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1 Matroid Optimization

We consider the problem of finding a maximum weight independent set in a matroid. Let M = (S, I) be
a matroid and w : S → R be a weight function on the ground set. As usual, let r be the matroid’s rank
function. We want to compute maxI∈I w(I), where w(I) =

∑
e∈I w(e). For this problem, we have an

independence oracle that given a set I ⊆ S determines whether or not I ∈ I. This problem can be solved by
the following greedy algorithm. Wlog, we assume all elements have nonnegative weights by discarding those
with negative weights (using the fact that they won’t appear in an optimum solution given that any subset
of an independent set is independent).
Algorithm:

1. Order elements in non-increasing weights: w(s1) ≥ w(s2) ≥ . . . ≥ w(sn) ≥ 0.

2. Take I = {si : r(Ui) > r(Ui−1)}, where Ui = {s1, . . . , si} for i = 1, . . . , n.

Claim 1 I ∈ I. In fact, for all i, I ∩ Ui ∈ I and |I ∩ Ui| = r(Ui).

Proof: The proof is by induction on i. It is certainly true for i = 0. Assume the statement holds for i− 1.
So I ∩ Ui−1 ∈ I and |I ∩ Ui−1| = r(Ui−1). There are two cases:

1. r(Ui) = r(Ui−1): Then si 6∈ I and I ∩ Ui−1 ∈ I. Also |I ∩ Ui| = |I ∩ Ui−1| = r(Ui−1) = r(Ui).

2. r(Ui) > r(Ui−1): There exists an independent set J ⊆ Ui such that |J | > |I ∩ Ui−1|. Note |J | = r(Ui)
and |I ∩Ui−1| = r(Ui−1). There is an element in J not in I ∩Ui−1 that we can add to I ∩Ui−1 to get
an independent set. It must be si. So I ∩ Ui−1 + si = I ∩ Ui ∈ I and |I ∩ Ui| = r(Ui) = r(Ui−1) + 1.

This completes the proof. �
The way the greedy algorithm is described seems to indicate that we need access to a rank oracle (which

can be simply constructed from an independence oracle by constructing a maximal independent subset).
However, the proof above shows that we can simply maintain I by starting from I = ∅ and adding si to it if
the resulting set continues to be independent. This algorithm thus makes n calls to the independence oracle.

We still need to show that w(I) has the maximum weight. To do this we consider the matroid polytope
due to Edmonds.

Definition 1 (Matroid Polytope) P = conv({χ(I) : I ∈ I}), where χ is the characteristic vector.

Theorem 2 Let Q =
{

x ∈ R|S| :
∑

s∈U xs ≤ r(U), ∀U ⊆ S
x ≥ 0

}
. The system of inequalities defining Q

is TDI. Therefore, Q integral (as the right-hand-side is integral), and hence Q = P. Furthermore, the greedy
algorithm produces an optimum solution.

Proof: Consider the following linear program and its dual. Let OP and OD be their finite optimal values.
Note x(U) =

∑
s∈U xs.

OP = Max wT x
s. t. x(U) ≤ r(U), ∀U ⊆ S

x ≥ 0.
(1)
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OD = Min
∑
U⊆S

r(U) · yU

s. t.
∑

U :s∈U

yU ≥ ws, ∀s ∈ S

yU ≥ 0, ∀U ⊆ S.

(2)

Let w ∈ Z|S|. We need to show that there exists an optimum solution to (2) that is integral. Wlog,
we assume w is nonnegative by discarding elements with negative weights (as the corresponding constraints
in the dual are always satisfied (given that y ≥ 0) and thus discarding such elements will not affect the
feasibility/integrality of the dual). So w ∈ Z|S|+ . Let J be the independent set found by the greedy algorithm.
Note that w(J) ≤ MaxI∈I w(I) ≤ OP = OD. We find y such that the min value OD equals w(J). Define y
as follows:

yUi = w(si)− w(si+1) for i = 1, . . . , n− 1,

yUn = w(sn),
yU = 0, for other U ⊆ S.

Clearly, y is integral and y ≥ 0 by construction. To check the first condition in Equation (2), we note that
for any si ∈ S = {s1, . . . , sn},

∑
U :si∈U

yU =
n∑

j=i

yUj = w(si), by telescoping sum.

Hence y is a feasible solution of the dual linear program. Now we compute the objective function of the dual:

∑
U⊆S

r(U) · yU =
n−1∑
i=1

r(Ui) · (w(si)− w(si+1)) + r(Un) · w(sn)

= w(s1)r(U1) +
n∑

i=2

w(si)(r(Ui)− r(Ui−1))

= w(J).

It follows that w(J) = MaxI∈I w(I) = OP = OD and that y gives the minimum value OD. Since w was an
arbitrary integral vector and there is a corresponding optimal integral solution y, it follows that the linear
system defining Q is TDI. Since b is integral (as in Ax ≤ b when Equation 1 is written this way), it follows
that Q is integral. Furthermore, any integral solution x in Q is the characteristic vector of an independent
set I (since x(U) = |I ∩ U | ≤ r(U) for all U including circuits). Thus P = Q. Furthermore, the greedy
algorithm is optimal. �

2 Matroid Intersection

Let M1 = (S, I1),M2 = (S, I2) be two matroids on common ground set S with rank functions r1 and r2.
Many combinatorial optimization problems can be reformulated as the problem of finding the maximum size
common independent set I ∈ I1 ∩ I2. Edmonds and Lawler studied this problem and proved the following
min-max matroid intersection characterization.

Theorem 3
max

I∈I1∩I2
|I| = min

U∈S
(r1(U) + r2(S \ U)) .
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The fact that the min ≤ max is easy. Indeed, for any U ⊆ S and I ∈ I1 ∩ I2, we have

|I| = |I ∩ U |+ |I ∩ (S \ U)|
≤ r1(U) + r2(S \ U),

since I∩U is an independent set in I1 and I∩(S\U) is an independent set in I2. Therefore, maxI∈I1∩I2 |I| ≤
minU∈S (r1(U) + r2(S \ U)). We will prove the other direction algorithmically.

There is no equivalent theorems for three or more matroids. In fact, the problem of finding the indepen-
dent set of maximum size in the intersection of three matroids is NP-Hard.

Theorem 4 Given three matroids M1,M2,M3 where Mi = (S, Ii), it is NP-hard to find the independent
set I with maximum size in I1 ∩ I2 ∩ I3.

Proof: The reduction is from the Hamiltonian path problem. Let D = (V,E) be a directed graph and
s and t are two vertices in D. Given an instance (D = (V,E), s, t) of the Hamiltonian path problem,
we construct three matroids as follows: M1 is equal to the graphic matroid of the undirected graph G
which is the undirected version of D. M2 = (E, I2) is a partition matroid in which a subset of edges is
an independent set if each vertex has at most one incoming edge in this set (except s which has none),
i.e, I2 = {F ⊆ E : |δ−(v) ∩ F | ≤ fs(v)} where fs(v) = 1 if v 6= s and fs(s) = 0. Similarly, we define
M3 = (E, I3) such that I3 = {F ⊆ E : |δ+(v)∩F | ≤ ft(v)} where ft(v) = 1 if v 6= t and ft(t) = 0. It is easy
check that any set in the intersection of these matroids corresponds to the union of vertex-disjoint directed
paths with one of them starting at s and one (possibly a different one) ending at t. Therefore, the size of
this set is n− 1 if and only if there exists a Hamiltonian path from s to t in D. �

Examples

The following important examples illustrate some of the applications of the matroid intersection theorem.

1. For a bipartite graph G = (V,E) with partition V = V1∪V2, consider M1 = (E, I1) and M2 = (E, I2)
where Ii = {F : ∀v ∈ Vi,degF (v) ≤ 1} for i = 1, 2. Note that M1 and M2 are partition matroids,
while I1 ∩ I2, the set of bipartite matchings of G, does not define a matroid on E. Also, note that the
rank ri(F ) of F in Mi is the number of vertices in Vi covered by edges in F . Then by Theorem 3, the
size of a maximum matching in G is

ν(G) = min
U∈E

(r1(U) + r2(E \ U)) (3)

= τ(G) (4)

where τ(G) is the size of a minimum vertex cover of G (as the vertices from V1 covered by U together
with the vertices of V2 covered by E \U form a vertex cover). Thus, the matroid intersection theorem
generalizes Kőnig’s matching theorem.

2. As a corollary to Theorem 3, we have the following min-max relationship for the minimum common
spanning set in two matroids.

min
F spanning in M1 and M2

|F | = min
Bi basis in Mi

|B1 ∪B2|

= min
Bi basis in Mi

|B1|+ |B2| − |B1 ∩B2|

= r1(S) + r2(S)− min
U⊆S

[r1(U) + r2(S \ U)].

Applying this corollary to the matroids in example 1, it follows that the minimum edge cover in a
bipartite graph G is equal to the maximum of |V | − r1(F ) − r2(E \ F ) over all F ⊆ E. Since this is
exactly the maximum size of a stable set in G (consider the vertices of V1 not covered by F and those
of V2 not covered by E \ F ), the corollary is a generalization of the Kőnig-Rado theorem.
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3. Consider a graph G with a k-coloring on the edges, i.e., edge set E is partitioned into (disjoint) color
classes E1 ∪ E2 ∪ . . . ∪ Ek. The question of whether or not there exists a colorful spanning tree (i.e.
a spanning tree with edges of different colors) can be restated as a matroid intersection problem on
M1 = (E, I1) and M2 = (E, I2) with

I1 = {F ⊆ E : F is acyclic}
I2 = {F ⊆ E : |F ∩ Ei| ≤ 1 ∀i}

Since I1 ∩ I2 is the set of colorful forests, there is a colorful spanning tree of G if and only if

max
I∈I1∩I2

|I| = |V | − 1.

By Theorem 3, this is equivalent to the condition

min
U⊆E

(r1(U) + r2(E \ U)) = |V | − 1.

Since r1(U) = |V | − c(U) (where c(U) denotes the number of connected components of (V,U)), it
follows that there is a colorful spanning tree of G if and only if the number of colors in E \U is at least
c(U)− 1 for any subset U ⊆ E. In other words, a colorful spanning tree exists if and only if removing
the edges of any t colors leaves a graph with at most t + 1 components.

4. Given a digraph G = (V,A), a branching D is a subset of arcs such that

(a) D has no directed cycles

(b) For every vertex v,degin(v) ≤ 1 in D.

Branchings are the common independent sets of matroids M1 = (E, I1),M2 = (E, I2), where

I1 = {F ⊆ E : F is acyclic in the underlying undirected graph G}
I2 = {F ⊆ E : degin(v) ≤ 1 ∀v ∈ V }.

Note that M1 is a graphic matroid on G and M2 is a partition matroid. Therefore, the problem of
finding a maximum branching of a digraph can be solved by a matroid intersection algorithm.

To prove the matroid intersection theorem, we need some exchange properties of bases. Let B be the set
of bases of matroid M . Then for bases B,B′ ∈ B,

1. ∀x ∈ B′ \B, there exists y ∈ B \B′ such that B + x− y ∈ B.

2. ∀x ∈ B′ \B, there exists y ∈ B \B′ such that B′ − x + y ∈ B.

Note that the two statements are not saying the same thing. The first statement says that adding x to B
creates a unique circuit and this circuit is distroyed by removing a single element; the second statement says
that if we remove an element x of B′, we can find an element of B to add to B′ − e and keep a basis (this is
one of the matroid axioms). The following lemma is a stronger basis exchange statement.

Lemma 5 For all x ∈ B′ \B, there exists y ∈ B \B′ such that B + x− y, B′ − x + y ∈ B.

We will prove the matroid intersection theorem next time.
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