In this lecture, we will present Edmonds’s algorithm for computing a maximum matching in a (not necessarily bipartite) graph \(G \). We will later use the analysis of the algorithm to derive the Edmonds-Gallai Decomposition Theorem stated in the last lecture.

1 Recapitulation

Recall the following essential definitions and facts from the last lecture. A matching in an undirected graph \(G \) is a set of edges, no two of which share a common endpoint. Given a graph \(G \) and a matching \(M \), a vertex is matched if it is the endpoint of an edge in \(M \), unmatched otherwise; we will often designate the set of unmatched vertices by \(X \). Given a graph \(G \) with matching \(M \), an \(M \)-alternating path is a path whose edges are alternately in \(M \) and not in \(M \). (Here we use path to mean a simple path, i.e. one with no repeated vertices. We’ll refer to a non-simple path as a walk.) If both endpoints of an \(M \)-alternating path belong to the set \(X \) of unmatched vertices, it is called an \(M \)-augmenting path. Recall the following theorem from last time.

Theorem 1 A matching \(M \) is of maximum size if and only if \(G \) contains no \(M \)-augmenting path.

![Figure 1: An M-augmenting path](image)

2 Flowers, Stems, and Blossoms

The following construction is useful for finding \(M \)-augmenting paths. Given a graph \(G = (V, E) \) with matching \(M \); construct a directed graph \(\hat{G} = (V, A) \) with the same vertex set as \(G \), and with edge set determined by the rule that \((u, w) \in A\) if and only if there exists \(v \) with \((u, v) \in E \setminus M \) and \((v, w) \in M \). Observe that every \(M \)-augmenting path in \(G \) corresponds to a path in \(\hat{G} \) that begins at a vertex in \(X \) and ends at a neighbor of \(X \). However, the converse is not true, because an \(M \)-alternating walk may begin at a vertex in \(X \) and end at a neighbor of \(X \), without being an \(M \)-augmenting path, if it contains an odd cycle. Figure 2 illustrates an example of such a walk. This motivates the following definition.

Definition 1 An \(M \)-flower is an \(M \)-alternating walk \(v_0, v_1, v_2, \ldots, v_t \) (numbered so that we have \((v_{2k-1}, v_{2k}) \in M, (v_{2k}, v_{2k+1}) \notin M\)) satisfying:

1. \(v_0 \in X \).
2. \(v_0, v_1, v_2, \ldots, v_{t-1} \) are distinct.
3. \(t \) is odd.
4. \(v_i = v_1 \), for an even \(i \).

The portion of the flower from \(v_0 \) to \(v_i \) is called the stem, while the portion from \(v_i \) to \(v_t \) is called the blossom.

Lemma 2 Let \(M \) be a matching in \(G \), and let \(P = (v_0, v_1, \ldots, v_t) \) be a shortest alternating walk from \(X \) to \(X \). Then either \(P \) is an \(M \)-augmenting path, or \(v_0, v_1, \ldots, v_j \) is an \(M \)-flower for some \(j < t \).

Proof: If \(v_0, v_1, \ldots, v_t \) are all distinct, \(P \) is an \(M \)-augmenting path. Otherwise, assume \(v_i = v_j \), \(i < j \), and let \(j \) be as small as possible, so that \(v_0, v_1, \ldots, v_{j-1} \) are all distinct. We shall prove that \(v_0, v_1, \ldots, v_j \) is an \(M \)-flower. Properties 1 and 2 of a flower are automatic, by construction. It cannot be the case that \(j \) is even, since then \((v_{j-1}, v_j) \in M\), which gives a contradiction in both of the following cases:

- \(i = 0 \): \((v_{j-1}, v_j) \in M\) contradicts \(v_0 \in X \).
- \(0 < i < j - 1 \): \((v_{j-1}, v_j) \in M\) contradicts the fact that \(M \) is a matching, since \(v_i \) is already matched to a vertex other than \(v_{j-1} \).

This proves that \(j \) is odd. It remains to show that \(i \) is even. Assume, by contradiction, that \(i \) is odd. This means that \((v_i, v_{i+1})\) and \((v_j, v_{j+1})\) are both edges in \(M \). Then \(v_{j+1} = v_{i+1} \) (since both are equal to the other endpoint of the unique matching edge containing \(v_j = v_i \)), and we may delete the cycle from \(P \) to obtain a shorter alternating walk from \(X \) to \(X \). (See Figure 3.) \(\square \)

![Figure 2: An M-flower. Note that the dashed edges represent edges of \(\hat{G} \).](image)

![Figure 3: An alternating walk from \(X \) to \(X \) which can be shortened.](image)
Given a flower \(F = (v_0, v_1, \ldots, v_t) \) with blossom \(B \), observe that for any vertex \(v_j \in B \) it is possible to modify \(M \) to a matching \(M' \) satisfying:

1. Every vertex of \(F \) belongs to an edge of \(M' \) except \(v_j \).
2. \(M' \) agrees with \(M \) outside of \(F \), i.e. \(M \triangle M' \subseteq F \).
3. \(|M'| = |M| \).

To do so, we take \(M' \) to consist of all the edges of the stem which do not belong to \(M \), together with a matching in the blossom which covers every vertex except \(v_j \), as well as all the edges in \(M \) outside of \(F \).

Whenever a graph \(G \) with matching \(M \) contains a blossom \(B \), we may simplify the graph by shrinking \(B \), a process which we now define.

Definition 2 (shrinking a blossom) Given a graph \(G = (V, E) \) with a matching \(M \) and a blossom \(B \), the shrunk graph \(G/B \) with matching \(M/B \) is defined as follows:

- \(V(G/B) = (V \setminus B) \cup \{b\} \)
- \(E(G/B) = E \setminus E[B] \)
- \(M/B = M \setminus E[B] \)

where \(E[B] \) denotes the set of edges within \(B \), and \(b \) is a new vertex disjoint from \(V \).

Observe that \(M/B \) is a matching in \(G \), because the definition of a blossom precludes the possibility that \(M \) contains more than one edge with one but not both endpoints in \(B \). Observe also that \(G/B \) may contain parallel edges between vertices, if \(G \) contains a vertex which is joined to \(B \) by more than one edge.

The relation between matchings in \(G \) and matchings in \(G/B \) is summarized by the following theorem.

Theorem 3 Let \(M \) be a matching of \(G \), and let \(B \) be an \(M \)-blossom. Then, \(M \) is a maximum-size matching if and only if \(M/B \) is a maximum-size matching in \(G/B \).

Proof: (\(\Rightarrow \)) Suppose \(N \) is a matching in \(G/B \) larger than \(M/B \). Pulling \(N \) back to a set of edges in \(G \), it is incident to at most one vertex of \(B \). Expand this to a matching \(N^+ \) in \(G \) by adjoining \(\frac{1}{2}|B| - 1 \) edges within \(B \) to match every other vertex in \(B \). Then we have \(|N^+| - |N| = (|B| - 1)/2 \), while at the same time \(|N| - |M/B| = (|B| - 1)/2 \) (the latter follows because \(B \) is an \(M \)-blossom, so there are \((|B| - 1)/2 \) edges of \(M \) in \(B \); then \(M/B \) contains all the corresponding edges in \(M \) except those \((|B| - 1)/2 \). We conclude that \(|N^+| \) exceeds \(|M| \) by the same amount that \(|N| \) exceeds \(|M/B| \).

(\(\Leftarrow \)) If \(M \) is not of maximum size, then change it to another matching \(M' \), of equal cardinality, in which \(B \) is an entire flower. (If \(S \) is the stem of the flower whose blossom is \(B \), then we may take \(M' = M \triangle S \).) Note that \(M'/B \) is of the same cardinality as \(M/B \), and \(b \) is an unmatched vertex of \(M'/B \). Since \(M' \) is not a maximum-size matching in \(G \), there exists an \(M' \)-augmenting path \(P \). At least one of the endpoints of \(P \) is not in \(B \). So number the vertices of \(P \) \(u_0, u_1, \ldots, u_t \) with \(u_0 \notin B \), and let \(u_i \) be the first node on \(P \) which is in \(B \). (If there is no such node, then \(u_i = u_t \).) This \(\text{sub-path } u_0, u_1, \ldots, u_i \) is an \((M'/B)\)-augmenting path in \(G/B \).

Note that if \(M \) is a matching in \(G \) that is not of maximum size, and \(B \) is blossom with respect to \(M \), then \(M/B \) is not a maximum-size matching in \(G/B \). If we find a maximum-size matching \(N \) in \(G/B \), then the proof gives us a way to “unshrink” the blossom \(B \) in order to turn \(N \) into a matching \(N^+ \) of \(G \) of size larger than that of \(M \). However, it is important to note that \(N^+ \) will not, in general, be a maximum-size matching of \(G \), as the example in Figure 4 shows.
A maximum matching in the graph G/B does not necessarily pull back to a maximum matching in G.

3 A polynomial-time maximum matching algorithm

The algorithm for computing a maximum matching is specified in Figure 5.

The correctness of the algorithm is established by Lemma 2 and Theorem 3. The running time may be analyzed as follows. We can compute X and \hat{G} in linear time, and can find \hat{P} in linear time (by breadth-first search). Shrinking a blossom also takes linear time. We can only perform $O(n)$ such shrinkings before terminating or increasing $|M|$. The number of times we increase $|M|$ is $O(n)$. Therefore the algorithm’s running time is $O(mn^2)$. With a little more work, this can be improved to $O(n^3)$. (See Schrijver’s book.) The fastest known algorithm, due to Micali and Vazirani, runs in time $O(\sqrt{n} m)$.

![Graphs and Matching](image-url)
M := ∅
X := {unmatched vertices} /* Initially all of V. */
Form the directed graph \(\hat{G} \).

while \(\hat{G} \) contains a directed path \(\hat{P} \) from \(X \) to \(N(X) \)
 Find such a path \(\hat{P} \) of minimum length.
 \(P := \) the alternating path in \(G \) corresponding to \(\hat{P} \)
 if \(P \) is an \(M \)-augmenting path,
 modify \(M \) by augmenting along \(P \).
 Update \(X \) and construct \(\hat{G} \).
 else
 \(P \) contains a blossom \(B \).
 Recursively find a maximum-size matching \(M' \) in \(G/B \).
 if \(|M'| = |M/B| \) /* \(M \) is already a max matching. */
 return \(M \) /* Done! */
 else /* \(M \) can be enlarged */
 Unshrink \(M' \) as in the proof of Theorem 3,
 to obtain a matching in \(G \) of size \(> |M| \).
 /* It is not necessarily maximal */
 Update \(M \) and \(X \) and construct the graph \(\hat{G} \).
end

Figure 5: Algorithm for computing a maximum matching