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1 Review from last time

1.1 Set cover problem

U is the universal set, S is a collection of subsets of U , and c : S → N is a cost
function. The goal is to find a collection S1, S2, ...Sk of elements of S such that
S1 ∪ S2 ∪ ... ∪ Sk = U with minimal total cost.

1.2 Greedy algorithm for set cover

At step n, choose the set Sn that minimizes c(Sn)/|Sn \ ∪n−1
k=1Sk. Halt if

∪n
k=1Sn = U .

1.3 Linear program for set cover problem

Minimize
∑

S c(S)xS subject to
∑

S3e xS ≥ 1 for each i.

1.4 Dual linear program for set cover problem

Maximize
∑

e∈U ye subject to sume∈Sye ≤ c(S) for each S.

2 Proof of greedy algorithm performance using
linear programming

Last time it was shown that the solution chosen by the greedy algorithm is
at most Hn times the optimal solution. This can also be proved using linear
programming.

The ye’s in the dual program represent the cost of each element of the set.
The greedy algorithm also assigned costs to the elements of the set. Usually,
the costs found by the greedy algorithm do not satisfy all of the inequalities
of the dual program. However, if all of the costs are divided by Hn, then the
inequalities of the dual program are satisfied.
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Proof. For any set S ∈ S, consider the ei, the ith element of S to be covered.
Before this element is covered, at least |S| − i + 1 elements of S are uncovered,
so S could be added for a cost of c(S)

|S|−i+1 per element. The cost per element of
the set that is actually chosen can be no larger for this. After dividing by Hn,
the dual linear programming solution satisfies

yei
≤ 1

Hn

c(S)
|S| − i + 1

(1)

The sum of the costs of all elements of S is at most

|S|∑
i=1

yei ≤
c(S)
Hn

|S|∑
i=1

1
|S| − i + 1

=
c(S)H|S|

Hn
≤ c(S) (2)

Therefore the solution ye = price(e)
Hn

satisfies all of the inequalities of the dual
linear programming problem.

Note that n can be replaced by maxS∈S |S| in the above bound. This means
that if the size of the subsets is bounded, then the greedy solution is within a
constant factor of the optimal one.

Since the difference between the optimal solution and the linear program-
ming bound is always less than the difference between the greedy solution and
the linear programming bound, the linear programming bound is at worst a
logarithmic factor smaller than the optimal solution. It turns out that there are
cases when the linear programming bound is off by a logarithmic factor.

Let k be an integer, and let n = 2k−1. Let U be projective k−1-space over
F2, and let S consist of the complements all k − 2-dimensional hyperplanes.
Give each set a cost of one. Since each set has 2k−1 = n+1

2 elements, the
solution to the dual linear program is xi = 2

n+1 . This gives a total cost of
2n

n+1 . However, any intersection of k − 1 or fewer hyperplanes is nonempty, so
k = log2(n + 1) complements of hyperplanes are needed to cover U . Therefore
there exist instances of the set cover problem for which linear programming
underetimates the solution by a factor of n+1

2n log2(n + 1) > log4 n ≈ .72Hn.

3 Constrained set multicover

3.1 Setup

The set multicover problem is similar to the set cover problem, but each ele-
ment i must be covered a specified number of times ri. In the constrained set
multicover problem, each set can be used only once. The linear program for
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constrained set multicover is

Minimize
∑
S∈S

c(S)xS (3)

xS ≥ 0 (4)∑
S3e

xS ≥ re (5)

−xS ≥ −1 (6)

Because of the requirement that each set be used only once, the linear program
now has negative coefficients.

These additional constraints also lead to new variables in the dual linear
program.

Maximize
∑
i∈U

riyi −
∑
S∈S

zS (7)(∑
e∈S

ye

)
− zS ≤ c(S) (8)

ei ≥ 0 (9)
zS ≥ 0 (10)

Essentially, the zS ’s represent opportunity costs for choosing a particular set
(and thus preventing it from being chosen again).

3.2 Greedy algorithm

Again, the greedy algorithm can be used to find an approximate solution to
this problem. At each step, the set that minimizes cost divided by the number
elements that need to be covered is chosen.

In order to measure the performance of the greedy algorithm, we assign a
price to each element of U and each of the re instances that that element is
chosen. For each e ∈ U , define αe to be the price of e the last time it is chosen,
and for each S ∈ S, that was chosen define βS to be

(∑
e covered by S αe

)
−c(S).

βS can be thought of as the discount received by S. If S was not chosen, then
set βS = 0. Then the total cost of the covering found by the greedy algorithm
is
∑

i∈U αi −
∑

S∈S βS .
As in the ordinary set cover problem, dividing the prices found by the greedy

algorithm by Hn gives a feasible solution to the dual linear programming prob-
lem.

Proof. Choose S ∈ S. Let ei be the ith element of S to be covered completely. If
S is never chosen, then c(S)/(|S|−i+1) ≥ αei

. So
∑

ei∈S yei
−zS = 1

Hn

∑
i αi ≥

c(S). If S is chosen, then the sum of the α’s of the elements that still needed
to be covered minus βS is precisely c(S). The sum of the α’s of the remaining
elements is at most (Hn − 1)c(S). So the linear programming constraint is still
satisfied.
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