
18.438 Advanced Combinatorial Optimization Updated May 3rd, 2012

Lecture 23

Lecturer: Michel X. Goemans Scribe: Dan Stratila (May 2004)

Consider a planar graph G = (V,E) and a set of terminal pairs R = {(si, ti) : i = 1, · · · , k}.
Assume G is planar, (V,E ∪R) is Eulerian, and all terminals lie on the outer face of G. In
this lecture, we will cover the following results.

• The Okamura-Seymour theorem on the equivalence between the existence of si-ti
edge-disjoint paths and the cut condition |δE(S)| ≤ |δR(S)|,∀S ⊆ V [OS81].

• The Wagner-Weihe linear-time algorithm for finding the edge-disjoint paths [WW93,
RLWW95, WW95].

Chapter 74 of [Sch03] contains a proof of the Okamura-Seymour theorem, as well as a survey
of related results.

1 The Okamura-Seymour Theorem

We begin with the main theorem.

Theorem 1 (Okamura-Seymour) Consider an undirected planar graph G = (V,E) and
a set of terminal pairs R = {(si, ti) : si ∈ V, ti ∈ V, i = 1, · · · , k} s.t. the following conditions
are satisfied:

1. The terminals are on the boundary of the outside face of G.1

2. The Euler condition: (V,E ∪ R) is Eulerian.

3. The cut condition: |δE(S)| ≤ |δR(S)|,∀S ⊆ V .

Then there exist edge disjoint paths between si and ti, i = 1, · · · , k.

Note that since given 1 and 2, the necessity of 3 is obvious, the Theorem can also be
stated as an equivalence condition, as is done, for example, in [Sch03].

To prove Theorem 1, we will use two lemmas. First, we show it suffices to consider cuts
that result in connected subgraphs, and then we reduce the problem to the 2-connected
case. As before, let dE(S) := |δE(S)|.

Lemma 2 For any edge-disjoint path problem, dE(S) ≥ dR(S),∀∅ 6= S (V if and only if
dE(S) ≥ dR(S),∀∅ 6= S (V s.t. G[S] and G[V \ S] are connected.

Proof: W.l.o.g. assume that G[S] is disconnected and consists of connected components
G[S1] and G[S2]. If dE(S) < dR(S), then

dE(S1) + dE(S2)
(∗)
= dE(S) < dR(S)

(∗∗)

≤ dR(S1) + dR(S2), (1)

23-1

s1

t2

s2

s3

t3v

t1

Figure 1: A 1-connected graph separated by cut vertex v into 4 smaller components. Path
edges are in bold; the original requirement set is R = {(s1, t1), (s2, t2), (s3, t3)}, and the new
requirement set is R′ = {(s1, v), (t1, v), (s2, t2), (s3, v), (t3, v)}.

where (∗) holds since G[S] is disconnected, and (∗∗) holds since δ(S) ⊆ δ(S1)∪ δ(S2). Since
d(·) ≥ 0, this implies dE(S1) < dR(S1) or dE(S2) < dR(S2). �

Lemma 3 We can assume w.l.o.g. that G is 2-connected.

Proof: If G is not connected, we can inductively reduce the problem to a set of smaller
subproblems, one for each connected component. If G is 1-connected, then there exists a
vertex v s.t. G − v is disconnected.

For any i, if si and ti are in the same component of G − v, then any solution can be
transformed into a solution where the si-ti path is entirely contained in that component. If
si and ti are in different components, then v will belong to any si-ti path, and replacing R
with

R \ {(si, ti)} ∪ {(si, v), (ti, v)} (2)

yields an equivalent instance (see Figure 1).
Repeating this for all i we reduce the problem to a set of smaller problems with terminals

on the boundary and that satisfy the Euler condition. Moreover, each problem satisfies the
(induced) cut condition if and only the original problem does. By induction, we assume that
each subproblem has a solution to the edge-disjoint paths problem if the cut condition is
satisfied. Since we can reconstruct the solution to the original problem from the subproblem
solutions, it follows that the original problem has a solution to the edge-disjoint paths
problem if the cut condition is satisfied. �

We can also begin with the counterexample construction, and show that a (2|E| − |R|)-
minimal counterexample needs to be 2-connected, as is done in [Sch03].

1We will assume there is a fixed planar embedding associated with G.

23-2

Cv

w

S

V \ S

Figure 2: Example of set S that contains non-consecutive vertices of C, and thus disconnects
G[V \ S]. The path P is in bold.

Proof of Theorem 1: Suppose the theorem is not true, and consider the set of coun-
terexamples with E minimum; from this set, select a counterexample with |R| as large as
possible. Let C be the simple cycle along the border of the outside face.

Suppose there is pair s.t. si and ti are adjacent in E, then we can remove both the edge
from E and the pair from R. The resulting instance satisfies the Euler condition, since we
deleted two parallel edges from (V,E ∪ R); it also satisfies the cut condition, since any cut
either crosses both the edge and (si, ti) or neither. However, since a feasible solution to the
modified instance yields a feasible solution to the original instance, the modified instance
has no feasible solution, and is thus a counterexample. This contradicts the minimality of
the original counterexample, hence

there is no pair with (si, ti) ∈ E. (3)

We will call a set S tight if dE(S) = dR(S). Suppose that there is no tight set, and
remove some edge e = (u, v) ∈ E(C) and add (u, v) to R. Let the corresponding sets of
the new instance be E′ and R′. Fix a set S ⊂ V , and note that dE′(S) − dR′(S), and
dE(S) − dR(S) ≥ 0 are both even. Therefore the cut condition can only be violated for S
in the new instance if S was tight in the original instance. It follows that the new instance
satisfies the cut condition, which contradicts the minimality of the counterexample (again
because we can translate a feasible solution to the new instance into one for the original
instance), thus

the original instance contains at least one tight set. (4)

Next, we show that since G[S] and G[V \ S] are connected, both S and V \ S cannot
contain non-consecutive elements of V (C). To see this, suppose w.l.o.g. that S contains
vertices v,w ∈ V (C) s.t. for either side of C between v and w, not all vertices between v
and w are in S. Since G[S] is connected, there is a path P from v to w in G[S]. Since G is
planar and v,w belong to the outside face, this path implies G[V \ S] is disconnected (see
Figure 2). This is a contradiction, thus

both S and V \ S contain consecutive elements of V (C), (5)

or in other words |δE(S) ∩ E(C)| = 2.

23-3

C

sr

w

u = v

X

tr

a) The set-up.

C

sr

w

u = v

X

Y
tr

b) The contradiction.

Figure 3: The counterexample construction for Theorem 1. Edges crossing the cut X are in
bold. Demand pairs are denoted by dotted lines, and the vertex yielding the contradiction
is drawn hollow.

Take a tight set X with |X| minimum, let (w, u) ∈ E(C) with w ∈ X,u 6∈ X, and select
a terminal pair (sr, tr) s.t. sr ∈ X, tr 6∈ X, and tr is closest (w.r.t the number of edges in a
path) to u. By (3), we can take v ∈ {w, u} \ {sr, tr} (see Figure 3.a)). Consider a new set
of demand pairs

R′ = R \ {(sr, tr)} ∪ {(sr, v), (tr , v)}, (6)

and note that the terminals are still on the boundary of the outside face, and the Euler
condition is still satisfied, because in (V,E ∪ R) the degree of v increased by 2, while all
other degrees remained unchanged. Therefore, the cut condition must be violated for R′,
otherwise it would contradict the minimality of the counterexample.

This implies we can pick a violating set Y, v ∈ Y , which immediately implies by con-
struction of R′, sr 6∈ Y, tr 6∈ Y . Moreover, dE(Y) < dR′(Y) implies dE(Y) = dR(Y), i.e. Y
was tight. Now, note that

dR(X ∩ Y) + dR(X ∪ Y)
(i)
= dR(X) + dR(Y)

(ii)
= dE(X) + dE(Y)

(iii)

≥ dE(X ∩ Y) + dE(X ∪ Y)
(iv)

≥ dR(X ∩ Y) + dR(X ∪ Y), (7)

since:

(i) dR(X∩Y)+dR(X∪Y) ≤ dR(X)+dR(Y) due to submodularity, and a strict inequality
can only occur if there is a demand pair from X \ Y to Y \ X. This cannot happen,
since tr 6∈ Y and u ∈ Y imply the endpoint of this pair in Y \X would be closer to u,
due to (5) (see Figure 3.b)).

(ii) This is simply because both X and Y are tight.

(iii) This is again due to submodularity of cut cardinality.

(iv) The cut condition implies dE(X ∩ Y) ≥ dR(X ∩ Y) and dE(X ∪ Y) ≥ dR(X ∪ Y).

23-4

Therefore, equality holds throughout, and since dE(X ∩Y) ≥ dR(X ∩ Y) and dE(X ∪Y) ≥
dR(X ∪ Y) and all quantities are nonnegative, we get dE(X ∩ Y) = dR(X ∩ Y). However
|X ∩ Y | < |X|, since sr ∈ X, sr /∈ Y .

Unless X ∩ Y = ∅, this violates the minimality of X (if X ∩ Y is disconnected, then
one of the components will be violating the cut condition, and the minimality of X). If
X ∩ Y = ∅, then w 6∈ Y , hence v = u ∈ Y . Since w ∈ X and u 6∈ X, this implies (u,w)
connects X \ Y and Y \ X, which contradicts the “sandwich” equality (iii) of (7). �

2 The Wagner-Weihe algorithm

In this section we present the Wagner-Weihe algorithm. The algorithm either finds the si-ti
edge-disjoint paths, or a proof of infeasibility in the form of a violated cut. The running
time is O(n), and, for our description, we assume a planar embedding and a sorted list of
edges to be given. In the algorithm we will also assume, w.l.o.g., that each terminal source
or destination is a separate vertex connected to the original vertex by an edge.

Step 1: Re-pair.

a) Choose a terminal x ∈ ∪k
i=1{si, ti}, and enumerate the vertices of V (C) counterclock-

wise. When encountering a vertex in a demand pair {si, ti} for the first time, associate
to it an opening parenthesis, and when encountering one for the second time, associate
to it a closing parenthesis.

b) Obviously, the parenthesis in the result string are correctly nested. Each pair of
matching parenthesis will define a new demand pair {s′

i
, t′

i
}, and we will number them

in order of closing parenthesis.

For example, for the graph in Figure 4, we renumber starting from the pair 5 terminal
on the left side of the graph, and obtain (the new numbering is denoted, through a
slight abuse of notation, by 1′, 2′, . . .):

Original demand pair 5 3 4 2 4 5 1 3 2 1

Parenthesis (((()) ()))
New demand pair 5′ 4′ 2′ 1′ 1′ 2′ 3′ 3′ 4′ 5′

c) For i = 1′ to k′, proceed from si by “right-first” search, i.e. when at a vertex, always
take the right-most edge (clockwise) that is not already in use. If stuck in the graph,
or if reached the wrong terminal, stop, one can find a violated cut.

Step 2: return to original pairing.

a) Remove edges unused in the paths from step 1, and orient the remaining edges in the
direction used.

b) Enumerate the pairs of R in the order of their closing parenthesis. For each pair, do
“right-first search” on the resulting graph. If stuck in the graph, or if reached the
wrong terminal, stop, one can find a violated cut.

23-5

Denote the instance obtained through re-pairing starting with terminal x by Ix, and its
requirement set by Rx. We will only prove the following lemma.

Lemma 4 The cut condition holds for the original instance I if and only if it holds for any
re-paired instance Ix.

Proof: For necessity, let S be a violated cut for some instance Ix. Recall that the number
of edges dE(S) is unchanged, so we evaluate dR(S) and dRx

(S).
W.l.o.g. we can assume that x 6∈ S, and S contains consecutive vertices of V (C). Then,

the terminal pairs in S represent a consecutive set of paranthesis in the string obtained at
step 1.b). Since the parenthesis are correctly nested, the set of parenthesis corresponding
to demand pairs crossing S consists of k′ ≥ 0 unmatched closing parenthesis, followed by a
k′′ ≥ 0 unmatched opening parenthesis; k′ + k′′ = dRx

(S).
Let S′, S′′ be the terminals in S before and including the last unmatched “)”, and in

S after the last unmatched “)”, respectively. Then, S′ contains k′ more “)” than “(”, thus
there are k′ pairs in R crossing it, and since in R every “)” is preceded by its “)”, these
pairs also cross S. Similarly, S′ contains k′′ more “(” than “)”, thus there are k′′ more pairs
in R crossing S. Hence dR(S) ≥ dRx

(S) > dE(S).
Conversely, to see sufficiency, let S be a cut violated w.r.t R. Choose x to be the first

vertex in S. Then, every pair in R that crosses S will have an opening parenthesis, but not
a closing one associated to it. As a result, S will contain dR(S) more “(” than “)” in it,
and thus dRx

(S) ≥ dR(S) > dE(S). �

A successful run of the algorithm is illustrated in figures 4–7; an unsuccessful run,
together with the violating cut is illustrated in figures 8–11. For the latter, the re-pairing
is:

Original demand pair 3 2 1 4 3 2 1 4

Parenthesis (((())))
New demand pair 4′ 3′ 2′ 1′ 1′ 2′ 3′ 4′

A violated cut can be obtained by using the path that got stuck or arrived at the wrong
destination, and is illustrated in Figure 12.

References

[OS81] Haruko Okamura and P. D. Seymour. Multicommodity flows in planar graphs.
J. Combin. Theory Ser. B, 31(1):75–81, 1981.

[RLWW95] Heike Ripphausen-Lipa, Dorothea Wagner, and Karsten Weihe. Efficient al-
gorithms for disjoint paths in planar graphs. In Combinatorial optimization
(New Brunswick, NJ, 1992–1993), volume 20 of DIMACS Ser. Discrete Math.
Theoret. Comput. Sci., pages 295–354. Amer. Math. Soc., Providence, RI, 1995.

[Sch03] Alexander Schrijver. Combinatorial optimization. Polyhedra and efficiency.
Vol. C, volume 24 of Algorithms and Combinatorics. Springer-Verlag, Berlin,
2003. Chapter 74.

23-6

[WW93] Dorothea Wagner and Karsten Weihe. A linear-time algorithm for edge-disjoint
paths in planar graphs. In Algorithms—ESA ’93 (Bad Honnef, 1993), volume
726 of Lecture Notes in Comput. Sci., pages 384–395. Springer, Berlin, 1993.

[WW95] Dorothea Wagner and Karsten Weihe. A linear-time algorithm for edge-disjoint
paths in planar graphs. Combinatorica, 15(1):135–150, 1995.

23-7

5, 5′

3, 4′ 4, 2′

2, 1′

4, 1′

5, 2′

1, 3′3, 3′2, 4′1, 5′

Figure 4: Initial graph for the Wagner-Weihe algorithm, together with the terminal pairs
resulting from re-pairing. We will illustrate a successful run of the algorithm on this graph.

23-8

5, 5′

3, 4′ 4, 2′

2, 1′

4, 1′

5, 2′

1, 3′3, 3′2, 4′1, 5′

Figure 5: The results of the “right-first search” w.r.t. the re-paired terminals. Path between
different terminal pairs are styled differently. Plain undirected edges are unused.

5, 5′

3, 4′ 4, 2′

2, 1′

4, 1′

5, 2′

1, 3′3, 3′2, 4′1, 5′

Figure 6: The resulting directed graph with the unused edges deleted.

23-9

5, 5′

3, 4′ 4, 2′

2, 1′

4, 1′

5, 2′

1, 3′3, 3′2, 4′1, 5′

Figure 7: The results of “right-first search” w.r.t. the original terminal pairs. This is also
a solution to the original disjoint paths problem. Edges not used in the final solution are
omitted.

23-10

3, 4′ 2, 3′

1, 2′

4, 1′

3, 1′2, 2′

1, 3′

4, 4′

Figure 8: Initial graph for the Wagner-Weihe algorithm, together with the terminal pairs
resulting from re-pairing. We will illustrate an unsuccessful run of the algorithm on this
graph.

3, 4′ 2, 3′

1, 2′

4, 1′

3, 1′2, 2′

1, 3′

4, 4′

Figure 9: The results of the “right-first search” w.r.t. the re-paired terminals. Path between
different terminal pairs are styled differently. Plain undirected edges are unused.

23-11

3, 4′ 2, 3′

1, 2′

4, 1′

3, 1′2, 2′

1, 3′

4, 4′

Figure 10: The resulting directed graph with the unused edges deleted.

3, 4′ 2, 3′

1, 2′

4, 1′

3, 1′2, 2′

1, 3′

4, 4′

Figure 11: The results of “right-first search” w.r.t. the original terminal pairs. Note that
path from source 1 arrives at 4 instead of destination 1, disconnects the graph into two
parts, and thus defines a cut. Edges not used in the drawn paths are omitted.

23-12

3, 4′ 2, 3′

1, 2′

4, 1′

3, 1′2, 2′

1, 3′

4, 4′

Figure 12: The path from the previous figure results in the following violated cut, with
dR(S) = 4 > dE(S) = 2.

23-13

