follows that H cannot contain any integral vector. O

We now finish the proof of Theorem 2.

Proof of Theorem 1: If Az <bis TDI and b is integral, pick any integral ¢. We will show that
the supporting hyperplane with normal ¢ contains an integral vector. First, we can assume that
the ¢;’s are relatively prime (otherwise divide by their common ged). By our TDIness assumption,
maxc' z subject to Az < b will have value an integer «, and ¢' 2 = « is a supporting hyperplane.
We need to show that it contains an integral vector.

Since the entries of ¢ are relatively prime, we can find an integral vector x contained in the
supporting hyperplane. (Indeed, it can be shown easily by induction on n that if the ged of the
entries of ¢ is g then there is an integral solution to ¢'x = g.) Therefore, we conclude that Az < b

is integral. O

5 Matchings and the Cunningham-Marsh formula

We now come back to the matching polytope, and show that Edmonds’ description using odd
cardinality subset constraints is TDI (a result due to Cunningham & Marsh) . Therefore, by Theorem
2, it integral and it provides a complete characterization of the matching polytope in terms of linear
inequalities.

Edmonds [2] proved that the matching polytope is given by the following system of linear in-
equalities:

Zeeé(v) T, <1 YveV
Q = (xe € R)eGE : ZeeE(U) Te < |U\2—1 YU € Poaa
Te >0 Vec E

where Pogq = {U CV : |U| is odd} denotes the odd cardinality subsets.

Cunningham and Marsh [1] showed that @ is TDI, providing another proof that @ is the matching
polytope, since TDIness implies that all vertices of ) are integral vectors and any valid integer
solution of () is a matching. Consider the dual of max,cq ¢z, where the dual variables are v, for
every vertex v € V and zy for every set U € P,yq4:

minZyU + Z |U|2_ 1zu

veV UEPoqa

s.t. Z Yo + Z 2y > c. Ve € FE
v e€d(v) U€EPoqa:e€E(U)
y>0



TDIness can be stated as follows.

Theorem 8 (Cunningham-Marsh) For all ¢ € ZIP!, there exist integral vectors y and z that are

feasible and 3, cy yo + D pep,,, IU\2—1 zu < v(c), where v(c) is the mazimum cost of any matching.

The proof given here is from Schrijver’s book, while Cunningham and Marsh prove it algorith-

mically.
Proof: We show the result by induction on |V| + |E| + ¢(E) (recall that ¢(F) is integral). We
can assume that ¢(e) > 1 for e € E (otherwise, delete the edge) and that the graph is connected
(otherwise, apply proof to the components). The base case of |V| = 2,|E| = 1,¢(e) > 1 is trivially
shown by setting y; = ¢(e) and y2 = 0. Let D(y, z) denote the value of the dual objective.

Case 1 Jv € V such that every maximum cost matching for ¢ covers v. Define the modified
edge costs ¢/(e) = ¢(e) for e & 5(v) and ¢/(e) = ¢(e) — 1 for every e € 6(v). By the assumption,
the cost of maximum matching v(¢’) is v(¢) — 1. By induction, there exists integral ¢, 2z’ such that
D(y',z") < v(c). Define y, =y, + 1, and y,, = y., for u # v. y and z are feasible since the only
constraints changed are for e € §(v) and both c(e) and y, have increased by 1 above ¢/(e) and y,,
respectively. Also, D(y,z) = D(y',2') +1 < v(¢') + 1 = v(c), finishing the induction step.

Case 2 Otherwise, Vv, 3 some maximum cost matching for ¢ that does not cover v. Define the
modified edge costs ¢/(e) = c(e) — 1 Ve € E. We will show that all maximum matchings M for ¢/
miss at least 1 vertex. Let M be a maximum matching for ¢ with |M| as large as possible. Suppose
for contradiction that M covers all vertices. Let N be a maximum cost matching for ¢ that does
not cover some vertex. Then,

(N) = c(N) = [N| > e(N) = [M| = e(M) — [M] = (M) = v(c),

which contradicts the definition of v (the first inequality is because M covers at least one more
vertex than N, and the second inequality is because N is optimal for c).

Case 2a Suppose there exists a maximum cost matching M’ for ¢ such that |M| = ‘Vlgl, ie.
|V| is odd and M misses precisely one vertex. By induction, there exists integral y’, 2z’ such that
D(y',2") < v(d). Let z = 2/ and y = ¢/, with the exception that zy = 2{, + 1 (for the odd set
V' € Poaq). Since zy is included in every constraint and both it and c(e) were increased by one,
y, z are feasible. Furthermore, D(y,z) = D(y',2') + Wl% <v(d)+ IV‘% < v(c¢), where the last
inequality is because we can construct a matching for ¢ using the matching for ¢’. This finishes the
induction step for |M| = M%

Case 2b Suppose all maximum cost matchings for ¢’ miss at least two vertices. Let M be such
a matching with |M| maximum and unmatched vertices u and v closest. Note that « and v cannot
be adjacent, i.e. d(u,v) > 2, since otherwise we could have added this edge to make the matching
larger. Let t be the second node on the shortest path from w to v in the graph. Note that ¢ must be
matched in M, as otherwise we could increase |M| by matching v and t¢.

Let N be a maximal matching for ¢, ¢(N) = v(c), such that ¢ is unmatched in N. Look at MAN.
Since t is matched in M and unmatched in N, MAN has a component P with ¢ as an endpoint.
Since every vertex in P has degree at most 2, P must be a path. Let M’ be the symmetric difference
MAP and N' = NAP. Since P is a path containing alternatively edges from M and N, M’ and
N’ are both matchings. Also, |M’'| < |M]| because the last edge of the path (connecting to t) is from
M. However,

c(M) +¢(N) ¢(MAP)+c¢(NAP) = (
d(M)+|M|+c¢(N) = J(MAP)+|MAP|+c¢(NAP) = (5
d(M)+|M| < Jd(MAP)+|MAP|, (6

W
NSNS BN’

~—

where the last step was because ¢(N) = v(c) > ¢(NAP). However, since ¢'(M) = v(d') > /(MAP
and |M| > |M'|, Eq. (6) must be an equality and we can conclude that ¢/(M’) = /(M) = v(¢) and
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|M| = |M’|. Note that ¢ is unmatched in M’. Also, P cannot cover both u and v, since neither u nor
v are covered by M and only one of them (if in N) can be the other endpoint of the path. Thus,
M’ = M AP does not cover u or v (or both). Suppose it does not cover u. Then, since ¢ is between
u and v on the shortest path, we have that d(u,t) < d(u,v). This contradicts our choice of M, u,v
since we had assumed that v and v were uncovered vertices with the shortest distance. [

Although we have fully characterized the matching polytope, it has exponentially many con-
straints. Padberg and Rao [3] give an efficient separation algorithm for the odd cardinality subset
constraints that, given z, in polynomial time decides if x € Q. If z ¢ @Q, their algorithm produces a
hyperplane that separates « from Q. The separation algorithm works by finding the minimum odd
cut in a suitable graph.

In the next few lectures, we consider extended formulations of a polytope P, which is a polytope
Q@ lying in a higher-dimensional space but which projects onto P. Surprisingly, () may require fewer
facets than P. And therefore a very natural question is whether the matching polytope admits an
extended formulation with a polynomial (or even subexponential) number of inequalities. This line
of work started with the study of Yannakakis [5], and eventually lead to a result of Rothvoss [4]
which showed that every extended formulation of the matching polytope has an exponential number
of inequalities.
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