
Massachusetts Institute of Technology Lecturer: Lele Yu
18.434: Seminar in Theoretical Computer Science February 16, 2006

Lecture notes on Shortest Superstring Problem

So far we have studied the set covering problem, but not looked at any real life applica-
tions. The shortest superstring problem takes as input, several strings of different lengths
and finds the shortest string that contains all the input strings as substrings. This is helpful
in the genome project since it will allow researchers to determine entire coding regions from
a collection of fragmented sections. We will look at the set covering problem as a way to
solve the shortest superstring problem.

1 The Shortest Superstring Problem

Given an alphabet
∑

and a set of n strings, S = {s1, ..., sn} ⊆
∑

, we want to find the
shortest string s that contains si∀i, as a substring. We assume that no si ∈ S is a substring
of sj ∈ S. This problem is NP-hard.

The Greedy Algorithm Approach Let T be equal to the the set of strings in the input.
Take the overlap of two strings s and t to be the longest suffix of s that is the same as a prefix
of t. This algorithm iterates through T, selecting two strings with maximum overlap and
replaces them with a combined string. After n-1 iterations, T will contain only one string,
the superstring of the strings previously in T.

The problem with this estimator is that it has an approximation factor of 2 at best. This
can be demonstrated through looking at the strings 124242, 242425 and 2424242. There is
the same amount of overlap between all the strings. Say the algorithm first picked the first
two strings to merge, then the resulting superstring would be 12424252424242. However, the
best answer would have been 124242425.

Figure 1: A combined string, taking the largest overlap of si with sj.

1

The Set Cover Algorithm Approach Using the set cover method, we obtain a 2Hn

factor approximation algorithm. Given input, S = {s1, ..., sn}, we construct a string rijk for
all possible combinations si and sj ∈ S (where k is the maximum overlap between the two).
The figure above shows a possible combination. Now, let’s call the set of all such r, R. Now
let v be ∈

∑
, then let sub(v) = {s ∈ S| s is a substring of v}. All possible subsets of S is

sub(v) for all v ∈ S ∪ R.

Algorithm 1 (Set cover)

1. Use the greedy set cover algorithm to find a cover for the instance C.

2. Backwards construct v1, ...vk from the sets selected by the algorithm so that sub(v1)∪...∪
sub(vk) is the cover for C.

3. Uniting the strings v1, ...vk gives the shortest superstring via set cover.

Lemma 1 OPT ≤ OPTC ≤ 2 · OPT

Proof: In this case, OPTC is the cost of a set cover solution. To show the first part of
the inequality, assume that we have an optimal set cover {sub(vij

)|1 ≤ j ≤ l}. Then, since
every string in S is a substring of some vij

, 1 ≤ j ≤ l, every string is in S is also a substring
of the result from the set cover algorithm. Therefore, OPTC ≥ OPT .

To prove the second part, we keep in mind that each string in the set cover must start
and end in different places from the rest of the strings since none of the strings are substrings
of another string. We can then partition the strings of the set cover into groups that are
contained by v1, ..., vk. The strings are split such that the last string in group vi will be the
furthest overlapping string to the first string the group vi. This system will ensure that ri

cannot overlap with vi+2. If a string in vi+2 overlaps with vi, then it would definitely overlap
with the first string in vi+1 and thus should be in vi+1. Hence, in the worst case, every other
group completely overlaps and we have that OPTC ≤ 2 · OPT . A diagram of this is shown
on the next page.

Theorem 2 The greedy algorithm is an Hn factor approximation algorithm for the minimum

set cover problem.

We learned this theorem in the first lecture of the semester. Together, the lemma and
the theorem show that the set cover algorithm gives a 2Hn factor algorithm for the shortest
superstring problem.

2

Figure 2: Strings vi, vj and vk backwards constructed by their substrings.

2 A Factor 4 Algorithm

Definition 1 OPT = |prefix(s1, s2)|+|prefix(s2, s3)|+...+|prefix(sn, s1)|+|overlap(sn, s1)|

Below is a graphical representation of the shortest superstring in this definition with
relation to the input strings. The addition of the overlap at the end in effect just appends all
of the last(in terms of occurance in the shortest superstring) string to the shortest superstring.

Figure 3: A graphical representation of OPT.

3

Including the last overlap ensures that OPT covers all the input strings even if all of them
share large overlaps with every other one of them. For example, if we started wih the input,
S = {121212, 212121}. Then, the shortest superstring would be s = 2121212. However, if
we just take the prefix of each string with the next one, we would only get 1 from the prefix
of s1 with s2 and 2 from the prefix of s2 with s1, hence the OPT would only be 12, which
obviously does not cover either one of the strings.

By this definition, the problem of the shortest superstring becomes an instance of the
traveling salesman problem with prefix(si,sj) as the weight between vertices i and j. As
we recall, the travelling salesman problem is one of finding the lowest cost cycle travelling
through all the vertices in a graph. However, since TSP is not easily computable, we consider
travelling through all the vertices using multiple cycles, i.e., finding the cycle cover of this
prefix graph. Since the tour above in the figure is a cycle cover, the minimum weight of a
cycle cover is the lower bound of OPT.

We can compute a minimum weight cycle cover in polynomial time by constructing a
bipartite graph with U = {u1, ..., un} and V = {v1, ..., vn} as the two vertex sets. For every
two vertices si and sj, we add an edge with weight |prefix(si, sj)|. A cycle cover of the
graph corresponds to a perfect matching of H.

If ci is a cycle in the prefix graph, than we can define wt(ci), the weight of ci to be:

wt(ci) = prefix(si1 ,si2) ◦ ... ◦ prefix(sil
,si1)

Also, let

σ(ci) = wt(ci) ◦ si1

Together, we know that each string, si1,...,sil
is a substring of both (wt(ci))

∞ and σ(ci).

Algorithm 2

1. Construct a prefix graph and find its minimum weight cycle cover, C = {c1, ..., ck}.

2. Return σ(c1) ◦ σ(c2) ◦ ... ◦ σ(ck).

Theorem 3 Algorithm 2 achieves an approximation factor of 4 for the shortest superstring

problem

Proof: Let wt(C) =
∑k

i=1
wt(ci), then

∑k

i=1
|σ(ci)| = wt(C) +

∑k

i=1
|si|

where si is the representative string that is concatenated to wt(ci) in σ(ci). We already know
that wt(C) ≤ OPT and now we rearrange to find

∑k

i=1
|si|.Using lemma 4, we find:

OPT ≥
∑k

i=1
|si| −

∑k−1

i=1
|overlap(si, si+1)| ≥

∑k

i=1
|si| − 2

∑k

i=1
wt(ci)

4

The leftmost part of this inequality is valid because the right side of the inequality has
the same issue as wt(c) from before; it does not take into account parts of the shortest
superstring that is shared amongst all the si. The right-most equation is true due to Lemma
4.

Hence,

∑k

i=1
|ri| ≤ OPT + 2

∑k

i=1
wt(ci) ≤ 3 · OPT

When we substitute this into the original equation, we get that:

∑k

i=1
|σ(ci)| = 4 · OPT

Lemma 4 Take C, the minimum weight cycle cover of S. Let c and c′ be two cycles in C,

and let r and r′ be representative strings from those cycles. Then |overlap(r, r′) ≤ wt(c) +
wt(c′)

Proof: By contradiction. Assume that |overlap(r, r′)| ≥ wt(c)+wt(c′). Then overlap(r, r′)
is a prefix of α∞ and α′∞. In addition, since α is ∈ overlap(r, r′), α is a prefix of (α′)∞ and
vice versa. Hence, α ◦ α′ = α′ ◦ α. This means that (α)k(α′)k = (α)k−1(α′)(α)(α′)k−1 and
(α)k(α′)k = (α′)k(α)k. Hence, α∞ = α′∞. By lemma 5, there exists a cycle of weight wt(c)
that covers all strings in c and c′ Hence, C cannot be a minimum weight cycle.

Lemma 5 If each string in S ′ is a substring of t∞ then there is a cycle of weight at most

|t| in the prefix graph covering all the vertices corresponding to strings in S ′

Proof: Align the strings of S ′ along t∞. They should all be contained within t and the
weight of the cycle in the prefix graph visiting them all in this order should be at most |t|.

5

