
18.438 Advanced Combinatorial Optimization

Lecture 22
Lecturer: Michel X. Goemans Scribe: Alantha Newman (2004), Ankur Moitra (2009)

1 MultiFlows and Disjoint Paths

Here we will survey a number of variants of disjoint path problems, and give reductions between
these different variants. We will also consider fractional relaxations of these problems, and in the
special case of two source-sink pairs, we will prove a max-flow min-cut relation and in fact in this
case, this flow can even be realized half-integrally.

1.1 Notation

We will consider disjoint path problems in both directed, and undirected graphs. Additionally, we
will consider both edge-disjoint and vertex-disjoint paths problems. In the case of a digraph, we will
let D = (V,A) be the digraph and we will denote the set of arcs by A. In the case of an undirected
graph, we will use G = (V,E) to denote the set of edges by E. Let s1, t1, s2, t2, . . . sk, tk ∈ V be
terminals. Our goal is to find disjoint paths between si and ti for each i, 1 ≤ i ≤ k. Again, the
notion of path and the notion of disjoint depends on the variant of the disjoint path problem that
we are considering.

We can in fact consider a more general problem, in which each pair of terminals si, ti is also
given an integer demand di, and our goal is to connect every source-sink pair si, ti by di paths,
and all paths connecting any source-sink pair must be disjoint. We can also generalize this question
further, by allowing capacities on edges in the case of edge disjoint path problems. Here we are also
given a capacity function c : A → Z+ or c : E → Z+ and our goal is again to connect each pair
of terminals si, ti by di paths, subject to the constraints that each (arc or) edge e is used at most
c(e) times. So we can interpret the capacity on an (arc or) edge as a bound on the number of paths
that are allowed to traverse this edge. Or we can even relax this further and consider a collection
of (possibly non-integral) flows, which collectively satisfy the capacity constraints and such that the
ith flow has di units between si and ti.

In the case of just a single source-sink pair s, t and integer demand d, this problem is well-
understood: Let f be the maximum number of paths connecting s, t (subject to capacity constraints)
in G = (V,E) (or in a digraph D = (V,A)). Then f is equal to the capacity of the minimum cut
separating s from t.

But for many source-sink pairs, the minimum cut is no longer equal to the maximum number of
paths (subject to capacity constraints). In fact, each of the variants of the disjoint paths problem
mentioned above is NP -hard, but the difficulty of these problems is quite different.

1.2 Directed and Undirected Edge Disjoint Paths

The undirected and directed edge disjoint path problems are drastically different for a fixed number
of source-sink pairs:

Undirected Edge Disjoint Paths. In the case of fixed k (i.e. there are k source-sink pairs),
there is a polynomial time algorithm to decide if there are edge disjoint paths connecting each si, ti
pair. This result follows from the Graph Minor Project of Robertson and Seymour (1995), and is
very involved.

Yet for super-constant k, the undirected edge disjoint paths problem is NP -complete.

22-1

Directed Arc Disjoint Paths. Even for k = 2 it is NP -complete to determine if there are
arc-disjoint paths P1, P2 connecting s1, t1 and s2, t2. In fact, we can even choose s1 = t2 and s2 = t1
and this problem still remains NP -complete.

This drastic difference in the range for which these problems are hard, leads to very different
inapproximability results. For the problems of maximizing the number of arc-disjoint paths, in the
case of a directed graph, it is hard to determine the maximum number of arc-disjoint paths within
any Ω(m

1
2−ε) for m arcs, and for any ε > 0. Yet for the case of maximizing the number of edge

disjoint paths in an undirected graph, the best known hardness results are only poly-logarithmic.
And in either case, the best known approximation ratio is O(

√
m) (or actually O(

√
n) for undirected

graphs on n vertices).

1.3 Reductions Between Variants

Here we consider all four problems, (undirected or directed) (edge or vertex) disjoint paths. We first
note that the arc-disjoint path problem, and the vertex-disjoint path problem in a directed graph are
equivalent - i.e. we can give a polynomial time reduction in either direction. Given a vertex-disjoint
path problem in a directed graph, we can perform the reduction in Figure 1 and get a are-disjoint
path problem that is equivalent.

Figure 1: Each vertex undergoes the illustrated transformation.

In the case of an arc-disjoint path problem, we can perform a similar transformation given in
Figure 2.

Figure 2: Each vertex undergoes the illustrated transformation.

Next we consider reductions from undirected variants of the disjoint path problem, and prove
that both the edge disjoint path problem and the vertex-disjoint path problem (in undirected graphs)
can be reduced to either directed path problem above.

We can also reduce the edge disjoint path problem in undirected graphs to the arc-disjoint path
problem, and this reduction is given in Figure 3. This also implies that we can reduce the edge
disjoint path problem in undirected graphs to the directed vertex-disjoint path problem.

a b a b

Figure 3: Each edge in the original undirected graph is replaced by the above gadget.

22-2

For the case of the vertex disjoint path problem in undirected graphs, we can just replace any
edge (u, v) by two arcs (u, v) and (v, u). So this problem can also be reduced to either the arc-disjoint
path problem or the vertex-disjoint path problem in directed graphs.

Lastly, the edge disjoint path problem in undirected graphs can be reduced to the vertex-disjoint
path problem in undirected graphs by taking the line-graph of G. A path in the line-graph of G
will also correspond to a path in the original graph G, but vertices in the line-graph correspond
to edges in the original graph, so paths will be edge-disjoint in G iff the corresponding paths are
vertex-disjoint in the line graph of G.

1.4 Fractional Relaxations

We focus on edge disjoint paths in undirected graphs. When k = 1, flow is easy. We can find integer
flow using the max-flow min-cut theorem. In general, we can give a fractional relaxation (that can
be solved because it can be written as a linear program):

Let Pi be set of all paths between si and ti. We have a variable xp for every such path p ∈ Pi.
We have the following primal LP:

max 0 · x∑
p∈Pi

xp = di∑
i:p∈Pi,e∈p

xp ≤ c(e)

xp ≥ 0.

What does dual mean in this case? We use variables `(e) for each edge e ∈ E, and variables bi for
i = 1, . . . , k.

min
∑
e∈E

c(e)`(e)−
k∑
i=1

bidi (1)∑
e∈p

`(e)− bi ≥ 0 ∀p ∈ Pi i = 1, . . . k

`(e) ≥ 0.

To make the term (−
∑k
i=1 bidi) small, we should make bi as large as possible. Fix the edge function

` : E → Q. Then bi is the (minimum) dist`(si, ti). The objective function of the dual (1) can be
rewritten:

∑
e∈E

c(e)`(e)−
k∑
i=1

di dist`(si, ti).

If the primal LP is feasible, then there is no solution for the dual LP with a negative objective value.
So there exists a fractional multiflow if and only if ∀`(e) ≥ 0, e ∈ E, the following holds:

∑
e∈E

c(e)`(e) ≥
k∑
i=1

di dist`(si, ti). (2)

Duality shows that this is a necessary and sufficient for the existence of a fractional multiflow.

22-3

2 Integer Multiflows

In general, the problem of determining when there is an integer multiflow is NP-complete. However,
there are special conditions that imply the existence of an integer multiflow in certain classes of
graphs.

Let R be a set of edges:

R = {(si, ti) : i = 1, . . . k}. (3)

The set of edges in E outgoing from vertex set U is denoted by δE(U) and the set of edges in
R outgoing from vertex set U is denoted by δR(U). A necessary condition for the existence of a
multiflow (and thus of an integer multiflow) is the cut condition:

c(δE(U)) ≥ d(δR(U)), ∀U ⊂ V.

In general, the cut condition is not sufficient to guarantee the existence of an integer multiflow (or
fractional multiflow) in a graph. However, in some cases of the multiflow problem, the cut condition
is sufficient for the existence of a fractional multiflow. Furthermore, there are several cases known
where the cut condition implies the existence of an integer multiflow when the Euler condition is
satisfied:

c(δE(v)) + d(δR(v)) is even, for each vertex v.

For example, when k = 2, we have the following implications:

(i) Cut condition ⇒ fractional multiflow.

(ii) Cut condition and integer capacities ⇒ half-integral multiflow.

(iii) Cut condition, integer capacities, and Euler condition ⇒ integral multiflow.

s

s 12

21 t

t

Figure 4: When the capacity of each edge in this graph is 2 and d1, d2 = 1, the Euler condition is
not satisfied. There exists a half-integral multiflow, but no integral multiflow.

The first proof of (i) and (ii) for the case when k = 2 was is due to Hu. The proof of (iii) is due
to Rothschild and Winston. Note that (iii) implies (i) and (ii). For example, Consider the graph
in Figure 4, let d1 = 1, d2 = 1. Let the capacity of each edge be 2. Note that the cut condition is
satisfied but the Euler condition is not. However, suppose we double every capacity and demand,
then the Euler condition is satisfied. We can convert an integer solution for this latter problem to
a half-integral solution for the original problem.

Some “good” cases in which conditions (i), (ii) and (iii) are satisfied are:

22-4

1. If there are two commodities, i.e. k = 2, then cut condition and Euler condition are sufficient
for integer multiflow.

2. G + D has no K5 minor, (a special case is when G + D is planar) where D is the demand
graph, D = (V,R) (see (3)).

3. |{(s1, t1), . . . , (sk, tk)}| ≤ 4.

4. G is planar and all (si, ti) are on boundary of outside face. (Note that this does not imply
case 2 because the demand graph could be a clique)

5. If there are 2 faces F1, F2 and for each i, (si, ti) are both on the boundary of the same face Fj
for j ∈ {1, 2}.

3 Two-Commodity Flows

Theorem 1 (Rothschild and Whinston) G = (V,E) is an undirected graph such that c(e) ∈ Z+

for e ∈ E. Terminals s1, t1, s2, t2 are in V, and demands d1, d2 are positive integers. Additionally,
the Euler condition is satisfied for G. Then G has an integer two-commodity flow if and only if the
cut condition is satisfied.

Proof: Our goal is to find flows from s1 to t1 and from s2 to t2 with values d1 and d2, respectively.
We will show that if the cut condition is satisfied on G, then we can find such flows.

s1

2

1

d

d

d

d

1

2 2

1

s 2

s’ t’

G’:

t

t

s1

22

1

s’’ t’
s

d

d

d

d

1

2 2

1
G’’:

t

t

Figure 5: The graphs G′ and G′′ are constructed based on the given graph G.

First, based on the graph G, construct the graph G′ as shown in Figure 5. Note that the edges
out of s′ are the only directed edges in the graph G′, and all other edges are inherited from G and
hence undirected. Let the edges (s′, s1) and (t1, t′) in G′ have capacity d1 and the edges (s′, s2) and
(t2, t′) in G′ have capacity d2. By the max-flow min-cut theorem, we can find an integer s′-t′ flow
g with value d1 + d2, since the min-cut of G′ has value d1 + d2. Note that this s′-t′ flow does not
necessarily give a two-commodity flow for the original problem (since some of the flow going through
s1 may end up in t2).

Since the Euler condition is satisfied, we will prove that we can assume that g(e) ≡ c(e) mod 2.
To show this, first notice that the Euler condition implies that the total capacity incident to any
vertex (except s′ or t′) of G′ is even. Furthermore, any integral flow will use up an even amount
of capacity incident to any vertex. Now consider all the edges e ∈ E such that g(e) 6≡ c(e) mod 2.
Since it is the case that

∑
e∈δ(v)(g(e) − c(e)) = 0 mod 2, it follows that an even number of edges

adjacent to vertex v have g(e) 6≡ c(e) mod 2. Thus, the edges such that g(e) 6≡ c(e) mod 2 make
up an Eulerian graph (and do not contain the arcs incident to s′ and t′ that we added to G to make
up G′, as these arcs are saturated). We can decompose this Eulerian graph into cycles, and push
push one unit of flow across all these cycles (either increasing or decreasing the flow by one unit

22-5

along it depending on the orientation), changing the parity of g(e) for each such edge. Thus, for all
edges e ∈ E, we have that g(e) ≡ c(e) mod 2.

For G′′, we have the same argument. Thus, we find an integer flow h in G′′ with value d1 + d2

such that h(e) = c(e) mod 2, ∀e ∈ E. Thus, for all edges e ∈ E, h(e) = g(e) mod 2. We arbitrarily
orient the edges of E to obtain A. So for all a ∈ A, h(a) ≡ g(a) mod 2.

Now we define two flows on the graph G:

f1(a) =
1
2

[g(a) + h(a)]

f2(a) =
1
2

[g(a)− h(a)].

The following properties are true for the flows f1 and f2:

1. f1(a), f2(a) are integer flows (since g(a) and h(a) have the same parity).

2. |f1(a)|+ |f2(a)| = 1
2 |g(a) + h(a)|+ 1

2 |g(a)− h(a)| ≤ max(|g(a)|, |h(a)|) ≤ c(a).

3. f1 is d1 units of flow from s1 to t1 and f2 is d2 units of flow from s2 to t2.

The last property holds because we can show that f1(δ+(s1)) − f1(δ−(s1)) = d1 and f1(δ−(t1)) −
f1(δ+(t1)) = d1. By conservation of flow, if we consider the vertex s1 in G, we have:

g(δ+(s1))− g(δ−(s1)) = d1 (4)
h(δ+(s1))− h(δ−(s1)) = d1 (5)

Equations (4) and (5) imply f1(δ+(s1))− f1(δ−(s1)) = d1.

g(δ−(t1))− g(δ+(t1)) = d1 (6)
h(δ−(t1))− h(δ+(t1)) = d1. (7)

Equations (6) and (7) imply f1(δ−(t1)) − f1(δ+(t1)) = d1. Similarly, we can show that the last
property holds for flow f2. If we consider vertices s2 and t2 in G, we have:

g(δ+(s2))− g(δ−(s2)) = d2 (8)
h(δ−(s2))− h(δ+(s2)) = d2 (9)
g(δ−(t2))− g(δ+(t2)) = d2 (10)
h(δ+(t2))− h(δ−(t2)) = d2. (11)

Equations (8) and (9) imply f2(δ+(s2)) − f2(δ−(s2)) = d2 and equations (10) and (11) imply
f2(δ−(t2))− f2(δ+(s2)) = d2. �

As a final note, consider the problem of maximizing the sum of the flow between s1 and t1 and
between s2 and t2. This is the max biflow problem. A bicut is a cut separating s1 from t1 and s2
from t2, thus it is either a cut separating s1, s2 from t1, t2 or a cut separating s1, t2 from s2, t1. One
can show that the following theorem follows from Theorem 1.

Theorem 2 The maximum biflow equals the minimum bicut.

22-6

