Problem Set 2

This problem set is due in class on March 22, 2012. (There is no class on Tuesday March 20th.)

1. We have seen in lecture that any rational polyhedral cone C has an integral Hilbert basis. Assume that C is also pointed (i.e. there exists a vector $b \in \mathbb{R}^n$ such that $b^T x > 0$ for all $x \in C \setminus \{0\}$). Show then that

 $H := \{a \in (C \setminus \{0\}) \cap \mathbb{Z}^n | a \text{ is not the sum of two other integral vectors in } C\}$

is the unique minimal Hilbert basis of C (i.e. it is a Hilbert basis, and every other Hilbert basis contains all vectors in H).

2. Prove that a $0, \pm 1$ matrix which is minimally *not* totally unimodular (i.e. having all square subdeterminants in $\{-1, 0, 1\}$ except for the matrix itself) has determinant ± 2 .

(Hint: think about pivoting on a nonzero element.)

3. Prove that if a matroid is representable over GF(2) and over GF(3) then it can be represented over any field by a totally unimodular matrix (it is thus regular).

(Hint: Start with a representation [I|B] of the matroid over GF(3) and interpret it as a real matrix with entries $0, \pm 1$. Also use the previous exercise.)

(Remark: The statement is still true if one replaces GF(3) by any field of characteristic other than 2.)

- 4. Given a graph G = (V, E), let $\mathcal{I} = \{F \subseteq E | |E(S) \cap F| \le 2|S| 3 \text{ for all } S \subseteq V \text{ with } |S| > 1\}$. We want to show that (E, \mathcal{I}) defines a matroid.
 - (a) For $F \in \mathcal{I}$, let

$$f_F(S) := \begin{cases} 2|S| - 3 - |E(S) \cap F| & |S| > 1\\ 0 & |S| \le 1 \end{cases}$$

Observe that $F \in \mathcal{I}$ is equivalent to f_F being nonnegative. Observe that the function f_F is *not* submodular.

For $F \in \mathcal{I}$, call a set $S \neq \emptyset$ tight if $f_F(S) = 0$. Show that if A and B are tight and $|A \cap B| > 1$ then $A \cup B$ is tight (and so is $A \cap B$ but you won't need that).

(b) Prove that (E, \mathcal{I}) satisfy the matroid axioms (for independence).