Problem 1 (Based on Zeyuan Zhu’s solution)

We first claim H is a Hilbert basis. Assume that there is an $x \in \mathbb{C}\{0\} \cap \mathbb{Z}^n$ which cannot be represented in H. Among these vectors, let x minimize $b^T x$. Which can be done because $b^T y > 0$ for all $y \in \mathbb{C}\{0\}$ and \mathbb{Z}^n is discrete. Now by definition x is not in H, hence $x = y + z$ can be written as a sum of two other elements. However since $b^T x = b^T y + b^T z > b^T y$ and $b^T x > b^T z$ for the same reason. We know that both y and z can be represented in H because of the minimality of $b^T x$. So we have a contradiction.

The fact that H is minimal is straightforward. Let $x \in H$, write x as a combination of some elements in H'. The definition of H implies that there are at most one such element. so $x \in H'$.

Problem 2

Solution 1

Let A be such a matrix. We prove by induction on the size n.

For $n=2$, the result is trivial. For induction step, we pivot on the corner element a_{11}, without loss of generality assuming $a_{11} = 1$. We do row operations on A. That is keeping the first row, adding to the rest to make $a_{k1} = 0$ for $k = 2, 3, ..., n$. Then we get a new matrix

$$A' = \begin{vmatrix} 1 & \ast \\ 0 & M' \end{vmatrix}$$

Claim: M is still a minimally not totally unimodular matrix.

For any proper square submatrix N' of M', we add the corresponding elements in the first row and the first column to N' to get N, then

$$\det(N') = \det(N)$$

Just note that if we reverse the row operations on N, it goes back to an square submatrix of A hence the determinant of the submatrix is in $\{-1, 0, 1\}$. Therefore $\det(N')$ is also in $\{-1, 0, 1\}$. Furthermore note that $\det(M')=\det(A)\neq \pm 1, 0$, so we prove the claim.

By induction hypothesis, $\det(M')= \pm 2$, so is $\det(A)$.

Solution 2 (Based on Zeyuan Zhu’s solution)

We again prove by induction. The case of $n=2$ is trivial. Without loss of generality we assume $a_{11} \neq 0$, and for simplicity we assume that $a_{11} = 1$. Using "Chio Pivotal Condensation method", the determinant of A is

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{11} & a_{14} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{21} & a_{24} \\ a_{11} & a_{12} & a_{13} & \cdots & a_{11} & a_{1n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{31} & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{11} & a_{12} & a_{13} & \cdots & a_{11} & a_{1n} \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{n1} & a_{nn} \end{vmatrix}$$

Now, we look at the new $(n-1) \times (n-1)$ matrix above. It is also minimally not tally unimodular:

- its determinant is not within $\{-1, 0, 1\}$ because $\det(A)$ is not
• any \(m \times m \) submatrix of it has the same determinant as a \((m + 1) \times (m + 1) \) submatrix of the original matrix \(A \), and thus must be in \(\{-1, 0, 1\} \).

Therefore by induction, \(\det(A) \) is either 2 or -2.

Problem 3 (Based on Zeyuan Zhu’s solution)

Suppose that for our given matroid \(M \) we have a representation \([I|M]\) over \(GF(3)\), which means \(M \) contains entries of \(\{\pm 1, 0\} \) only. Now I first claim that, if we define \(M' \) to be such that it is 1 whenever \(M \) is \(\pm 1 \) and 0 if \(M \) is 0, then:

Lemma 1. \([I|M']\) is the representation of the same matroid \(M \) over \(GF(2)\).

Proof. This proof is similar to the proof we have seen in class that says any binary matroid does not have a \(U_2^2 \) minor.

Indeed, let \(N \) be the matroid defined by \([I|M']\) over \(GF(2)\). Then, \(M \) and \(N \) share a same basis \(B \) on coordinates corresponding to the columns in the diagonal matrix \(I \).

This set \(B \) is a basis both in \(M \) and \(N \). Using the same technique we have seen in class, that is, let \(X \) be the set that minimizes \(|X\Delta B|\). If \(|X\Delta B| > 2\), then this shows that \(N \) has a \(U_2^2 \) minor, but this cannot happen to a binary matroid \(N \). This means, we must have \(|X\Delta B| = 2\) if \(M \neq N \).

But this is also impossible, because as seen in class, for each \(b \in B \) and \(s \in S \setminus B \), \(B - b + s \) is an independent in \(M \) iff it is independent in \(N \). This means, we must have \(M = N \), and thus \([I|M']\) is the binary representation of the same matroid.

Now back to the original proof. This time, let \(M \) be the given matroid (representable as \([I|M]\) over \(GF(3)\) or \([I|M']\) over \(GF(2)\)), but let us use \(P \) to denote the matroid representable by \([I|M]\) over reals. I want to show that:

Lemma 2. \(M = P \) are the same matroid.

Proof. For any subset \(T \subseteq S \), if \(T \) is independent in \(M \), let \(M_T \) be the submatrix of \([I|M]\) of size \(|T| \times |T|\) that has determinant not equal to 0 \(\in F_3 \), and thus also not equal to 0 over reals, so \(T \) is independent in \(P \).

We can actually say something stronger here, that is, \(\det(M_T) \) is not only nonzero over reals, but also \(\pm 1 \). This can be shown by induction. If \(|T| = 1\) this is true for sure because all entries of \(M \) are \(\pm 1 \). For any \(T \), by induction we know that all its subdeterminants are \(\pm 1 \), so if \(\det(T) \not\in \{-1, 1\} \), then \(\det(T) \) must be \(\pm 2 \) by Problem 2. However, since the same matrix \(M_T \) (after converting to \(M_T' \) by changing \(-1\) to \(1 \)) is also full rank over \(GF(2) \), we must have \(\det(T) \neq \pm 2 \). This says we can only have \(\det(T) = \pm 1 \). This property will be used in the next paragraph.

If \(T \) is a circuit (smallest dependent set) in \(M \), we similarly define \(M_T \) to be some \(|T| \times |T|\) submatrix of \([I|M]\), such that its determinant over \(GF(3) \) is 0 (because \(T \) is dependent), but its subdeterminants over all smaller matrices are \(\pm 1 \in F_3 \) (because \(T \) is a circuit). Now, we know that all subdeterminants of \(M_T \) over real are also \(\pm 1 \) (this is because of the previous paragraph). Great! Now we can use Problem 2 again and claim that \(\det(M_T) \in \{\pm 2, \pm 1, 0\} \) over reals, but since it must be 0 module 3, we must have \(\det(M_T) = 0 \) over reals.

In sum, we have shown that all independent sets are also independent in \(P \); and also all circuits are also circuits in \(P \). This ends the proof that \(M = P \).

Back to the original problem, since we now know that the given matroid is representable over real by a unimodular matrix, and further more, if one carefully follows the proof above, he should notice that any independent set corresponds to determinant \(\pm 1 \) and circuit corresponds to determinant 0. This must also be true for any field with a unit element.
Problem 4 (Based on Mohammad Bavarian’s solution)

4(a)
Observe that $|A \cap B| > 1$ implies $|A| > 1, |B| > 1$ and $|A \cup B| > 1$. We have

$$f_F(A \cap B) + f_F(A \cup B) = 2|A \cap B| - 3 - |F \cap E(A \cap B)| + 2|A \cup B| - 3 - |F \cap E(A \cup B)|$$

$$\leq 2|A| + 2|B| - 6 - |F \cap E(A)| - |F \cup E(B)| = 0$$

Hence $A \cup B$ is tight.

4(b)
Consider $|F_1| < |F_2|$. We would like to show that there is an $e \in F_2 \setminus F_1$ such that $F_1 \cup \{e\}$ is still independent.

For each $e = (u, v) \in F_2$ define $V_e \subseteq V$ such that $|V_e|$ is maximal with property that $e \in V_e$ and $f_{F_1}(V_e) = 0$. We are basically taking maximal tight set w.r.t F_1 containing e.

Now for $e = (u, v) \in F_2 \cap F_1$ clearly at least one tight set containing e exists. That is $S = \{u, v\}$ and $f_{F_1}(S) = f_{F_2}(S) = 2 \times 2 - 3 - 1 = 0$.

If for some $e = (u, v) \in F_2 \setminus F_1$, no tight set containing e exists, we are done. Because one can verify that $f_{\{e\} \cup F_1}(S) \geq 0$ for any $S \subseteq V$.

Next we assume for any $e \in E$, the set V_e exists and is nonempty. Take all the different $V_{e_i}, i = 1, 2, ..., k$. Then V_{e_i} induce a partition of the edges of F_1.

Indeed assume that $(E(V_{e_i}) \cap F_1) \cap (E(V_{e_j}) \cap F_1) \neq \emptyset$ for some $i \neq j$. Then $|V_{e_i} \cap V_{e_j}| \geq 2$ because they both contain the vertices of an edge in F_1. According to part (a), $V' = V_{e_i} \cup V_{e_j}$ is also tight w.r.t F_1, this is impossible by the maximality of V_{e_i} and V_{e_j}.

Now note that

$$f_{F_1}(V_{e_i}) = 0 \leq f_{F_2}(V_{e_i})$$

one has

$$|E(V_{e_i}) \cap F_1| \geq |E(V_{e_i}) \cap F_2|$$

and

$$|F_1| = \sum |E(V_{e_i}) \cap F_1| \geq \sum |E(V_{e_i}) \cap F_2| \geq |F_2|$$

contradiction!