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1. Lecture notes on bipartite matching

Matching problems are among the fundamental problems in combinatorial optimization.
In this set of notes, we focus on the case when the underlying graph is bipartite.

We start by introducing some basic graph terminology. A graph G = (V,E) consists of
a set V of vertices and a set E of pairs of vertices called edges. For an edge e = (u, v), we
say that the endpoints of e are u and v; we also say that e is incident to u and v. A graph
G = (V,E) is bipartite if the vertex set V can be partitioned into two sets A and B (the
bipartition) such that no edge in E has both endpoints in the same set of the bipartition. A
matching M ⊆ E is a collection of edges such that every vertex of V is incident to at most
one edge of M . If a vertex v has no edge of M incident to it then v is said to be exposed
(or unmatched). A matching is perfect if no vertex is exposed; in other words, a matching is
perfect if its cardinality is equal to |A| = |B|.
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Figure 1.1: Example. The edges (1, 6), (2, 7) and (3, 8) form a matching. Vertices 4, 5, 9
and 10 are exposed.

We are interested in the following two problems:

Maximum cardinality matching problem: Find a matching M of maximum size.

Minimum weight perfect matching problem: Given a cost cij for all (i, j) ∈ E, find
a perfect matching of minimum cost where the cost of a matching M is given by c(M) =∑

(i,j)∈M cij. This problem is also called the assignment problem.

Similar problems (but more complicated) can be defined on non-bipartite graphs.
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1.1 Maximum cardinality matching problem

Before describing an algorithm for solving the maximum cardinality matching problem, one
would like to be able to prove optimality of a matching (without reference to any algorithm).
For this purpose, one would like to find upper bounds on the size of any matching and hope
that the smallest of these upper bounds be equal to the size of the largest matching. This is
a duality concept that will be ubiquitous in this subject. In this case, the dual problem will
itself be a combinatorial optimization problem.

A vertex cover is a set C of vertices such that all edges e of E are incident to at least
one vertex of C. In other words, there is no edge completely contained in V − C (we use
both − and \ to denote the difference of two sets). Clearly, the size of any matching is at
most the size of any vertex cover. This follows from the fact that, given any matching M ,
a vertex cover C must contain at least one of the endpoints of each edge in M . We have
just proved weak duality: The maximum size of a matching is at most the minimum size of
a vertex cover. As we’ll prove later in these notes, equality in fact holds:

Theorem 1.1 (König 1931) For any bipartite graph, the maximum size of a matching is
equal to the minimum size of a vertex cover.

We shall prove this minmax relationship algorithmically, by describing an efficient al-
gorithm which simultaneously gives a maximum matching and a minimum vertex cover.
König’s theorem gives a good characterization of the problem, namely a simple proof of opti-
mality. In the example above, one can prove that the matching (1, 9), (2, 6), (3, 8) and (5, 7)
is of maximum size since there exists a vertex cover of size 4. Just take the set {1, 2, 5, 8}.

The natural approach to solving this cardinality matching problem is to try a greedy
algorithm: Start with any matching (e.g. an empty matching) and repeatedly add disjoint
edges until no more edges can be added. This approach, however, is not guaranteed to give a
maximum matching (convince yourself). We will now present an algorithm that does work,
and is based on the concepts of alternating paths and augmenting paths. A path is simply a
collection of edges (v0, v1), (v1, v2), . . . , (vk−1, vk) where the vi’s are distinct vertices. A path
can simply be represented as v0-v1-. . .-vk.

Definition 1.1 An alternating path with respect to M is a path that alternates between
edges in M and edges in E −M .

Definition 1.2 An augmenting path with respect to M is an alternating path in which
the first and last vertices are exposed.

In the above example, the paths 4-8-3, 6-1-7-2 or 5-7-2-6-1-9 are alternating, but only
the last one is augmenting. Notice that an augmenting path with respect to M which
contains k edges of M must also contain exactly k + 1 edges not in M . Also, the two
endpoints of an augmenting path must be on different sides of the bipartition. The most
interesting property of an augmenting path P with respect to a matching M is that if we set
M ′ = M 4 P ≡ (M − P ) ∪ (P −M), then we get a matching M ′ and, moreover, the size of
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M ′ is one unit larger than the size of M . That is, we can form a larger matching M ′ from
M by taking the edges of P not in M and adding them to M ′ while removing from M ′ the
edges in M that are also in the path P . We say that we have augmented M along P .

The usefulness of augmenting paths is given in the following theorem.

Theorem 1.2 A matching M is maximum if and only if there are no augmenting paths with
respect to M .

Proof: (By contradiction)
(⇒) Let P be some augmenting path with respect to M . Set M ′ = M 4 P . Then M ′ is

a matching with cardinality greater than M . This contradicts the maximality of M .
(⇐) If M is not maximum, let M∗ be a maximum matching (so that |M∗| > |M |). Let

Q = M 4M∗. Then:

• Q has more edges from M∗ than from M (since |M∗| > |M | implies that |M∗ −M | >
|M −M∗|).

• Each vertex is incident to at most one edge in M ∩Q and one edge M∗ ∩Q.

• Thus Q is composed of cycles and paths that alternate between edges from M and M∗.

• Therefore there must be some path with more edges from M∗ in it than from M (all
cycles will be of even length and have the same number of edges from M∗ and M).
This path is an augmenting path with respect to M .

Hence there must exist an augmenting path P with respect to M , which is a contradiction.
4

This theorem motivates the following algorithm. Start with any matching M , say the
empty matching. Repeatedly locate an augmenting path P with respect to M , augment M
along P and replace M by the resulting matching. Stop when no more augmenting path
exists. By the above theorem, we are guaranteed to have found an optimum matching. The
algorithm terminates in µ augmentations, where µ is the size of the maximum matching.
Clearly, µ ≤ n

2
where n = |V |.

In the example, one would thus augment M along an augmenting path, say 5-7-2-6-1-9,
obtain the matching (1, 9), (2, 6), (3, 8) and (5, 7), and then realize that no more augmenting
paths can be found.

The question now is how to decide the existence of an augmenting path and how to find
one, if one exists. These tasks can be done as follows. Direct edges in G according to M as
follows : An edge goes from A to B if it does not belong to the matching M and from B to
A if it does. Call this directed graph D.

Claim 1.3 There exists an augmenting path in G with respect to M iff there exists a directed
path in D between an exposed vertex in A and an exposed vertex in B.

Exercise 1-1. Prove claim 1.3.
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This gives an O(m) algorithm (where m = |E|) for finding an augmenting path in G.
Let A∗ and B∗ be the set of exposed vertices w.r.t. M in A and B respectively. We can
simply attach a vertex s to all the vertices in A∗ and do a depth-first-search from s till we
hit a vertex in B∗ and then trace back our path.

Thus the overall complexity of finding a maximum cardinality matching is O(nm). This
can be improved to O(

√
nm) by augmenting along several augmenting paths simultaneously.

If there is no augmenting path with respect to M , then we can also use our search
procedure for an augmenting path in order to construct an optimum vertex cover. Consider
the set L (for Labelling) of vertices which can be reached by a directed path from an exposed
vertex in A.

Claim 1.4 When the algorithm terminates, C∗ = (A − L) ∪ (B ∩ L) is a vertex cover.
Moreover, |C∗| = |M∗| where M∗ is the matching returned by the algorithm.

This claim immediately proves König’s theorem.
Proof: We first show that C∗ is a vertex cover. Assume not. Then there must exist
an edge e = (a, b) ∈ E with a ∈ A ∩ L and b ∈ (B − L). The edge e cannot belong to
the matching. If it did, then b should be in L for otherwise a would not be in L. Hence,
e must be in E −M and is therefore directed from A to B. This therefore implies that b
can be reached from an exposed vertex in A (namely go to a and then take the edge (a, b)),
contradicting the fact that b /∈ L.

To show the second part of the proof, we show that |C∗| ≤ |M∗|, since the reverse
inequality is true for any matching and any vertex cover. The proof follows from the following
observations.

1. No vertex in A− L is exposed by definition of L,

2. No vertex in B ∩ L is exposed since this would imply the existence of an augmenting
path and, thus, the algorithm would not have terminated,

3. There is no edge of the matching between a vertex a ∈ (A−L) and a vertex b ∈ (B∩L).
Otherwise, a would be in L.

These remarks imply that every vertex in C∗ is matched and moreover the corresponding
edges of the matching are distinct. Hence, |C∗| ≤ |M∗|. 4

Although the concepts of maximum matchings and minimum vertex covers can be defined
also for general (i.e. non-bipartite) graphs, we should remark that König’s theorem does not
generalize to all graphs. Indeed, although it is true that the size of a maximum matching
is always at most the minimum size of a vertex cover, equality does not necessarily hold.
Consider indeed the cycle C3 on 3 vertices (the smallest non-bipartite graph). The maximum
matching has size 1, but the minimum vertex cover has size 2. We will derive a minmax
relation involving maximum matchings for general graphs, but it will be more complicated
than König’s theorem.
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Exercises

Exercise 1-2. An edge cover of a graph G = (V,E) is a subset of R of E such that every
vertex of V is incident to at least one edge in R. Let G be a bipartite graph with no isolated
vertex. Show that the cardinality of the minimum edge cover R∗ of G is equal to |V | minus
the cardinality of the maximum matching M∗ of G. Give an efficient algorithm for finding
the minimum edge cover of G. Is this true also for non-bipartite graphs?

Exercise 1-3. Show that in any graph G = (V,E) (not necessarily bipartite), the size of
any maximal matching M (i.e. a matching M in which one cannot add an edge while keeping
it a matching) is at least half the size of a maximum matching M∗.

Exercise 1-4. Consider the problem of perfectly tiling a subset of a checkerboard (i.e. a
collection of unit squares, see example below) with dominoes (a domino being 2 adjacent
squares).

1.Show that this problem can be formulated as the problem of deciding whether a bipartite
graph has a perfect matching.

2.Can the following figure be tiled by dominoes? Give a tiling or a short proof that no
tiling exists.

Exercise 1-5. Consider a m×n checkerboard where m is even, and cells are alternatively
colored black and white. Show that if we remove arbitrarily one black cell and one white
cell, the resulting mn− 2 cells can be covered by dominoes.

Exercise 1-6. Consider a bipartite graph G = (V,E) with bipartition (A,B): V = A∪B.
Assume that, for some vertex sets A1 ⊆ A and B1 ⊆ B, there exists a matching MA covering
all vertices in A1 and a matching MB covering all vertices in B1. Prove that there always
exists a matching covering all vertices in A1 ∪B1.
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Exercise 1-7. Consider a bipartite graph G = (V,E) with bipartition (A,B) (V = A∪B).
Let I = {X ⊆ A : there exists a matching M of G such that all vertices of X are matched}.
Show that

1.If X ∈ I and Y ⊆ X then Y ∈ I.

2.If X, Y ∈ I and |X| < |Y | then there exists y ∈ Y \X such that X ∪ {y} ∈ I.

(Later in the class, we will discuss matroids, and properties (i) and (ii) form the definition
of independent sets of a matroid.)

Exercise 1-8. Consider the following 2-person game on a (not necessarily bipartite) graph
G = (V,E). Players 1 and 2 alternate and each selects a (yet unchosen) edge e of the graph
so that e together with the previously selected edges form a simple path. The first player
unable to select such an edge loses. Show that if G has a perfect matching then player 1 has
a winning strategy.

1.1.1 Hall’s Theorem

Hall’s theorem gives a necessary and sufficient condition for a bipartite graph to have a
matching which saturates (or matches) all vertices of A (i.e. a matching of size |A|).

Theorem 1.5 (Hall 1935) Given a bipartite graph G = (V,E) with bipartition A,B (V =
A ∪ B), G has a matching of size |A| if and only if for every S ⊆ A we have |N(S)| ≥ |S|,
where N(S) = {b ∈ B : ∃a ∈ S with (a, b) ∈ E}.

Clearly, the condition given in Hall’s theorem is necessary; its sufficiency can be derived
from König’s theorem.

Exercise 1-9. Deduce Hall’s theorem from König’s theorem.

Exercise 1-10. Consider a bipartite graph G = (V,E) with bipartition (A,B). For X ⊆
A, define def(X) = |X| − |N(X)| where N(X) = {b ∈ B : ∃a ∈ X with (a, b) ∈ E}. Let

defmax = max
X⊆A

def(X).

Since def(∅) = 0, we have defmax ≥ 0.

1.Generalize Hall’s theorem by showing that the maximum size of a matching in a bipar-
tite graph G equals |A| − defmax.

2.For any 2 subsets X, Y ⊆ A, show that

def(X ∪ Y ) + def(X ∩ Y ) ≥ def(X) + def(Y ).
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Exercise 1-11. Let S = {1, 2, · · · , n}. Let Ak be the set of all subsets of S of cardinality
k (thus |Ak| =

(
n
k

)
). Let k < n

2
. Consider the graph Gk with bipartition Ak and Ak+1, and

with E = {(a, b)|a ∈ Ak, b ∈ Ak+1 and a ⊂ b}.

1.Prove that the maximum matching in Gk has size Ak (remember k < n/2).

2.Prove Sperner’s lemma. The maximum number of subsets of S such that no subset is
contained into another is

(
n
bn/2c

)
.

1.2 Minimum weight perfect matching

By assigning infinite costs to the edges not present, one can assume that the bipartite graph
is complete. The minimum cost (weight) perfect matching problem is often described by the
following story: There are n jobs to be processed on n machines or computers and one would
like to process exactly one job per machine such that the total cost of processing the jobs is
minimized. Formally, we are given costs cij ∈ R ∪ {∞} for every i ∈ A, j ∈ B and the goal
is to find a perfect matching M minimizing

∑
(i,j)∈M cij.

In these notes, we present an algorithm for this problem which is based upon linear
programming, and we will take this opportunity to illustrate several important concepts
in linear programming. These concepts will be formalized and generalized in a subsequent
chapter.

The first algorithm given for the assignment problem was given by Kuhn [1955], but he
showed only finiteness of the algorithm. A refined version was given by Jim Munkres [1957],
and showed a polynomial running time. An algorithm is polynomial-time if its running time
(the number of basic operations to run it) is upper bounded by a polynomial in the size of
the input (i.e. the number of bits needed to represent the input). Munkres’ analysis even
shows that the algorithm is strongly polynomial, and this means that the running time is
polynomial in the number of numbers involved (i.e. does not depend on the size of the costs
cij). In this algorithm, the number of operations is upper bounded by O(n3) where n = |V |.

The algorithm is often called the Hungarian method, as it relies on ideas developed by
Hungarians, and especially König and Egerváry. In 2006, it was discovered that the method
had actually been discovered in the 19th century by Jacobi and this was posthumously pub-
lished in 1890 in Latin, see http://www.lix.polytechnique.fr/∼ollivier/JACOBI/jacobiEngl.htm.

We start by giving a formulation of the problem as an integer program, i.e. an optimiza-
tion problem in which the variables are restricted to integer values and the constraints and
the objective function are linear as a function of these variables. We first need to associate
a point to every matching. For this purpose, given a matching M , let its incidence vector
be x where xij = 1 if (i, j) ∈ M and 0 otherwise. One can formulate the minimum weight

http://www.lix.polytechnique.fr/~ollivier/JACOBI/jacobiEngl.htm
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perfect matching problem as follows:

Min
∑
i,j

cijxij

subject to:∑
j

xij = 1 i ∈ A∑
i

xij = 1 j ∈ B

xij ≥ 0 i ∈ A, j ∈ B
xij integer i ∈ A, j ∈ B.

This is not a linear program, but a so-called integer program. Notice that any solution to
this integer program corresponds to a matching and therefore this is a valid formulation of
the minimum weight perfect matching problem in bipartite graphs.

Consider now the linear program (P ) obtained by dropping the integrality constraints:

Min
∑
i,j

cijxij

subject to:

(P )
∑
j

xij = 1 i ∈ A∑
i

xij = 1 j ∈ B

xij ≥ 0 i ∈ A, j ∈ B.

This is the linear programming relaxation of the above integer program. In a linear pro-
gram, the variables can take fractional values and therefore there are many feasible solutions
to the set of constraints above which do not correspond to matchings. But we only care
about the optimum solutions. The set of feasible solutions to the constraints in (P ) forms a
bounded polyhedron or polytope, and when we optimize a linear constraint over a polytope,
the optimum will be attained at one of the “corners” or extreme points of the polytope. An
extreme point x of a set Q is an element x ∈ Q which cannot be written as λy + (1 − λ)z
with 0 < λ < 1, y, z ∈ Q with y 6= z. (This will be formalized and discussed in greater depth
in the chapter on polyhedral combinatorics.)

In general, even if all the coefficients of the constraint matrix in a linear program are either
0 or 1, the extreme points of a linear program are not guaranteed to have all coordinates
integral (this is of no surprise since the general integer programming problem is NP-hard,
while linear programming is polynomially solvable). As a result, in general, there is no
guarantee that the value ZIP of an integer program is equal to the value ZLP of its LP
relaxation. However, since the integer program is more constrained than the relaxation, we
always have that ZIP ≥ ZLP , implying that ZLP is a lower bound on ZIP for a minimization
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problem. Moreover, if an optimum solution to a linear programming relaxation is integral
(in our case, that would imply it is the incidence vector of a perfect matching) then it must
also be an optimum solution to the integer program.

Exercise 1-12. Prove this last claim.

Exercise 1-13. Give an example of an integer program where ZIP 6= ZLP .

However, in the case of the perfect matching problem, the constraint matrix has a very
special form and one can show the following very important result.

Theorem 1.6 Any extreme point of (P ) is a 0-1 vector and, hence, is the incidence vector
of a perfect matching.

Because of the above theorem, the polytope

P = {x :
∑
j

xij = 1 i ∈ A∑
i

xij = 1 j ∈ B

xij ≥ 0 i ∈ A, j ∈ B}

is called the bipartite perfect matching polytope.
To demonstrate the beauty of matchings, we shall give two completely different proofs of

this result, one purely algorithmic here and one purely algebraic in the chapter on polyhedral
theory. The algebraic proof is related to the notion of totally unimodularity.

To prove it algorithmically, we describe an algorithm for solving the minimum weight
perfect matching problem. The algorithm is “primal-dual”. To explain what this means, we
need to introduce the notion of duality of linear programs, and let’s do it in the specific case
of our bipartite matching problem. Suppose we have values ui for i ∈ A and vj for j ∈ B
such that ui + vj ≤ cij for all i ∈ A and j ∈ B. Then for any perfect matching M , we have
that ∑

(i,j)∈M

cij ≥
∑
i∈A

ui +
∑
j∈B

vj. (1)

Thus,
∑

i∈A ui +
∑

j∈B vj is a lower bound on the cost of the minimum cost perfect matching
(for bipartite graphs). To get the best lower bound, we would like to maximize this quantity,
and therefore we obtain another linear program

Max
∑
i∈A

ui +
∑
j∈B

vj

subject to:

(D) ui + vj ≤ cij i ∈ A, j ∈ B.
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The constraints can be interpreted as wij ≥ 0 where wij = cij − ui − vj. This is a linear
program, call it (D). So far, we have shown that this linear program (D) provides a lower
bound on the cost of any perfect matching, but we can even prove that it provides a lower
bound on the value of any solution to the linear program (P ). Indeed consider any x ∈ P .
We have ∑

i∈A

∑
j∈B

cijxij ≥
∑
i∈A

∑
j∈B

(ui + vj)xij

=

(∑
i∈A

ui
∑
j∈B

xij

)
+

(∑
j∈B

vj
∑
i∈A

xij

)
=

∑
i∈A

ui +
∑
j∈B

vj,

because of the constraints that x satisfy. (D) is the dual linear program in the sense of linear
programming duality.

In summary, so far, we know that min
perfect matchings M

∑
(i,j)∈M

cij

 ≥
min

x∈P

∑
(i,j)

cijxij

 ≥ [ max
(u,v)∈D

∑
i∈A

ui +
∑
j∈B

vj

]
.

If, for any instance, we could always find a feasible solution u, v to (D) and a perfect matching
M such that we have equality in (1) (i.e. the cost of the perfect matching is equal to the
value of the dual solution) then we would know that we have equality throughout, that the
matching found is optimum, and that furthermore, the incidence vector of the matching M
is optimum for the linear program (P ). Given a solution u, v to the dual, a perfect matching
M would satisfy equality if it contains only edges (i, j) such that wij = cij − ui − vj = 0.
This is what is referred to as complementary slackness. However, for a given u, v, we may
not be able to find a perfect matching among the edges with wij = 0.

The algorithm performs a series of iterations to obtain an appropriate u and v. It always
maintains a dual feasible solution and tries to find an “almost” primal feasible solution x
satisfying complementary slackness. The fact that complementary slackness is imposed is
crucial in any primal-dual algorithm. In fact, the most important (and elegant) algorithms
in combinatorial optimization are primal-dual. This is one of the most important tool for
designing efficient algorithms for combinatorial optimization problems (for problems which,
of course, admit such efficient solutions).

More precisely, the algorithm works as follows. It first starts with any dual feasible
solution, say ui = 0 for all i and vj = mini cij for all j. In a given iteration, the algorithm
has a dual feasible solution (u, v) or say (u, v, w). Imposing complementary slackness means
that we are interested in matchings which are subgraphs of E = {(i, j) : wij = 0}. If E has
a perfect matching then the incidence vector of that matching is a feasible solution in (P )
and satisfies complementary slackness with the current dual solution and, hence, must be
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optimal. To check whether E has a perfect matching, one can use the cardinality matching
algorithm developed earlier in these notes. If the maximum matching output is not perfect
then the algorithm will use information from the optimum vertex cover C∗ to update the
dual solution in such a way that the value of the dual solution increases (we are maximizing
in the dual).

In particular, if L is as in the previous section then there is no edge of E between A ∩ L
and B − L. In other words, for every i ∈ (A ∩ L) and every j ∈ (B − L), we have wij > 0.
Let

δ = min
i∈(A∩L),j∈(B−L)

wij.

By the above argument, δ > 0. The dual solution is updated as follows:

ui =

{
ui i ∈ A− L
ui + δ i ∈ A ∩ L

and

vj =

{
vj i ∈ B − L
vj − δ j ∈ B ∩ L

One easily check that this dual solution is feasible, in the sense that the corresponding vector
w satisfies wij ≥ 0 for all i and j. What is the value of the new dual solution? The difference
between the values of the new dual solution and the old dual solution is equal to:

δ(|A ∩ L| − |B ∩ L|) = δ(|A ∩ L|+ |A− L| − |A− L| − |B ∩ L|) = δ(
n

2
− |C∗|),

where A has size n/2 and C∗ is the optimum vertex cover for the bipartite graph with edge
set E. But by assumption |C∗| < n

2
, implying that the value of the dual solution strictly

increases.
One repeats this procedure until the algorithm terminates. At that point, we have

an incidence vector of a perfect matching and also a dual feasible solution which satisfy
complementary slackness. They must therefore be optimal and this proves the existence of
an integral optimum solution to (P ). Since, by carefully choosing the cost function, one can
make any extreme point be the unique optimum solution to the linear program (this will
be formally proved in the polyhedral chapter), this shows that any extreme point is integral
and hence this proves Theorem 1.6.

Of course, as some of the readers might have noticed, the proof is not complete yet since
one needs to prove that the algorithm indeed terminates. This can be proved by noticing
that at least one more vertex of B must be reachable from an exposed vertex of A (and no
vertex of B becomes unreachable), since an edge e = (i, j) with i ∈ (A ∩ L) and j ∈ B − L
now has wij = 0 by our choice of δ. This also gives an estimate of the number of iterations.
In at most n/2 iterations, all vertices of B are reachable or the matching found has increased
by at least one unit. Therefore, after O(n2) iterations, the matching found is perfect. The
overall running time of the algorithm is thus O(n4) since it takes O(n2) to compute the set L
in each iteration. By looking more closely at how vertices get labelled between two increases
of the size of the matching, one can reduce the running time analysis to O(n3).
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Exercise 1-14. Check that the running time of the algorithm is indeed O(n3).

Example: Consider the instance given by the following cost matrix defined on a bipartite
graph with 5 vertices on each side of the bipartition:

0 2 7 2 3
1 3 9 3 3
1 3 3 1 2
4 0 1 0 2
0 0 3 0 0

Assume that uT = (2, 3, 0,−2, 0) and vT = (−2, 0, 3, 0, 0). The set E of edges with
wij = 0 corresponds exactly to the set of edges in Figure 1.1. The maximum cardinality
matching algorithm finds the matching (1, 9), (2, 6), (3, 8) and (5, 7), and the set of labelled
vertices is {3, 4, 8}. We compute δ as

δ = min
i∈{3,4},j∈{6,7,9,10}

wij = 1

corresponding to the edge (3, 9). The new vectors u and v are uT = (2, 3, 1,−1, 0) and
vT = (−2, 0, 2, 0, 0). The value of the dual solution has increased from 4 units to 5. The
corresponding set E now has a perfect matching, namely (1, 6), (2, 7), (3, 9), (4, 8) and (5, 10)
of cost 5. Both the matching and the dual solution are optimal.

Exercises

Exercise 1-15. Consider a bipartite graph G = (V,E) in which every vertex has degree
k (a so-called k-regular bipartite graph). Prove that such a graph always has a perfect
matching in two different ways:

1.by using König’s theorem,

2.by using the linear programming formulation we have derived in this section.

(Optional: Is this result also true for non-bipartite graphs?)

Exercise 1-16. Using the previous exercise 15, show that the edges of a k-regular bipartite
graph G can be partitioned into k matchings (i.e. the number of colors needed to color the
edges of a k-regular bipartite graph such that no two edges with a common endpoint have
the same color — the edge chromatic number — is precisely k).

(Optional: Is this result also true also for non-bipartite graphs?)

Exercise 1-17. Given a graph G = (V,E), its edge coloring number is the smallest number
of colors needed to color the edges in E so that any two edges having a common endpoint
have a different color.
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1.Show that the edge coloring number of a bipartite graph G is always equal to its maxi-
mum degree ∆ (i.e. the maximum over all vertices v of the number of edges incident to
v). (Use the previous problem.)

2.Give an example of a non-bipartite graph for which the edge coloring number is (strictly)
greater than ∆.

Exercise 1-18. We have shown that there always exists a solution x to the linear program
(P) with all components integral. Reprove this result in the following way.

Take a (possibly non-integral) optimum solution x∗. If there are many optimum solutions,
take one with as few non-integral values x∗ij as possible. Show that, if x∗ is not integral,
there exists a cycle C with all edges e = (i, j) ∈ C having a non-integral value x∗ij. Now
show how to derive another optimum solution with fewer non-integral values, leading to a
contradiction.

Exercise 1-19. In this exercise, you will do a little experiment with the (minimum cost)
assignment problem. Take a complete bipartite graph with n vertices on each side of the
bipartition, and let us assume that all cij (for i, j ∈ {1, · · · , n}) are all independent uniform
random variables between 0 and 1. Take 5 different values for n (the largest being a few
hundreds) and for each compute the minimum cost assignment value for 5 instances. Any
guess on how this value increases as n goes to infinity. Does it seem to converge? To what
value? Surprised? (Yes, you should be, and it is normal that you do not understand why.)

To solve the assignment problem, you can use MATLAB (it is available on athena). To
access MATLAB on athena, you need to type:

>> add matlab

>> matlab

If you have never used MATLAB before, you can find some tutorial on the 18.06 webpage.
There is a MATLAB m-file at http://www-math.mit.edu/∼goemans/bghungar.m which im-
plements the Hungarian method (just put it in the directory from which you run MATLAB).
If C is an n× n matrix, then

>> a=bghungar(C)

gives a vector a such that (1, a(1)), (2, a(2)), · · · is the maximizing matching. So to get the
value of the minimum assignment, you can just do:

>> a=bghungar(-C);

>> v=sum(diag(C(1:n,a(1:n))))

http://web.mit.edu/18.06/www/
http://www-math.mit.edu/~goemans/bghungar.m
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Exercise 1-20. For the assignment problem, the greedy algorithm (which repeatedly finds
the minimum cost edge disjoint from all the previously selected edges) can lead to a solution
whose cost divided by the optimum cost can be arbitrarily large (even for graphs with 2
vertices on each side of the bipartition).

Suppose now that the cost comes from a metric, even just a line metric. More precisely,
suppose that the bipartition is A ∪B with |A| = |B| = n and the ith vertex of A (resp. the
jth vertex of B) is associated with ai ∈ R (resp. bj ∈ B). Suppose that the cost between
these vertices is given by cij = |ai − bj|.
Consider the greedy algorithm: select the closest pair of vertices, one from A and from B,
match them together, delete them, and repeat until all vertices are matched. For these line
metric instances, is the cost of the greedy solution always upper bounded by a constant
(independent of n) times the optimum cost of the assignment? If so, prove it; if not, give a
family of examples (parametrized by n) such that the corresponding ratio becomes arbitrarily
large.
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