18.434 Voltage and current in random walks

Bryan Rosario

September 19, 2011

The concepts of voltage and current in electrical networks have meaningful analogues in corresponding random walks. Given an electrical network consisting of a graph G = (V, E) along with conductance $c_{xy}, \forall (x, y) \in E$, define the matrix of transition probabilities as

$$P_{xy} = \frac{c_{xy}}{\sum_{y:(x,y)\in E} c_{xy}}$$

if $(x, y) \in E$ and $P_{xy} = 0$ otherwise. Then the random walk defined by matrix P has properties related to the voltage and current of the original network, as given in the following theorems.

Theorem 1. Pick nodes $s, t \in V$. Define

$$h(x) = Prob(\text{starting the random walk at x, we reach s before t})$$

and define the escape probability

 $P_{esc}(s \to t) = Prob(\text{starting at s, we reach t before s})$

Let v(x) be the voltage at node x in the electrical network. Then if v(s) = 1and v(t) = 0, h(x) = v(x) and the effective current in the electrical network from s to t is

$$i_{eff}(s,t) = P_{esc}(s \rightarrow t) \sum_{y:(s,y) \in E} c_{sy}$$

Theorem 2. Pick nodes $s, t \in V$. For a random walk starting at s and stopping at t, define the expected sojourn time at x, $S_x(s \to t)$, to be the expected number of times node x is touched strictly before reaching t. Also define E_{xy} to be the expected difference between the number of times edge (x, y) is crossed from x to y and the number of times it is crossed from y to x. In the electrical network, let the voltage v(t) = 0, and let the effective current from s to t be $i_{eff}(s, t) = 1$. Then the voltage at x is

$$v(x) = \frac{S_x(s \to t)}{\sum_{y:(x,y) \in E} c_{xy}}$$

and the current on edge (x, y) is $i(x, y) = E_{xy}$.