
Linear Programming Algorithm
for the Multiway Cut Problem

Adam Groce
18.434: Seminar in Theoretical Computer Science

Prof. M. X. Goemans

March 2, 2006

1 The Problem

Recall from last time the multiway cut problem: given a graph with weighted
edges and a set of terminals S = {s1, s2, . . . , sk} ⊆ V , find the minimum
weight set of edges E ′ ⊆ E which, when removed, leaves all terminals sep-
arated from all other terminals. Last time, a combinatorial algorithm was
given with an approximation factor of 2 − 2

k
. This lecture will show a ran-

domized linear programming algorithm with an approximation factor of 3
2
.

2 The Linear Programming Relaxation

Let ∆k denote the k − 1 dimensional simplex; that is, the surface in Rk

defined by {x ∈ Rk|x ≥ 0 and
∑

i x
i = 1}, where x is a vector and xi is

the ith coordinate of x. The LP relaxation will map each vertex of G to a
point in ∆k. Each terminal will be mapped to a different unit vector. Let
xv represent the point to which vertex v is mapped. Define the length of an
edge (u, v) to be

d(u, v) =
1

2

k∑
i=1

|xi
u − xi

v|

1

Now consider the relaxation:

minimize
∑

(u,v)∈E

c(u, v)d(u, v)

subject to d(u, v) =
1

2

k∑
i=1

|xi
u − xi

v|, (u, v) ∈ E

xv ∈ ∆k, v ∈ V

xsi
= ei, si ∈ S

An integer solution to this relaxation maps each vertex of G to a unit
vector. Each vertex represents a component of the graph after E ′ is removed.
Edges within one component have length 0, and edges between components
(i.e., those in E ′) have length 1. The function being minimized is therefore
equal to the cost of E ′.

It is not clear that the above is a true linear program, due to the absolute
values. However, this is not a problem. To create an equivalent true linear
program, replace the first constraint with:

xi
uv ≥ xi

u − xi
v, 1 ≤ i ≤ k

xi
uv ≥ xi

v − xi
u, 1 ≤ i ≤ k

d(u, v) =
1

2

k∑
i=1

xi
uv

Because of the minimization, any optimal solution must satisfy xi
(uv) =

|xi
u − xi

v|.
We may assume, without loss of generality, that for each edge (u, v) ∈ E,

xu and xv differ in at most two coordinates.

Proof. Along any edge (u, v) where xu and xv differ in more than two co-
ordinates, insert a new vertex w and replace (u, v) with (u, w) and (w, v).
Assign both (u, w) and (w, v) the same cost as (u, v). This does not change
the cost of the optimal integral solution.

Now consider the optimal fractional solution. Since d is a valid distance
function, d(u, w) + d(w, v) ≥ d(u, v). Therefore the cost of the optimal
solution cannot decrease because of the addition of w. Now, let i be the
coordinate in which the difference between xi

u and xi
v is minimal (disregarding

coordinates where xi
u = xi

v). Without loss of generality assume xi
u < xi

v and

2

let α = xi
v−xi

u. There must be a coordinate j such that xj
u ≥ xj

v+α. Consider
the solution with xi

w = xi
u and xj

w = xj
v + α. All other coordinates of xw are

equal to those of xv. This gives xw ∈ ∆k and d(u, v) = d(u, w) + d(w, v).
xv and xw differ in only two coordinates, and xw and xu differ in fewer

coordinates than xu and xv. Repeated application of this process will give a
solution with the same cost and with the desired property.

3 The Algorithm

Take an optimal solution to the relaxation with edges whose endpoints differ
in at most two coordinates, and let OPT denote its cost. Define Ei =
(u, v) ∈ E|xi

u 6= xi
v. (Note that each edge will lie in two of these sets.) Define

Wi =
∑

e∈Ei
c(e)d(e). Without loss of generality, assume that Wk is the

greatest of W1, . . . ,Wk. Also define B(si, ρ) = v ∈ V |xi
v ≥ ρ.

The algorithm operates as follows. First, pick ρ at random in (0, 1) and
an ordering σ from (1, 2, . . . , k − 1, k) and (k − 1, k − 2, . . . , 1, k). Then
partition V into V1, . . . , Vk as follows. Proceed in the order given by σ. Each
Vi should contain all vertices in B(si, ρ) that have not already been assigned
to a previous Vi. At the end, assign all unused vertices to Vk. The sets
V1, . . . , Vk are the components after removing the cut, and edges between
vertices in two different sets are in the cut.

More formally, the algorithm is:

1. Compute an optimal solution to relaxation.

2. Renumber the terminals so that Wk is largest among W1, . . . ,Wk.

3. Pick uniformly at random ρ ∈ (0, 1) and
σ ∈ (1, 2, . . . , k − 1, k), (k − 1, k − 2, . . . , 1, k).

4. For i = 1 to k − 1: Vσ(i) ← B(si, ρ)−
⋃

j<i Vσ(j).

5. Vk ← V −
⋃

i<k Vi.

6. Let C be the set of edges that run between sets in the partition
V1, . . . , Vk. Output C.

3

4 Proof of the Approximation Factor

Let C be the cut produced by the algorithm, c(C) be the cost of C, and OPT
be the cost of the optimal solution to the linear program. We will show that
E[c(C)], the expected value of c(C), is at most (1.5− 1

k
)×OPT .

Lemma 1. If e ∈ Ek, then Pr[e ∈ C] ≤ d(e).

Proof. The endpoints of E differ in coordinates i and k. Since Vk is deter-
mined without considering the coordinates of the points left over, and all
coordinates except i and k are equal, the only way that endpoints u and v
will end up in different sets is if one (but not the other) is in Vi. This occurs
if and only if ρ is between xi

u and xi
v. This has probability d(e).

Lemma 2. If e ∈ E − Ek, then Pr[e ∈ C] ≤ 1.5d(e).

Proof. The endpoints of E, u and v, differ in coordinates i and j. Let β be
the interval [xj

u, x
j
v] and let α be the part of [xi

u, x
i
v] that does not overlap

with β. u and v can each end up in either Vi, Vj, or Vk. Assume without
loss of generality that α is closer to 0 than β. (If not, switching the values of
i and j makes it so.) u and v end up in different sets if and only if ρ ∈ β, or

ρ ∈ α and σ(i) < σ(j). Therefore Pr[e ∈ C] = |β| + |α|
2
≤ 1.5d(e) (because

|α| ≤ |β| = d(e)).

Theorem 1. E[c(C)] ≤ (1.5− 1
k
)×OPT .

Proof. First, note that
∑k

i=1 Wi = 2 · OPT , and Wk was chosen to be the
greatest, so Wk ≥ 2

k
·OPT .

E[c(C)] =
∑
e∈E

c(e)Pr[e ∈ C] =
∑

e∈E−Ek

c(e)Pr[e ∈ C] +
∑
e∈Ek

c(e)Pr[e ∈ C]

≤ 1.5
∑

e∈E−Ek

c(e)d(e) +
∑
e∈Ek

c(e)d(e) = 1.5
∑
e∈E

c(e)d(e)− 0.5
∑
e∈Ek

c(e)d(e)

≤ 1.5 ·OPT − 0.5

(
2

k
·OPT

)
≤ (1.5− 1

k
) ·OPT

4

