Solutions to problem set 4

4-2 Notice that one can begin by checking whether \(w_i > w_n + g' \), where \(g' = \sum_{i=1}^{n-1} g_{ni} \), for some \(i < n \). Obviously if this was the case, team \(n \) could not win. Therefore, let us assume \(w_i \leq w_n + \sum_{i=1}^{n-1} g_{ni} \) for all \(i < n \). Moreover, if there was an outcome where team \(n \) won, then it could only get better if it won all of its games, so let us assume that all \(g_{ni} \) games to be played between teams \(n \) and \(i \) are won by team \(n \). If we let \(x_{ij} \) to be the number of games between \(i \) and \(j \) won by \(i \), then team \(n \) has a chance of winning iff there are positive integers \(x_{ij} \) with \(x_{ij} + x_{ji} = g_{ij} = g_{ji}, \ i \neq j \), and \(w_i + \sum_{j=1}^{n-1} x_{ij} \leq w_n + g' \) for all \(i < n \).

Consider the graph \(G \) on \(V = \{s, t\} \cup \{v(i, j)\}_{1 \leq i < j \leq n-1} \cup \{w(i)\}_{1 \leq i \leq n-1} \) with edges classified in these categories (all lower capacities are \(l(e) = 0 \)).

- All edges \(e \) from \(s \) to \(v(i, j) \) with \(u(e) = g_{ij} \).
- All edges \(e_1, e_2 \) from \(v(i, j) \) to \(w(i) \) and to \(w(j) \) with \(u(e_1) = u(e_2) = \infty \).
- All edges \(e \) from \(w(i) \) to \(t \) with \(u(e) = w_n + g' - w_i \).

We claim that team \(n \) can win iff the maximum flow from \(s \) to \(t \) is \(\sum_{i<j} g_{ij} \). Indeed a maximum flow with that value exists iff there exists an integer flow \(x : E \to \mathbb{Z} \) with that flow value exists (since all capacities are integers). If we let \(y_{ij} = x(v(i, j), w(i)) \), such integer flow satisfies \(y_{ij} \geq 0 \), \(g_{ij} = y_{ij} + y_{ji} \) and \(\sum_{j=1}^{n-1} x_{ij} \leq w_n + g' - w_i \). As asserted above, this is equivalent to team \(n \) having some chance.

4-3 Let us construct a digraph \(D = (V', A) \) as following. We create vertices \(w_e \) corresponding to each edge \(e \in E(G) \), source \(s \), and sink \(t \). The set of vertices \(V' \) of \(D \) is

\[
V' := \{s, t\} \cup \{w_e \mid e \in E(G)\} \cup \{v \mid v \in V(G)\}.
\]

For arcs, we let

\[
A := \{(s, w_e) \mid e \in E(G)\} \cup \{(v, t) \mid v \in V(G)\} \cup \{(w_e, v) \mid e \in E(G) \text{ and } v \text{ is an endpoint of } e\}.
\]

Furthermore, we let capacity be \(c(a) = 1 \) if \(a \) is \((s, w_e)\), \(c(a) = +\infty \) if \((w_e, v)\), and \(c(a) = p(v) \) if \(a = (v, t) \).

Let \(e = uv \) be an edge of \(G \). If a unit flow goes through \((s, w_e)\) in a maximum flow, exactly one of \((w_e, u)\) or \((w_e, v)\) will have a unit flow (by integrality). Each corresponds to orienting \(e \) as \((v, u)\) or \((u, v)\), respectively. Moreover, if we push a unit flow through \((s, w_e)\) for every \(e \), then the value of flow going through \((v, t)\) is equal to the indegree of \(v \) in the corresponding orientation. Hence, the problem is equivalent to that the maximum \(s-t \) flow of \(D \) has value \(|E(G)|\).
If the graph cannot be oriented with indegree requirement, then by max-flow min-cut theorem, there is a set $U \subset V'$ such that (1) $s \in U$ and $t \notin U$, and (2) $\sum_{a \in \delta^+(U)} c(a) < |E(G)|$.

Let $S = U \cap V(G)$. We may assume that U contains w_e if and only if $e \subseteq S$, since $c((w_{uv}, v)) = c((w_{uv}, u)) = \infty$. So,

$$|E(G)| > \sum_{a \in \delta^+(U)} c(a) = \sum_{v \in S} p(v) + \sum_{e \notin E(S)} 1.$$

We have $\sum_{v \in S} p(v) < |E(S)|$.

4-4 Let G be an undirected graph with minimum degree $\delta(G) \geq k$. Consider the maximum adjacency ordering seen in class:

Choose any vertex $v_1 \in V$ and let $S = \{v_1\}$. Iteratively, find $v_i = \arg \max_{v \in V \setminus S} c(S, \{v\})$ and let $S = S \cup \{v_i\}$. We get an ordering of the vertices v_1, v_2, \ldots, v_n.

As shown in the lecture notes, $\{v_n\}$ induces a minimum (v_{n-1}, v_n)-cut; the value of such a minimum cut equals to the outdegree of v_n, which is at least k by assumption. From duality, the maximum flow value between v_{n-1} and v_n is at least k, as desired.