
Massachusetts Institute of Technology Lecturer: Adriana Lopez
18.434: Seminar in Theoretical Computer Science March 7, 2006

Steiner Trees and Forests

1 Steiner Tree

Problem Given an undirected graph G � <V,EA, a cost function c � E � Q�, and a
partition of V into two sets R and S, find a minimum cost tree in G that contains all the
vertices in R and any subset of the vertices in S.

We would like to restrict this problem to instances in which the triangle inequality is satisfied,
that is, instances in which G is a complete undirected graph and

�u, v, w . V � c<u,wA 2 c<u, vA � c<u,wA
The problem of solving the Steiner Tree problem with these restrictions is called the metric
Steiner tree problem. The next theorem shows that an instance of the Steiner tree problem
can be reduced in polynomial time to an instance of the metric Steiner tree problem, so that
solving the latter implies being able to solve the first.

Theorem 1 There is an approximation factor preserving reduction from the Steiner tree
problem to the metric Steiner tree problem.

Proof: We want to transform, in polynomial time, an instance I of the Steiner tree
problem to an instance I � of the metric Steiner tree problem. Given I, consisting of graph
G � <V,EA, create I � as follows. For every u, v . V , create an edge <u, vA in G� with cost
c<u, vA equal to the cost of the shortest path from u to v in G. Let OPT and OPT � be the
cost of an optimal solution in I and I �, respectively. We want to show that OPT � OPT �.
We will show that OPT 2 OPT � and that OPT � 2 OPT .

Let e and e� be the edges connecting two vertices u and v in G and G�, respectively. Since e
is a path from u to v and e� has cost equal to the cost of the shortest path from u to v, we
see that c<eA 2 c<e�A. Thus, for every edge e . E, we have that its cost in G is less than or
equal to its cost in G�. This means that the cost of the optimal solution in I is at most the
cost of the optimal solution in I �, and so OPT � 2 OPT .

Next, let T � be an optimal solution to I �; we want to find a solution T in I such that
c<T A 2 c<T �A. Since OPT 2 c<T A for all T R E, this would mean that OPT 2 c<T �A � OPT �.

1

Every edge in T � corresponds to a shortest path in G, so replace each edge by this path to
get a subgraph H R G. H might contain cycles so remove edges until H is acyclic (but still
connected) and call this new subgraph T . Notice that c<HA � c<T �A, and since T R H, we
have that c<T A 2 c<HA � c<T �A. Q

Definition 1 A minimum spanning tree (MST) of a graph G � <V, EA is a subset T R E
that connects all vertices in V and whose total cost c<T A � é

e.T
c<eA is minimized.

A minimum spanning tree on R is clearly a solution to the metric Steiner tree problem. It
is not optimal but its cost is always within a factor of 2 from the optimal solution, as the
next theorem illustrates.

Theorem 2 The cost of an MST on R is within 2 � OPT.

Proof: Let OPT be the cost of an optimal solution T to an instance of the metric Steiner
tree problem. If we double each edge in T , we get an Eulerian graph connecting all vertices
in R and possibly some vertices in S. We can find an Eulerian tour of this graph, whose
cost will be 2 � OPT . Taking this tour and short-cutting vertices in R that have already
been visited and vertices in S, we obtain a Hamiltonian cycle on R. Because G is complete,
the short-cut edges are in E and because of the triangle inequality, they do not increase the
cost of the tour. Deleting one edge from this Hamiltonian cycle yields a spanning tree of
R with cost at most 2 � OPT . Thus, if M is a minimum spanning tree on R, we have that
c<MA 2 2 � OPT . Q

2 Steiner Forest

Problem Given an undirected graph G � <V,EA, a cost function c � E � Q�, and a
collection of disjoint subsets of V : S1, S2, . . . , Sk, find a minimum cost subgraph in G in
which any two vertices belonging to the same set Si are connected.

Define a connectivity requirement function r � V � V � F0, 1K as follows:

r<u, vA � J 1 if u and v belong to the same set Si;
0 otherwise.

2

Then an equivalent formulation of the Steiner forest problem is to find a minimum cost
subgraph H R G such that if r<u, vA � 1, then there exists a path from u to v in H, or in
other words, if r<u, vA � 1, then u and v are in the same connected component of H.

2.1 LP-Relaxation

We define a function f � ò<V A � F0, 1K as follows:

f<SA � J 1 if � u . S and v . S̄ such that r<u, vA � 1;
0 otherwise.

For S R V , let δ<SA denote the set of edges crossing the cut <S, S̄A. f can be viewed as a
function on all cuts <S, S̄A in G, which specifies the minimum value of δ<SA in any feasible
solution.

Also, for each edge e . E we introduce the variable xe defined below

xe � J 1 if e is picked in the subgraph;
0 otherwise.

The integer program is:

minimize é
e.E

cexe

subject to é
e� e.δ<SA xe 3 f<SA, S R V

xe . F0, 1K, e . E

The LP-relaxation is obtained by letting 1 3 xe 3 0. The upper bound on xe is redundant,
so we can drop it. Therefore, the LP-relaxation is:

minimize é
e.E

cexe

subject to é
e� e.δ<SA xe 3 f<SA, S R V

3

xe 3 0, e . E

The dual program is:

maximize é
SRV

f<SA � yS

subject to é
S� e.δ<SA yS 2 ce, e . E

yS 3 0, S R V

2.2 Terminology

Say that:

� set S has been raised in a dual solution if yS 1 0

� edge e is tight if é
S� e.δ<SA yS � ce

� at any iteration, set S is unsatisfied if f<SA � 1 but no picked edge crosses the cut<S, S̄A
� set S is active if it is a minimal unsatisfied set in the current iteration

Notice that raising a set S for which f<SA � 0 does not affect the dual objective function.
So we can assume that such sets are never raised.

Primal Conditions: For each e . E, xe � 1 implies èS� e.δ<SA yS � ce. In other words,
every edge that is picked must be tight.

The algorithm starts with null primal and dual solutions. At any given iteration, the current
primal solution indicates which sets need to be raised and the current dual solution indicates
which edge needs to be picked.

Lemma 3 Set S is active iff it is a connected component in the currently picked forest and
f<SA � 1.

4

Proof: Let S be an active set. If S contains part of a connected component, then there
would already be an edge crossing the cut <S, S̄A which would contradict the fact that S
is active. So S must be a union of connected components. Since f<SA � 1, there must be
vertices u . S, v . S̄ such that r<u, vA � 1. Let S� be the connected component that contains
u, then S� is also unsatisfied. Since S is minimal, we must have S� � S. The reverse follows
by the definition of an active set. Q

2.3 Algorithm

By lemma 3, all active sets can be easily found in the current iteration. The algorithm will
then raise the dual variables of these sets in a synchronized manner until some edge goes
tight. A tight edge is then picked arbitrarily and the iteration terminates. This process
ends when a primal feasible solution F is found. However, F might contain redundant edges,
that is, edges without which F would still be a feasible solution. So the algorithm drops all
redundant edges and returns the newly pruned F .

1. Initialization
F � g
for each S R V, yS � 0

2. Edge augmentation
while there exists an unsatisfied set do:
simultaneously raise yS for each active set S, until some edge e goes tight F � F 8 FeK

3. Pruning
return F � � Fe . F i F � FeK is primal infeasibleK

Lemma 4 At the end of the algorithm, F � and y are primal and dual feasible solutions,
respectively.

Proof: At the end of step 2, all connectivity conditions are met (otherwise, another
iteration would follow). Moreover, only connected sets are raised, so no edge between two
vertices in the same component can go tight, and therefore F is acyclic, i.e. it is a forest.
Hence, if r<u, vA � 1 then there is a unique path from u to v in F , and each edge in this path
is non-redundant and will not be removed in step 3. Thus, F � is a feasible solution. Now,
when an edge goes tight, the current iteration terminates and active sets are redefined, so
no edge is overtightened. This means that y is a feasible solution to the dual program.

Q

5

Lemma 5 Consider any iteration of the algorithm and let C be a component of the graph
formed by the currently picked edges. If f<CA � 0 then degF �<CA h 1.

Proof: Suppose, for the sake of contradiction, that f<CA � 0 and degF �<CA � 1. Let e
be the unique edge connecting C and C̄. Since e . F �, we know that e is not redundant, so
there exist vertices u, v such that r<u, vA � 1 and e is part of the unique path between them.
Since e is the only edge crossing the cut <C, C̄A, it must be the case that one of the vertices
is in C and the other is in C̄. But we know r<u, vA � 1, so f<CA � 1 which is a contradiction.

Q

Lemma 6 é
e.F �

ce 2 2 é
SRV

yS

Proof: Every edge picked by the algorithm is tight, so

é
e.F �

ce � é
e.F �

\̂ é
S� e.δ<SA yS

]_
If we change the order of the summations, we get

é
e.F �

ce � é
SRV

\̂ é
e.δ<SA9F �

yS

]_ � é
SRV

degF�<SA � yS

It is therefore sufficient to show that

é
SRV

degF�<SA � yS 2 2 é
SRV

yS

We will prove that in each iteration, the change in the left hand side is at most the change
in the right hand side. Consider an iteration and let ∆ be the amount by which the dual
variables were raised in this iteration. We want to prove that:

∆ � @ é
S active

degF�<SAE 2 2∆ � <# active setsA
or equivalently,

èS active degF�<SA
active sets

2 2

Let H � <V, F �A and consider the set of connected components with respect to F at the
current iteration. Shrink each one of these components to a node and call the new graph

6

H �. Let V � and E� denote the set of vertices and edges of H �, respectively. Notice that all
vertices picked before the current iteration have been shrunk. Further notice that if the node
s . V � corresponds to the connected component S in H, then

degF�<SA � degH�<sA
Call a node s . H � active if it corresponds to an active set in H and inactive otherwise. We
want to prove that

é
s active

degH�<sA
active nodes in H � 2 2

or equivalently, that

é
s.V �

degH�<sA � é
s inactive

degH�<sA 2 2 � <# active nodes in H �A
Notice that if s . V � is an active node, then degH� 1 0 because there must be an edge incident
to it to satisfy connectivity requirements. If s is inactive then by lemma 5 we know that
degH�<sA h 1, so either degH�<sA � 0 or degH�<sA 3 2.

By the handshaking lemma, we know that

é
s.V �

degH�<sA � 2iE�i � 2iV �i � 2 � <# connected components of H �A 2 2iV �i
This inequality still holds if we remove isolated vertices from V � because each time we remove
an isolated vertex, both iV �i and the number of connected components decrease by 1. So
remove any isolated vertices from H �; notice that any vertex we remove is inactive and that
the inactive nodes that remain have degree greater than or equal to 2. Thus

é
s inactive

degH�<sA 3 2 � <# of inactive nodes inH �A
This means that

é
s.V �

degH�<sA � é
s inactive

degH�<sA 2 2iV �i � 2 � <# of inactive nodes inH �A
� 2 � <# active nodes in H �A

This proves our claim. Q

Theorem 7 The algorithm given above is a 2-factor approximation algorithm to the Steiner
forest problem.

7

Proof: By lemma 4, we know that F � and y are primal and dual feasible solutions,
respectively. By lemma 5, we know that é

e.F �
ce 2 2 é

SRV

yS. Since no set S for which f<SA � 0

was ever raised, we know that 2 é
SRV

yS � 2 é
SRV

f<SA � yS. This is the dual objective function,

which means that if OPTf is the optimal solution to the dual program, then

é
SRV

f<SA � yS 2 OPTf

But we know that the optimal solution to the fractional program is at most the optimal
solution to the integer program, so

2 é
e.F �

ce 2 2 � OPTf 2 2 � OPT

Q

References

[1] Vazirani, Vijay V. ”Approximation Algorithms” Chapters 3.1 and 22, Springer 2003

8

