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Michel X. Goemans April 27th, 2015

Problem set 6

This problem set is due in class on May 6th, 2015. You can skip one of the questions, of
your choosing.

1. Given a matroid M = (E, I) with rank function r, define I∗ = {F ⊂ E|r(E \ F ) =
r(E)}, i.e. F ∈ I∗ if the complement of F still contains a base.

(a) Show that M∗ = (E, I∗) is a matroid (it is called the dual matroid). What are
the bases of M∗ (in terms of teh bases of M)?

(b) Let r∗ be the rank function of M∗. Give an expression for r∗(U) (for any U ⊆ E)
in terms of the rank function r of M .

2. Consider the minimum cost arborescence problem we discussed in lecture. Given a
digraph D = (V,A), a root vertex r ∈ V , costs c : A → R+, the problem is to
find an r-arborescence of minimum total cost, where an r-arborescence is a spanning
tree (when the directions of the arcs are discarded) in which all vertices are reachable
from r by a directed path. Consider the following greedy algorithm (generalizing the
undirected setting):

Let F = ∅, S = V \ {r}
while S 6= ∅ do

Among all arcs in
⋃

v∈S δ
−(v) whose addition to F does not create a directed

circuit, let (u, v) be the one of minimum cost
F = F ∪ {a}
S = S \ {v}

end while
Return F

Show that this greedy type algorithm does not necessarily return the optimum arbores-
cence.

3. In lecture and in the notes, we have seen an algorithm to compute the minimum cost
r-arborescence for a given vertex r (in a directed graoh D with costs c). Suppose we
would like to find the minimum cost r-arborescence for every vertex r ∈ V . We could
use the algorithm seen in class |V | times, but show how to modify it to be able to
return a minimum cost r-arborescence for every r (in time much less than running the
algorithm |V | times).

Hint: The modified algorithm should first construct a strongly connected graph F
(independently of r) such that it contains an optimum r-arborescence for every r and
such that this optimum r-arborescence can be obtained by a reverse delete procedure
(as in the original algorithm).
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4. Let A be an invertible n×n matrix (thus rank(A) = n). Let [n] = {1, 2, · · · , n} denote
the indices of rows and columns of A. For any subset X ⊆ [n] and any subset Y ⊆ [n],
let AX,Y denote the submatrix with rows indexed by X and columns indexed by Y .
The following linear algebra/matrix theory result can be derived in several ways:

Theorem 0.1 Let A be an invertible n × n matrix. For any partition of the set of
columns into [n] = Y1∪Y2, there exists a partition of the set of rows into [n] = X1∪X2

such that AX1,Y1 and AX2,Y2 are invertible.

Prove this theorem by deriving it from the minmax relation for matroid intersection.
(First question to ask yourself is what would be the two matroids to use in this case;
one option (which you do not have to necessarily follow) is to take M1 = ([n], I1) and
M2 = ([n], I2) where I1 = {I : AI,Y1 has rank |I|} and I∗2 = {I : AI,Y2 has rank |I|}
where the ∗ denotes the dual operation in exercise 1. )

5. While discussing the matroid polytope, we derived that the spanning tree polytope of
a graph G = (V,E) is given by (read again the notes on matroid optimization):

P = {x ∈ R|E| : x(E) = |V | − 1
x(E(S)) ≤ |S| − 1 S ⊂ V
0 ≤ xe e ∈ E},

where as usual x(F ) =
∑

e∈F xe.

If we wanted to use the ellipsoid to optimize1 over P , we would need to solve the
separation problem: Given x, is x ∈ P and if not, provide a valid inequality for P
violated by x. We can easily check whether x(E) = |V | − 1 so in what follows we
assume that the given x already satisfies x(E) = |V | − 1. We are now going to show
that the separation problem can be solved by solving |V | maximum flow problems.
Consider the following directed graph D = (V ∪ {s, t}, A). A has three types of arcs:

• For any v ∈ V , D has an arc (s, v) with capacity u((s, v)) = x(δ(v)),

• for any v ∈ V , D has an arc (v, t) with capacity u((v, t)) = 2,

• for any (u, v) ∈ E, D has the arcs (u, v) and (v, u) both of capacity xuv.

(a) In D, what is the capacity of the cut induced by {s} and by {s} ∪ V ?

(b) Show that there exists a violated inequality for x (satisfying x(E) = |V | − 1) if
and only if the value of the following cut problem is less than 2|V |:

min
S⊆V,S 6=∅

u({s} ∪ S).

(Notice that we are not allowing the cut to be induced by {s}.)
1One could say this would be inefficient since we can simply use the greedy algorithm over P ; however,

if we have additional constraints then we couldn’t use the greedy algorithm and instead separate both over
P and over these additional constraints.
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(c) Show that the separation problem can be solved by |V | maximum flow problems
(in |V | networks obtained by slightly modifying D).


