
18.438 Advanced Combinatorial Optimization September 15, 2009

Lecture 2

Lecturer: Michel X. Goemans Scribes: Robert Kleinberg (2004), Alex Levin (2009)

In this lecture, we will present Edmonds’s algorithm for computing a maximum matching in a
(not necessarily bipartite) graph G. We will later use the analysis of the algorithm to derive the
Edmonds-Gallai Decomposition Theorem stated in the last lecture.

1 Recapitulation

Recall the following essential definitions and facts from the last lecture. A matching in an undirected
graph G is a set of edges, no two of which share a common endpoint. Given a graph G and a matching
M , a vertex is matched if it is the endpoint of an edge in M , unmatched otherwise; we will often
designate the set of unmatched vertices by X. Given a graph G with matching M , an M-alternating
path is a path whose edges are alternately in M and not in M . (Here we use path to mean a
simple path, i.e. one with no repeated vertices. We’ll refer to a non-simple path as a walk.) If
both endpoints of an M -alternating path belong to the set X of unmatched vertices, it is called an
M -augmenting path. Recall the following theorem from last time.

Theorem 1 A matching M is of maximum size if and only if G contains no M -augmenting path.

Figure 1: An M -augmenting path

2 Flowers, Stems, and Blossoms

The following construction is useful for finding M -augmenting paths. Given a graph G = (V,E)
with matching M ; construct a directed graph Ĝ = (V,A) with the same vertex set as G, and with
edge set determined by the rule that (u,w) ∈ A if and only if there exists v with (u, v) ∈ E \ M
and (v, w) ∈ M . Observe that every M -augmenting path in G corresponds to a path in Ĝ that
begins at a vertex in X and ends at a neighbor of X. However, the converse is not true, because
an M -alternating walk may begin at a vertex in X and end at a neighbor of X, without being an
M -augmenting path, if it contains an odd cycle. Figure 2 illustrates an example of such a walk.
This motivates the following definition.

Definition 1 An M -flower is an M -alternating walk v0, v1, v2, . . . , vt (numbered so that we have
(v2k−1, v2k) ∈ M, (v2k, v2k+1) 6∈ M) satisfying:

1. v0 ∈ X.

2. v0, v1, v2, . . . , vt−1 are distinct.

3. t is odd.

2-1

X

Stem Blossom

Figure 2: An M -flower. Note that the dashed edges represent edges of Ĝ.

4. vt = vi, for an even i.

The portion of the flower from v0 to vi is called the stem, while the portion from vi to vt is called
the blossom.

Lemma 2 Let M be a matching in G, and let P = (v0, v1, . . . , vt) be a shortest alternating walk
from X to X. Then either P is an M -augmenting path, or v0, v1, . . . , vj is an M -flower for some
j < t.

Proof: If v0, v1, . . . , vt are all distinct, P is an M -augmenting path. Otherwise, assume vi =
vj , i < j, and let j be as small as possible, so that v0, v1, . . . , vj−1 are all distinct. We shall prove
that v0, v1, . . . , vj is an M -flower. Properties 1 and 2 of a flower are automatic, by construction. It
cannot be the case that j is even, since then (vj−1, vj) ∈ M , which gives a contradiction in both of
the following cases:

• i = 0: (vj−1, vj) ∈ M contradicts v0 ∈ X.

• 0 < i < j − 1: (vj−1, vj) ∈ M contradicts the fact that M is a matching, since vi is already
matched to a vertex other than vj−1.

This proves that j is odd. It remains to show that i is even. Assume, by contradiction, that i is
odd. This means that (vi, vi+1) and (vj , vj+1) are both edges in M. Then vj+1 = vi+1 (since both
are equal to the other endpoint of the unique matching edge containing vj = vi), and we may delete
the cycle from P to obtain a shorter alternating walk from X to X. (See Figure 3.) �

v v v v v

vv

=v =v v v v0 1 2 3 4

56

7 8 9 10 11

Figure 3: An alternating walk from X to X which can be shortened.

2-2

Given a flower F = (v0, v1, . . . , vt) with blossom B, observe that for any vertex vj ∈ B it is
possible to modify M to a matching M ′ satisfying:

1. Every vertex of F belongs to an edge of M ′ except vj .

2. M ′ agrees with M outside of F , i.e. M △ M ′ ⊆ F .

3. |M ′| = |M |.

To do so, we take M ′ to consist of all the edges of the stem which do not belong to M , together
with a matching in the blossom which covers every vertex except vj , as well as all the edges in M
outside of F .

Whenever a graph G with matching M contains a blossom B, we may simplify the graph by
shrinking B, a process which we now define.

Definition 2 (Shrinking a blossom) Given a graph G = (V,E) with a matching M and a blos-
som B, the shrunk graph G/B with matching M/B is defined as follows:

• V (G/B) = (V \ B) ∪ {b}

• E(G/B) = E \ E[B]

• M/B = M \ E[B]

where E[B] denotes the set of edges within B, and b is a new vertex disjoint from V .

Observe that M/B is a matching in G, because the definition of a blossom precludes the possibility
that M contains more than one edge with one but not both endpoints in B. Observe also that G/B
may contain parallel edges between vertices, if G contains a vertex which is joined to B by more
than one edge.

The relation between matchings in G and matchings in G/B is summarized by the following
theorem.

Theorem 3 Let M be a matching of G, and let B be an M -blossom. Then, M is a maximum-size
matching if and only if M/B is a maximum-size matching in G/B.

Proof: (=⇒) Suppose N is a matching in G/B larger than M/B. Pulling N back to a set of edges
in G, it is incident to at most one vertex of B. Expand this to a matching N+ in G by adjoining
1

2
(|B|−1) edges within B to match every other vertex in B. Then we have |N+|−|N | = (|B|−1)/2,

while at the same time |M | − |M/B| = (|B| − 1)/2 (the latter follows because B is an M -blossom,
so there are (|B| − 1)/2 edges of M in B; then M/B contains all the corresponding edges in M
except those (|B|−1)/2). We conclude that |N+| exceeds |M | by the same amount that |N | exceeds
|M/B|.

(⇐=) If M is not of maximum size, then change it to another matching M ′, of equal cardinality,
in which B is an entire flower. (If S is the stem of the flower whose blossom is B, then we may take
M ′ = M △S.) Note that M ′/B is of the same cardinality as M/B, and b is an unmatched vertex of
M ′/B. Since M ′ is not a maximum-size matching in G, there exists an M ′-augmenting path P . At
least one of the endpoints of P is not in B. So number the vertices of P u0, u1, . . . , ut with u0 6∈ B,
and let ui be the first node on P which is in B. (If there is no such node, then ui = ut.) This
sub-path u0, u1, . . . , ui is an (M ′/B)-augmenting path in G/B. �

Note that if M is a matching in G that is not of maximum size, and B is blossom with respect
to M, then M/B is not a maximum-size matching in G/B. If we find a maximum-size matching
N in G/B, then the proof gives us a way to “unshrink” the blossom B in order to turn N into a
matching N+ of G of size larger than that of M. However, it is important to note that N+ will not,
in general, be a maximum-size matching of G, as the example in Figure 4 shows.

2-3

(a) The graph G with the matching
M shown in bold

(b) The shrunk graph G/B with
the matching M/B (the empty
matching)

(c) The shrunk graph G/B with a
maximum-size matching N

(d) The graph G with the match-
ing N+ obtained from N by the
unshrinking process. Note that it
is not a maximum-size matching

Figure 4: A maximum matching in the graph G/B does not necessarily pull back to a maximum
matching in G.

3 A polynomial-time maximum matching algorithm

The algorithm for computing a maximum matching is specified in Figure 5.
The correctness of the algorithm is established by Lemma 2 and Theorem 3. The running time

may be analyzed as follows. We can compute X and Ĝ in linear time, and can find P̂ in linear time
(by breadth-first search). Shrinking a blossom also takes linear time. We can only perform O(n)
such shrinkings before terminating or increasing |M |. The number of times we increase |M | is O(n).
Therefore the algorithm’s running time is O(mn2). With a little more work, this can be improved
to O(n3). (See Schrijver’s book.) The fastest known algorithm, due to Micali and Vazirani, runs in
time O(

√
n m).

2-4

M := ∅
X := {unmatched vertices} /* Initially all of V. */

Form the directed graph Ĝ.

while Ĝ contains a directed path P̂ from X to N(X)

Find such a path P̂ of minimum length.

P := the alternating path in G corresponding to P̂
if P is an M -augmenting path,

modify M by augmenting along P .

Update X and construct Ĝ.
else

P contains a blossom B.
Recursively find a maximum-size matching M ′ in G/B.
if |M ′| = |M/B| /* M is already a max matching. */

return M /* Done! */
else /* M can be enlarged */

Unshrink M ′ as in the proof of Theorem 3,
to obtain a matching in G of size > |M |.
/* It is not necessarily maximal */

Update M and X and construct the graph Ĝ.
end

Figure 5: Algorithm for computing a maximum matching

2-5

