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Lecture 16

Lecturer: Michel X. Goemans Scribe: José Soto (2009)

The lecture started with some additional discussion of matroid matching and this was
included in the previous scribe notes.

1 Graph Orientations

We first introduce some notation and definitions. Let G = (V,E) be an undirected graph.
Recall that for a non-empty subset U ⊂ V , the notation δG(U) denotes the set of edges
with one endpoint in U and the other endpoint in V \ U .

Definition 1 Let λG(u, v) denote the maximum number of edge-disjoint u-v paths in G.
We say that G is k-edge-connected if λG(u, v) ≥ k for all u 6= v ∈ V . An equivalent
statement is that each cut contains at least k edges, i.e., |δG(U)| ≥ k for all non-empty
U ⊂ V .

Let D = (V,A) be a directed graph. For a non-empty subset U ⊂ V , δ+D(U) is the set
of arcs with their tail in U and head in V \ U , and δ−D(U) is the set of arcs in the reverse
direction.

Definition 2 Let λD(u, v) denote the maximum number of edge-disjoint directed paths in
D from u to v. We say that D is k-arc-connected if λD(u, v) ≥ k for each u, v ∈ V .
An equivalent statement is that |δ+D(U)| ≥ k for all non-empty U ⊂ V . A digraph that is
1-arc-connected is also called strongly connected.

An orientation of a graph G is a digraph obtained by choosing a direction for each
edge of G. We now give some results relating edge-connectivity of G to arc-connectivity of
orientations of G.

Theorem 1 (Robbins, 1939) G is 2-edge-connected ⇐⇒ there exists an orientation D
of G that is strongly connected.

Proof: ⇐: Fix a strongly-connected orientation D. For any non-empty U ⊂ V , we may
choose u ∈ U and v ∈ V \ U . Since D is strongly connected, there is a directed u-v path
and a directed v-u path. Thus |δ+D(U)| ≥ 1 and |δ−D(U)| ≥ 1, implying |δG(U)| ≥ 2.
⇒: Since G is 2-edge-connected, it has an ear decomposition. We proceed by induction

on the number of ears. If G is a cycle then we may orient the edges to form a directed cycle
D, which is obviously strongly connected. Otherwise, G consists of an ear P and subgraph
G′ with a strongly connected orientation D′. The ear is an undirected path with endpoints
x, y ∈ V (G′) (possibly x = y). We orient P so that it is a directed path from x to y and
add this to D′, thereby obtaining an orientation D of G.
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To show that D is strongly connected, consider any u, v ∈ V (G). If u, v ∈ V (G′) then
by induction there is a u-v dipath. If u ∈ P and v ∈ V (G′) then there is a u-y dipath
and by induction there is a y-v dipath. Concatenating these gives a u-v dipath. The case
u ∈ V (G′) and v ∈ P is symmetric. If both u, v ∈ P then either a subpath of P is a
u-v path, or there exist a u-y path, a y-x path, and a x-v path. (The y-x path exists by
induction). Concatenating these three paths gives a u-v path. �

The natural generalization of this theorem also holds.

Theorem 2 (Nash-Williams, 1960) G is 2k-edge-connected ⇐⇒ there exists an ori-
entation D of G that is k-arc-connected.

We will prove this using matroid intersection. Let G = (V,E) be a 2k-edge-connected
graph and let D = (V,A) denote the bidirected version of G, with two arcs (u, v) and
(v, u) for each edge {u, v}. (All graphs in this lecture can be multigraphs.) We define two
matroids on the ground set of arcs A. The first one is a partition matroid:

M1 = (A, {B ⊆ A : ∀ edge {u, v} ∈ E;B contains at most one of the arcs (u, v), (v, u)}).

The bases of M1 are exactly the orientations of G. The second matroid, which will force
the orientation to be k-arc-connected, is more involved. Define

• H(U) = {(v, u) ∈ A : u ∈ U}.

• C = {H(U) : ∅ ⊂ U ⊂ V }.

• f(H(U)) = |E(U)|+ |δ(U)| − k = |E| − |E(V \ U)| − k.

In other words, H(U) is the set of arcs with their “head” in U (either crossing the cut into
U or contained inside U), and f(H(U)) is the maximum number of edges oriented like this,
so that k arcs leaving U are still available. Observe that the family C does not contain the
entire set V . We need the following definitions.

Definition 3 A family of sets C ⊆ 2A is a crossing family if for all H1, H2 ∈ C with
H1 ∩H2 6= ∅ and H1 ∪H2 6= A, both H1 ∪H2 and H1 ∩H2 are also in C.

Definition 4 Let C be a crossing family on 2A. A nonnegative function f : C → Z+ is
crossing submodular on C if for all H1, H2 ∈ C, with H1 ∩H2 6= ∅ and H1 ∪H2 6= A,

f(H1) + f(H2) ≥ f(H1 ∪H2) + f(H1 ∩H2).

The family C defined before is indeed a crossing family. This is simply because H(U1)∩
H(U2) = H(U1 ∩ U2) and H(U1) ∪ H(U2) = H(U1 ∪ U2). Also, the function f(H(U)) =
|E| − |E(V \ U)| − k is crossing submodular on C since

|E(V \ U1)|+ |E(V \ U2)| ≤ |E(V \ (U1 ∩ U2))|+ |E(V \ (U1 ∪ U2))|,

and so f(H1 ∩H2) + f(H1 ∪H2) ≤ f(H1) + f(H2). Given these properties, we shall prove
the following lemma, due to Frank and Tardos [1984] (see Schrijver, Corollary 49.7a, p. 839)
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Lemma 3 Let C ⊆ 2A be a crossing family and f : C → Z+ a nonnegative crossing sub-
modular function. Then for any k ∈ Z+,

B = {B ⊆ A : |B| = k and ∀H ∈ C; |B ∩H| ≤ f(H)}

are the bases of a matroid.

Proof: We can prove this by checking that the exchange axiom holds. Let B1, B2 ∈ B,
and i ∈ B1 \B2. We need to prove that there exists j ∈ B2 \B1 such that B1 − i+ j ∈ B.
Observe that if B1− i+ j /∈ B, there must exist a set H ∈ C, |B1 ∩Hj | = f(H), with i /∈ H
and j ∈ H. Assume, by contradiction, that this holds for every j ∈ B2 \B1.

For each j ∈ B2 \ B1, let Hj ∈ C be the maximal set such that |B1 ∩ Hj | = f(Hj),
i /∈ Hj , and j ∈ Hj . We claim that these sets are either pairwise equal or disjoint. Indeed,
if Hj 6= Hj′ and Hj ∩Hj′ 6= ∅, we have, by crossing submodularity of f and the definition
of B that

|B1 ∩ (Hj ∪Hj′)|+ |B1 ∩ (Hj ∩Hj′)| = |B1 ∩Hj |+ |B1 ∩Hj′ | = f(Hj) + f(Hj′)
≥ f(Hj ∪Hj′) + f(Hj ∩Hj′)
≥ |B1 ∩ (Hj ∪Hj′)|+ |B1 ∩ (Hj ∩Hj′)|.

We deduce from here that |B1 ∩ (Hj ∪Hj′)| = f(Hj ∪Hj′). But then, we can replace both
Hj and Hj′ by Hj ∪Hj′ , which contradicts the maximality of both sets.

Let P = {Hj : j ∈ B2 \B1} denote the collection of these disjoint sets, and W = A\
⋃
P

the set of remaining uncovered elements. For each Hj ∈ P, we have |B2 ∩Hj | ≤ f(Hj) =
|B1 ∩Hj |. All the elements of B2 \ B1 are covered by P, so B2 ∩W ⊆ B1 ∩W , and there
is an element i ∈ W which belongs to B1 but not B2. Therefore |B2 ∩W | < |B1 ∩W | and
|B2| < |B1| which is a contradiction. �

Thus, for our orientation problem, we derive that

{B ⊆ A : |B| = |A| and |B ∩H(U)| ≤ |E(U)|+ |δ(U)| − k ∀U, ∅ 6= U 6= V }

defines the bases of a matroid M2. We should emphasize that if we replace |B| = |A| by
|B| ≤ |A|, we do not get the independent sets of a matroid. (As an exercise, find such an
instance with just 4 vertices.)

Recall that the bases of M1 correspond to orientations of G (while there are bases of
M2 that are not orientations. Furthermore, an orientation I of G is a base of M2 if and
only if for every ∅ ⊂ U ⊂ V , |I ∩ δ−D(U)| ≤ |δG(U)|−k. Or equivalently, if for every such U ,
|I ∩ δ+D(U)| ≥ k. From here we get that the collection of k-arc-connected orientations of G
corresponds exactly to the set of common bases of M1 and M2. In particular, if one such
base exists, it can be found using matroid intersection1.

It remains to prove that there exists a base common to both matroids. Let P (M1), P (M2)
be the matroid polytopes ofM1 andM2 respectively, and P (M1∩M2) be the convex hull
of all indicator vectors of sets that are independent in both matroids. We have seen that

1Provided that membership inM2 can be tested efficiently, which is not explained here.
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the polytope P (M1 ∩M2) is integral and equal to P (M1) ∩ P (M2). Consider the vector
x ∈ RA such that xa = 1/2 for all a ∈ A. Since for every {u, v} ∈ E we have

xuv + xvu = 1,

we can deduce that x ∈ P (M1). Similarly, for every ∅ ⊂ U ⊂ V , we have

x(H(U)) = |E(U)|+ |δG(U)|/2 ≤ |E(U)|+ |δG(U)| − k,

where the last inequality comes from the fact that |δG(U)| ≥ 2k which holds since G is
2k-edge connected. Since we also have x(A) ≤ |E|, we can conclude that x ∈ P (M2). But
then, x is a fractional vector in P (M1∩M2) with total weight x(A) = |A|/2 = |E|. By the
integrality of that polytope, x can be written as a convex combination of sets I that are
independent in both matroids. This means that at least one (and hence all) of these sets
has cardinality |E| and, therefore, it is a base in both matroids.

As a final remark, we should point out that there exists a stronger orientation result
due to Nash-Williams which states that any graph G can be oriented into a digraph D such
that for all u 6= v, we have

λD(u, v) ≥
⌊

1
2
λG(u, v)

⌋
.

See Theorem 61.6 (page 1040) in Schrijver. However, the matroid intersection approach
discussed here does not seem to apply to this setting.
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