
18.438 Advanced Combinatorial Optimization March 4, 2014

Lecture 8
Lecturer: Michel Goemans Scribe: Alex Wein

1 The Weak Perfect Graph Theorem

Given a graph G = (V,E), recall the definitions from last time:

ω(G) = size of largest clique,

χ(G) = chromatic number
= minimum number of colors required to color vertices
= minimum number of stable sets required to cover vertices,

α(G) = ω(Ḡ) = size of largest stable set,

χ(Ḡ) = minimum number of cliques required to cover vertices.

For S ⊆ V , let G[S] denote the subgraph induced by the vertices in S. Note that w(G[S]) ≤
χ(G[S]) because every node in a clique must be colored with a unique color. Perfect graphs are
those in which equality holds for every S.

Definition 1 A graph G is perfect if for every S ⊆ V , ω(G[S]) = χ(G(S)).

Last time we proved the following lemma.

Lemma 1 (Lovász Repetition Lemma) If G is perfect and G′ is obtained from G by “repeating”
v then G′ is also perfect.

Recall that “repeating” v means creating a new vertex v′ and adding edges {(u, v′) : (u, v) ∈ E} and
(v, v′). Today we will prove the Weak Perfect Graph Theorem which claims that G is perfect iff its
complement Ḡ is perfect. The proof won’t be difficult but illustrates nicely the power of polyhedral
approaches in proving combinatorial statements. First define some polytopes:

STAB(G) = conv (1(S) : S stable in G) ⊆ RV where (1(S))v =

{
1 v ∈ S
0 v /∈ S.

QSTAB(G) =
{
x ∈ RV : x(C) ≤ 1 ∀ clique C, x ≥ 0

}
.

Note that STAB(G) ⊆ QSTAB(G) because the inequalities that define QSTAB(G) are valid
for the indicator vector 1(S) of any stable set S. Now for the main result of this section:

Theorem 2 (Weak Perfect Graph Theorem) The following are equivalent:

(i) G is perfect,

(ii) The linear system

{
x(S) ≤ 1 ∀ stable set S
x ≥ 0

}
is TDI (totally dual integral),

(iii) QSTAB(G) is integral, i.e. QSTAB(G) = STAB(G),

8-1



(iv) Ḡ is perfect.

Note that the linear system in (ii) describes QSTAB(Ḡ). This means condition (ii) implies that
QSTAB(Ḡ) is integral, i.e. QSTAB(Ḡ) = STAB(Ḡ).

Proof: (i) ⇒ (ii). Consider the primal linear program

 Max
∑

v∈V wvxv
x(S) ≤ 1 ∀ stable set S
x ≥ 0

 from (ii)

and its dual

 Min
∑

S stable yS∑
S : v∈S yS ≥ wv ∀v ∈ V

y ≥ 0

. We need to show that for every w ∈ ZV there exists

an integral optimum solution y for the dual. Apply the repetition lemma iteratively in order to
obtain a graph G′ that has wv repeated copies of v for each v ∈ V . Let ω(G,w) be the weight of a
maximum weight clique in G. Note that this is just the maximum integral solution to the primal LP
so ω(G,w) ≤

∑
v∈V wvx

∗
v where x∗ is a primal optimum solution. Next note that ω(G,w) = ω(G′)

because given a clique of total weight W in G it is easy to produce a corresponding clique of size
W in G′; conversely, given a clique of size W in G′ you can produce a clique of total weight at
least W in G. We also have w(G′) = χ(G′) because G′ is perfect by the repetition lemma. If we
now take the collection of χ(G′) stable sets of G′ that cover V ′ then we can map these back to
stable sets of G in the natural way. For each stable set S of G, let yS be the number of copies of
S produced by this “mapping back” procedure. Note that yS is an integral solution to the dual
LP and furthermore must be optimal because there is a primal solution of greater or equal value:∑

S yS = χ(G′) = ω(G′) = ω(G,w) ≤
∑

v∈V wvx
∗
v.

(ii) ⇒ (iii). It is sufficient to let x ∈ QSTAB(G) ∩QV and show x ∈ STAB(G). Choose q ∈ Z
such that qx ∈ ZV

≥0. Define weights wv = qxv ∈ Z and let C be the maximum weight clique in
G. Since x ∈ QSTAB(G) we have (by the defining inequalities for QSTAB) x(C) ≤ 1. If z is the
indicator vector 1(C) then this means

∑
v∈V xvzv ≤ 1. We know that the primal LP from (ii) is

integral (because it is TDI) and is therefore maximized by z (since z describes the maximum weight
clique). The weight of z is

∑
v∈V wvzv =

∑
v∈V qxvzv ≤ q. Therefore the optimum value of the

primal from (ii) is at most q. Since it is TDI there must be an integral dual optimum solution y of
value ≤ q. This y must satisfy

∑
yS ≤ q and

∑
S : v∈S yS ≥ wv ∀v ∈ V . Rewrite these as

∑
1
q yS ≤ 1

and
∑

S : v∈S
1
q yS ≥

wv

q = xv ∀v ∈ V . By modifying the yS variables appropriately (and no longer

requiring y to be integral) we can achieve equality
∑

S : v∈S
1
q y
′
S = xv ∀v ∈ V where y′ denotes the

new decreased variables. This can be done as follows: if
∑

S : v∈S
1
q y
′
S > xv for some v, take an S

containg x with yS > 0 and decrease yS while simultaneously increasing yS\{v}. Once equality is

achieved for every v, increase the y′∅ variable in order to also achieve equality
∑

1
q y
′′
S = 1 (where y′′

are the new variables). But this means we have written x as a convex combination x =
∑

S( 1
q y
′′
S)1(S)

with
∑

1
q y
′′
S = 1, so x ∈ STAB(G).

(iii) ⇒ (iv). It is sufficient to show ω(Ḡ) = χ(Ḡ) instead of showing it for every induced sub-
graph because since QSTAB(G) is an integral polytope, the face QSTAB(G[S]) is also integral.
Since QSTAB is integral, ω(Ḡ) = α(G) = max{

∑
xv |x ∈ QSTAB(G)} = max{

∑
xv |x(C) ≤ 1 ∀

clique C, x ≥ 0}. Consider the (nonempty) face of QSTAB defined by F = {x ∈ RV : x ∈
QSTAB(G),

∑
xv = α(G)}. There must be some constraint of QSTAB that is tight on this face,

i.e. there exists a clique C such that F ⊆ {x ∈ RV : x(C) = 1}. For every stable set S in G
with |S| = α(G) (i.e. every maximum stable set) we have 1(S) ∈ F and so S ∩ C 6= ∅. Now define
G\C = G[V \C] and note that α(G\C) = α(G)−1 because every maximum stable set intersects C.
Also, QSTAB(G \C) is integral because G \C is an induced subgraph and is therefore perfect, and
we have already shown (i) ⇒ (iii). Therefore we can recursively apply the above reasoning to G \C.
After doing this α(G) times we have removed α(G) cliques that cover V . This means χ(Ḡ) ≤ α(G).
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But since α(G) = ω(Ḡ) ≤ χ(Ḡ) is true in general, we must have w(Ḡ) = χ(Ḡ).

(iv) ⇒ (i) There is nothing to prove here because we have already shown (i) ⇒ (iv) and so (iv)
⇒ (i) follows by taking complements. �

After being open for several decades, a structural characterization of perfect graphs was finally
proved, and is stated in the following theorem. We won’t give the very lengthy proof here.

Theorem 3 (Strong Perfect Graph Theorem: Chudnovsky, Robertson, Seymour, Thomas 2002)
G is perfect iff it has no odd hole and no odd antihole of size at least 5.

Recall that a hole is an induced subgraph that is a cycle, and an antihole is the complement of
a hole. A refinement of this theorem gives an algorithm to decide whether G is perfect.

2 Computing the Max Weight Stable Set in a Perfect Graph

One potential strategy for finding the maximum weight stable set in a perfect group is to maximize
w · x over QSTAB(G). However, QSTAB has exponentially-many constraints (because there are
exponentially-many cliques). This is not necessarily a problem because if we could solve the sep-
aration problem then we could use the ellipsoid method. But the separation problem iss hard in
this case because if you were to try to find the constraint that is most violated by some x ∈ RV

you would need to look for the maximum weight clique with respect to the cost function x. This
is equivalent to finding the maximum weight stable set in Ḡ. Note that we have reduced the max
weight stable set problem to the same problem in Ḡ and thus have not made progress. For general
graphs it is in fact NP -hard to optimize over QSTAB.

Lovász found a solution in 1979, and this is the first use of semidefinite programming. He
defined the Theta body TH(G), a convex set in RV that lies between STAB and QSTAB and can
be efficiently optimized over. For any graph G (not necessarily perfect), STAB(G) ⊆ TH(G) ⊆
QSTAB(G). Before we can define TH(G) we need the following definition.

Definition 2 An orthonormal representation of a graph G consists of a unit vector c ∈ RN and,
for each i ∈ V , a unit vector ui ∈ RN such that vTi vj = 0 whenever (i, j) /∈ E.

Here the dimension N can take any value but there is no reason for N to exceed |V |+1 (because
if N > |V | + 1 then the |V | + 1 vectors in the representation will lie in a proper subspace of
RN ). To motivate the definition of the Theta body, note that for any orthonormal representation,∑

i∈V (cTui)
2xi ≤ 1 is a valid inequality for STAB(G) because if x is the indicator vector 1(S) for

a stable set S then
∑

i∈V (cTui)
2xi =

∑
i∈S(cTui)

2 ≤ ||c||2 = 1 since {ui : i ∈ S} are orthonormal.
The Theta body is defined as follows:

TH(G) =

{
x ∈ RV :

∑
i∈V

(cTui)
2xi ≤ 1 ∀ orthonormal representations {ui} of G, x ≥ 0

}
.

By its definition, we have STAB(G) ⊆ TH(G). The Theta body is a convex set but is not neces-
sarily polyhedral because it has infinitely many constraints, one for each orthonormal representation.
In fact, we know how to characterize precisely when it is polyhedral.

Theorem 4 The following are equivalent:

(i) G is perfect,

(ii) TH(G) is polyhedral,
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(iii) STAB(G) = TH(G),

(iv) QSTAB(G) = TH(G).

We will not prove this theorem but we will finish the proof of the above claim that STAB(G) ⊆
TH(G) ⊆ QSTAB(G) for all G. We already showed that STAB(G) ⊆ TH(G) because the
constraints defining TH(G) are valid for indicator vectors of stable sets. Now we show that
TH(G) ⊆ QSTAB. Let x ∈ TH(G) and let C be any clique in G. We need to show x(C) ≤ 1.
Define an orthonormal representation by letting ui = c for i ∈ C and letting the vectors {ui : i /∈ C}
be pairwise orthogonal and contained in c⊥ (the subspace orthogonal to c). Now we have x(C) =∑

i∈C xi =
∑

i∈V (cTui)
2xi ≤ 1, completing the proof.

Next time we will talk about how to optimize over TH(G) using semidefinite programming.
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