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1 Perfect Graph

To define perfect graphs first we need to review several graph parameters. Given a graph G = (V,E),
χ(G) denotes the minimum number of colors required to properly color all vertices of G and ω(G)
denotes the size of the largest clique in G. Since each vertex of a clique should get a distinct color,
χ(G) ≥ ω(G). In this lecture we consider a family of graphs in which the inequality is tight.

Definition 1 (Perfect Graphs) A graph G = (V,E) is perfect if for all S ⊆ V , ω(G[S]) =
χ(G[S]).

Note that the equality is required to hold for all induced subgraphs of G. In fact if we alternatively
only consider G itself and do not put any condition on its induced subgraphs the family will not be
interesting. Union of any graph G = (V,E) with Kn where n ≥ |V | satisfies χ(G∪Kn) = ω(G∪Kn).

Example 1 Any bipartite graph G is perfect.

This is trivial as (i) any induced subgraph of a bipartite graph is bipartite, and (ii) the largest
clique in a bipartite graph is 2 (or 1 if the graph is empty) while the number of colors needed is 2
(or 1 if the graph is empty).

Example 2 Let G be a complement of a bipartite graph. Then G is perfect.

Though it is straightforward to show that any bipartite graph is perfect, proving that complement
of a bipartite graph is perfect is more involved. In fact it requires to show that for any bipartite
graph G, χ(Ḡ) = ω(Ḡ) or equivalently α(G) = χ̄(G) where α(G) denotes the size of largest stable
set1 in G and χ̄(G) denotes the smallest number of cliques needed to cover all vertices of G. This is
known as König edge covering theorem. There are some other families that are known to be perfect.

Interval graphs Graph G = (V,E) is an interval graph if there is a mapping between vertices of
G and intervals in real line (φ : V → R × R) such that (u, v) ∈ E iff Iv ∩ Iu 6= ∅ where Iv, Iu ⊂ R
are respectively the intervals associated with v and u.

Example 3 Any interval graph (the complement of any interval graph) is a perfect graph.

Comparability graphs Graph G = (V,E) is a comparability graph if it has an acyclic transitive
orientation. More precisely, graph G is a comparability graph if we can orient its edges such that
the resulting digraph D = (V,A) has the following properties:

1. Transitivity: If (u, v) and (v, w) are both in A, (v, w) ∈ A too.

2. Anti-symmetry: If (u, v) ∈ A, then (v, u) /∈ A.

Note that these properties guarantee that the oriented graph is acyclic. Moreover, we can interpret
a comparability graph as a partial ordered set (poset) over vertices of G; each edge connects two
comparable elements. In this way ω(G) corresponds to the size of the largest chain in G and χ(G)
captures the minimum number of disjoint antichains that cover G.

1also known as independent set
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Figure 1: A coloring of G such that v belongs to class A

Lemma 1 Any comparability graph G is perfect.

The proof follows from Dilworth’s theorem on posets.
It was highly believed that the complement of any perfect graph G is perfect till finally Lovász

proved the following remarkable theorem.

Theorem 2 ((Weak) Perfect Graph Theorem [1]) G is perfect iff Ḡ is perfect.

A key part in the proof of (Weak) Perfect Graph Theorem is the following lemma known as the
repetition lemma.

Lemma 3 (Repetition Lemma) Let G = (V,E) be a perfect graph and v ∈ V . Then Gv =
(V ∪ {v}, E ∪ {(v, v′)} ∪ {(v′, w) | (v, w) ∈ E}) is perfect too.

Proof: First it is straightforward to see that we only need to show that χ(Gv) = ω(Gv) to prove
that Gv is perfect. The reason is that if a subgraph H of Gv contains at most one of v and v′ it is a
subgraph of G as well and the fact that G is perfect implies that χ(H) = ω(H). And if H contains
both v and v′ then it is obtained by repeating v in a subgraph G′ of G, and χ(H) = ω(H) would
then follow by considering G′.
Based on whether v participates in any maximum clique of G, we consider two cases.

• Case 1: there exists a maximum clique of G that contains v.

Since v′ is incident to all neighbors of v, ω(Gv) = ω(G) + 1. Moreover χ(Gv) ≤ χ(G) + 1 since
we can use a coloring of G and give v′ a new color. Thus χ(Gv) ≤ ω(Gv) and we must have
equality since the reverse inequality alays hold.

• Case 2: no maximum clique of G contains v.

Consider a coloring of G as in Figure 1. Since no maximum clique contains v, every maximum
clique of G intersect A \ {v}. Thus by removing the set A− \{v} the size of maximum clique
decreases by one.

ω(G[V \ (A \ {v})]) = ω(G)− 1.

Since G is a perfect graph, ω(G[V \(A\{v})]) = χ(G[V \(A\{v})]). Now we can add a new color
for {v′}∪(A\{v})to properly color Gv with ω(G) colors. Thus ω(Gv) = ω(G) = χ(G) = χ(Gv).
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