18.438 Advanced Combinatorial Optimization	Updated April 29, 2012
Lecture 16	
Lecturer: Michel X. Goemans	Scribe: José Soto (2009)

The lecture started with some additional discussion of matroid matching and this was included in the previous scribe notes.

1 Graph Orientations

We first introduce some notation and definitions. Let G = (V, E) be an undirected graph. Recall that for a non-empty subset $U \subset V$, the notation $\delta_G(U)$ denotes the set of edges with one endpoint in U and the other endpoint in $V \setminus U$.

Definition 1 Let $\lambda_G(u, v)$ denote the maximum number of edge-disjoint u-v paths in G. We say that G is k-edge-connected if $\lambda_G(u, v) \geq k$ for all $u \neq v \in V$. An equivalent statement is that each cut contains at least k edges, i.e., $|\delta_G(U)| \geq k$ for all non-empty $U \subset V$.

Let D = (V, A) be a directed graph. For a non-empty subset $U \subset V$, $\delta_D^+(U)$ is the set of arcs with their tail in U and head in $V \setminus U$, and $\delta_D^-(U)$ is the set of arcs in the reverse direction.

Definition 2 Let $\lambda_D(u, v)$ denote the maximum number of edge-disjoint directed paths in D from u to v. We say that D is k-arc-connected if $\lambda_D(u, v) \ge k$ for each $u, v \in V$. An equivalent statement is that $|\delta_D^+(U)| \ge k$ for all non-empty $U \subset V$. A digraph that is 1-arc-connected is also called strongly connected.

An orientation of a graph G is a digraph obtained by choosing a direction for each edge of G. We now give some results relating edge-connectivity of G to arc-connectivity of orientations of G.

Theorem 1 (Robbins, 1939) G is 2-edge-connected \iff there exists an orientation D of G that is strongly connected.

Proof: \Leftarrow : Fix a strongly-connected orientation D. For any non-empty $U \subset V$, we may choose $u \in U$ and $v \in V \setminus U$. Since D is strongly connected, there is a directed u-v path and a directed v-u path. Thus $|\delta_D^+(U)| \ge 1$ and $|\delta_D^-(U)| \ge 1$, implying $|\delta_G(U)| \ge 2$.

 \Rightarrow : Since G is 2-edge-connected, it has an ear decomposition. We proceed by induction on the number of ears. If G is a cycle then we may orient the edges to form a directed cycle D, which is obviously strongly connected. Otherwise, G consists of an ear P and subgraph G' with a strongly connected orientation D'. The ear is an undirected path with endpoints $x, y \in V(G')$ (possibly x = y). We orient P so that it is a directed path from x to y and add this to D', thereby obtaining an orientation D of G. To show that D is strongly connected, consider any $u, v \in V(G)$. If $u, v \in V(G')$ then by induction there is a u-v dipath. If $u \in P$ and $v \in V(G')$ then there is a u-y dipath and by induction there is a y-v dipath. Concatenating these gives a u-v dipath. The case $u \in V(G')$ and $v \in P$ is symmetric. If both $u, v \in P$ then either a subpath of P is a u-v path, or there exist a u-y path, a y-x path, and a x-v path. (The y-x path exists by induction). Concatenating these three paths gives a u-v path. \Box

The natural generalization of this theorem also holds.

Theorem 2 (Nash-Williams, 1960) G is 2k-edge-connected \iff there exists an orientation D of G that is k-arc-connected.

We will prove this using matroid intersection. Let G = (V, E) be a 2k-edge-connected graph and let D = (V, A) denote the bidirected version of G, with two arcs (u, v) and (v, u) for each edge $\{u, v\}$. (All graphs in this lecture can be multigraphs.) We define two matroids on the ground set of arcs A. The first one is a partition matroid:

 $\mathcal{M}_1 = (A, \{B \subseteq A : \forall \text{ edge } \{u, v\} \in E; B \text{ contains at most one of the arcs } (u, v), (v, u)\}).$

The bases of \mathcal{M}_1 are exactly the orientations of G. The second matroid, which will force the orientation to be k-arc-connected, is more involved. Define

•
$$H(U) = \{(v, u) \in A : u \in U\}.$$

•
$$\mathcal{C} = \{H(U) : \emptyset \subset U \subset V\}$$

•
$$f(H(U)) = |E(U)| + |\delta(U)| - k = |E| - |E(V \setminus U)| - k$$

In other words, H(U) is the set of arcs with their "head" in U (either crossing the cut into U or contained inside U), and f(H(U)) is the maximum number of edges oriented like this, so that k arcs leaving U are still available. Observe that the family C does not contain the entire set V. We need the following definitions.

Definition 3 A family of sets $\mathcal{C} \subseteq 2^A$ is a crossing family if for all $H_1, H_2 \in \mathcal{C}$ with $H_1 \cap H_2 \neq \emptyset$ and $H_1 \cup H_2 \neq A$, both $H_1 \cup H_2$ and $H_1 \cap H_2$ are also in \mathcal{C} .

Definition 4 Let C be a crossing family on 2^A . A nonnegative function $f : C \to \mathbb{Z}_+$ is crossing submodular on C if for all $H_1, H_2 \in C$, with $H_1 \cap H_2 \neq \emptyset$ and $H_1 \cup H_2 \neq A$,

$$f(H_1) + f(H_2) \ge f(H_1 \cup H_2) + f(H_1 \cap H_2).$$

The family \mathcal{C} defined before is indeed a crossing family. This is simply because $H(U_1) \cap$ $H(U_2) = H(U_1 \cap U_2)$ and $H(U_1) \cup H(U_2) = H(U_1 \cup U_2)$. Also, the function f(H(U)) = $|E| - |E(V \setminus U)| - k$ is crossing submodular on \mathcal{C} since

$$|E(V \setminus U_1)| + |E(V \setminus U_2)| \le |E(V \setminus (U_1 \cap U_2))| + |E(V \setminus (U_1 \cup U_2))|,$$

and so $f(H_1 \cap H_2) + f(H_1 \cup H_2) \le f(H_1) + f(H_2)$. Given these properties, we shall prove the following lemma, due to Frank and Tardos [1984] (see Schrijver, Corollary 49.7a, p. 839) **Lemma 3** Let $C \subseteq 2^A$ be a crossing family and $f : C \to \mathbb{Z}_+$ a nonnegative crossing submodular function. Then for any $k \in \mathbb{Z}_+$,

$$\mathcal{B} = \{ B \subseteq A : |B| = k \text{ and } \forall H \in \mathcal{C}; |B \cap H| \le f(H) \}$$

are the bases of a matroid.

Proof: We can prove this by checking that the exchange axiom holds. Let $B_1, B_2 \in \mathcal{B}$, and $i \in B_1 \setminus B_2$. We need to prove that there exists $j \in B_2 \setminus B_1$ such that $B_1 - i + j \in \mathcal{B}$. Observe that if $B_1 - i + j \notin \mathcal{B}$, there must exist a set $H \in \mathcal{C}$, $|B_1 \cap H_j| = f(H)$, with $i \notin H$ and $j \in H$. Assume, by contradiction, that this holds for every $j \in B_2 \setminus B_1$.

For each $j \in B_2 \setminus B_1$, let $H_j \in \mathcal{C}$ be the maximal set such that $|B_1 \cap H_j| = f(H_j)$, $i \notin H_j$, and $j \in H_j$. We claim that these sets are either pairwise equal or disjoint. Indeed, if $H_j \neq H_{j'}$ and $H_j \cap H_{j'} \neq \emptyset$, we have, by crossing submodularity of f and the definition of \mathcal{B} that

$$|B_1 \cap (H_j \cup H_{j'})| + |B_1 \cap (H_j \cap H_{j'})| = |B_1 \cap H_j| + |B_1 \cap H_{j'}| = f(H_j) + f(H_{j'})$$

$$\geq f(H_j \cup H_{j'}) + f(H_j \cap H_{j'})$$

$$\geq |B_1 \cap (H_j \cup H_{j'})| + |B_1 \cap (H_j \cap H_{j'})|.$$

We deduce from here that $|B_1 \cap (H_j \cup H_{j'})| = f(H_j \cup H_{j'})$. But then, we can replace both H_j and $H_{j'}$ by $H_j \cup H_{j'}$, which contradicts the maximality of both sets.

Let $\mathcal{P} = \{H_j : j \in B_2 \setminus B_1\}$ denote the collection of these disjoint sets, and $W = A \setminus \bigcup \mathcal{P}$ the set of remaining uncovered elements. For each $H_j \in \mathcal{P}$, we have $|B_2 \cap H_j| \leq f(H_j) = |B_1 \cap H_j|$. All the elements of $B_2 \setminus B_1$ are covered by \mathcal{P} , so $B_2 \cap W \subseteq B_1 \cap W$, and there is an element $i \in W$ which belongs to B_1 but not B_2 . Therefore $|B_2 \cap W| < |B_1 \cap W|$ and $|B_2| < |B_1|$ which is a contradiction. \Box

Thus, for our orientation problem, we derive that

$$\{B \subseteq A : |B| = |A| \text{ and } |B \cap H(U)| \le |E(U)| + |\delta(U)| - k \ \forall U, \emptyset \ne U \ne V\}$$

defines the bases of a matroid \mathcal{M}_2 . We should emphasize that if we replace |B| = |A| by $|B| \leq |A|$, we do *not* get the independent sets of a matroid. (As an exercise, find such an instance with just 4 vertices.)

Recall that the bases of \mathcal{M}_1 correspond to orientations of G (while there are bases of \mathcal{M}_2 that are not orientations. Furthermore, an orientation I of G is a base of \mathcal{M}_2 if and only if for every $\emptyset \subset U \subset V$, $|I \cap \delta_D^-(U)| \leq |\delta_G(U)| - k$. Or equivalently, if for every such U, $|I \cap \delta_D^+(U)| \geq k$. From here we get that the collection of k-arc-connected orientations of G corresponds exactly to the set of common bases of \mathcal{M}_1 and \mathcal{M}_2 . In particular, if one such base exists, it can be found using matroid intersection¹.

It remains to prove that there exists a base common to both matroids. Let $P(\mathcal{M}_1), P(\mathcal{M}_2)$ be the matroid polytopes of \mathcal{M}_1 and \mathcal{M}_2 respectively, and $P(\mathcal{M}_1 \cap \mathcal{M}_2)$ be the convex hull of all indicator vectors of sets that are independent in both matroids. We have seen that

¹Provided that membership in \mathcal{M}_2 can be tested efficiently, which is not explained here.

the polytope $P(\mathcal{M}_1 \cap \mathcal{M}_2)$ is integral and equal to $P(\mathcal{M}_1) \cap P(\mathcal{M}_2)$. Consider the vector $x \in \mathbb{R}^A$ such that $x_a = 1/2$ for all $a \in A$. Since for every $\{u, v\} \in E$ we have

$$x_{uv} + x_{vu} = 1,$$

we can deduce that $x \in P(\mathcal{M}_1)$. Similarly, for every $\emptyset \subset U \subset V$, we have

$$x(H(U)) = |E(U)| + |\delta_G(U)|/2 \le |E(U)| + |\delta_G(U)| - k,$$

where the last inequality comes from the fact that $|\delta_G(U)| \geq 2k$ which holds since G is 2k-edge connected. Since we also have $x(A) \leq |E|$, we can conclude that $x \in P(\mathcal{M}_2)$. But then, x is a fractional vector in $P(\mathcal{M}_1 \cap \mathcal{M}_2)$ with total weight x(A) = |A|/2 = |E|. By the integrality of that polytope, x can be written as a convex combination of sets I that are independent in both matroids. This means that at least one (and hence all) of these sets has cardinality |E| and, therefore, it is a base in both matroids.

As a final remark, we should point out that there exists a stronger orientation result due to Nash-Williams which states that any graph G can be oriented into a digraph D such that for all $u \neq v$, we have

$$\lambda_D(u,v) \ge \left\lfloor \frac{1}{2} \lambda_G(u,v)
ight
floor.$$

See Theorem 61.6 (page 1040) in Schrijver. However, the matroid intersection approach discussed here does not seem to apply to this setting.