
Massachusetts Institute of Technology 18.433: Combinatorial Optimization
Michel X. Goemans March 30, 2015

4. Lecture notes on flows and cuts

4.1 Maximum Flows

Network flows deals with modelling the flow of a commodity (water, electricity, packets,
gas, cars, trains, money, or any abstract object) in a network. The links in the network are
capacitated and the commodity does not vanish in the network except at specified locations
where we can either inject or extract some amount of commodity. The main question is how
much can be sent in this network.

Here is a more formal definition of the maximum flow problem. We have a digraph
(directed graph) G = (V,E) and two special vertices s and t; s is called the source and t
the sink. We have an upper capacity function u : E → R and also a lower capacity function
l : E → R (sometimes chosen to be 0 everywhere). A flow x will be an assignment of values
to the arcs (directed edges) so that:

1. for every e ∈ E: l(e) ≤ xe ≤ u(e),

2. for every v ∈ V \ {s, t}: ∑
e∈δ+(u)

xe −
∑

e∈δ−(u)

xe = 0. (1)

The notation δ+(u) represents the set of arcs leaving u, while δ−(u) represents the set of arcs
entering u.

Equations (1) are called flow conservation constraints. Given a flow x, its flow value |x|
is the net flow out of s:

|x| :=
∑

e∈δ+(s)

xe −
∑

e∈δ−(s)

xe. (2)

One important observation is that |x| is also equal to the net flow into t, or minus the net
flow out of t. Indeed, summing (1) over u ∈ V \ {s, t} together with (2), we get:

|x| =
∑

v∈V \{t}

 ∑
e∈δ+(u)

xe −
∑

e∈δ−(u)

xe


=

∑
e∈δ−(t)

xe −
∑

e∈δ+(t)

xe

by looking at the contribution of every arc in the first summation.



4. Lecture notes on flows and cuts March 30, 2015 2

The maximum flow problem is the problem of finding a flow x of maximum value |x|.
This is a linear program:

Max
∑

e∈δ+(s)

xe −
∑

e∈δ−(s)

xe

subject to: ∑
e∈δ+(u)

xe −
∑

e∈δ−(u)

xe = 0 u ∈ V \ {s, t}

l(e) ≤ xe ≤ u(e) e ∈ E.

We could therefore use algorithms for linear programming to find the maximum flow and
duality to derive optimality properties, but we will show that more combinatorial algorithms
can be developed and duality translates into statements about cuts.

In matrix form, the linear program can be written as:

max{cTx : Nx = 0,
Ix ≤ u,
−Ix ≤ −l}

where N is the (vertex-arc incidence1) matrix with rows indexed by u ∈ V \ {s, t} and
columns indexed by arcs e = (i, j) ∈ E; the entry Nue is:

Nue =


1 u = i
−1 u = j
0 u /∈ {i, j}.

The constraints of the linear program are thus: Ax Q b where

A =


N
−−−
I

−−−
−I

 ,

and some of the constraints are equalities and some are inequalities.

Lemma 4.1 A is total unimodular.

Proof: We could use Theorem 3.14 from the polyhedral chapter, but proving it directly is
as easy. Consider any square submatrix of A, and we would like to compute its determinant
up to its sign. If there is a row with a single +1 or a single −1 in it (in particular, a row
coming from either the identity submatrix I or −I), we can expand the determinant and

1More precisely, part of it as we are not considering vertices s and t



4. Lecture notes on flows and cuts March 30, 2015 3

compute the determinant (up to its sign) of a smaller submatrix of A. Repeating this, we
now have a square submatrix of N . If there is a column with a single +1 or a single −1
then we can expand the determinant along this column and get a smaller submatrix. We
are thus left either with an empty submatrix in which case the determinant of the original
matrix was +1 or −1, or with a square submatrix of N with precisely one +1 and one −1
in every column. The rows of this submatrix are linearly dependent since their sum is the 0
vector. Thus the determinant is 0. This proves total unimodularity. 4

As a corollary, this means that if the right-hand-side (i.e. the upper and lower capacities)
are integer-valued then there always exists a maximum flow which takes only integer values.

Corollary 4.2 If l : E → Z and u : E → Z then there exists a maximum flow x such that
xe ∈ Z for all e ∈ E.

4.1.1 Special cases

Arc-disjoint paths. If l(e) = 0 for all e ∈ E and u(e) = 1 for all e ∈ E, any integer
flow x will only take values in {0, 1}. We claim that for an integer flow x, there exist |x|
arc-dsjoint (i.e. not having any arcs in common) paths from s to t. Indeed, such paths can
be obtained by flow decomposition. As long as |x| > 0, take an arc out of s with xe = 1.
Now follow this arc and whenever we reach a vertex u 6= t, by flow conservation we know
that there exists an arc leaving u that we haven’t traversed yet (this is true even if we reach
s again). This process stops when we reach t and we have therefore identified one path from
s to t. Removing this path gives us a new flow x′ (indeed flow conservation at vertices 6= s, t
is maintained) with |x′| = |x| − 1. Repeating this process gives us |x| paths from s to t
and, by construction, they are arc-disjoint. The paths we get might not be simple2; one can
however make them simple by removing the part of the walk between repeated occurences
of the same vertex. Summarizing, if l(e) = 0 for all e ∈ E and u(e) = 1 for all e ∈ E,
then from a maximum flow of value k, we can extract k arc-disjoint (simple) paths from
s to t. Conversely, if the digraph contains k arc-disjoint paths from s to t, it is easy to
construct a flow of value k. This means that the maximum flow value from s to t represents
the maximum number of arc-disjoint paths between s and t.

Bipartite matchings. One can formulate the maximum matching problem in a bipartite
graph as a maximum flow problem. Indeed, consider a bipartite graph G = (V,E) with
bipartition V = A ∪ B. Consider now a directed graph D with vertex set V ∪ {s, t}. In D,
there is an arc from s to every vertex of A with l(e) = 0 and u(e) = 1. There is also an arc
from every vertex in B to t with capacities l(e) = 0 and u(e) = 1. Every edge (a, b) ∈ E is
oriented from a ∈ A to b ∈ B and gets a lower capacity of 0 and an upper capacity equal
to +∞ (or just 1). One can easily see that from any matching of size k one can construct
a flow of value k; similarly to any integer valued flow of value k corresponds a matching of
size k. Since the capacities are in Z, by Corollary 4.2, this means that a maximum flow in

2A simple path is one in which no vertex is repeated.



4. Lecture notes on flows and cuts March 30, 2015 4

D has the same value as the maximum size of any matching in G. Observe that the upper
capacities for the arcs between A and B do not matter, provided they are ≥ 1.

Orientations. Consider the problem of orienting the edges of an undirected graph G =
(V,E) so that the indegree of any vertex v in the resulting digraph is at most k(v). This can
be formulated as a maximum flow problem in which we have (i) a vertex for every vertex of
G, (ii) a vertex for every edge of G and (iii) 2 additional vertices s and t. Details are left as
an exercise.

Exercise 4-1. Suppose you are given anm×nmatrixA ∈ Rm×n with row sums r1, · · · , rm ∈
Z and column sums c1, · · · , cn ∈ Z. Some of the entries might not be integral but the row
sums and column sums are. Show that there exists a rounded matrix A′ with the following
properties:

•row sums and column sums of A and A′ are identical,

•a′ij = daije or a′ij = baijc (i.e. a′ij is aij either rounded up or down.).

By the way, this rounding is useful to the census bureau as they do not want to publish
statistics that would give too much information on specific individuals. They want to be
able to modify the entries without modifying row and column sums.

4.2 Cuts

In this section, we derive an important duality result for the maximum flow problem, and
as usual, this takes the form of a minmax relation.

In a digraph G = (V,A), we define a cutset or more simply a cut as the set of arcs
δ+(S) = {(u, v) ∈ A : u ∈ S, v ∈ V \ S}. Observe that our earlier notation δ+(v) for v ∈ V
rather than δ+({v}) is a slight abuse of notation. Similarly, we define δ−(S) as δ+(V \ S),
i.e. the arcs entering the vertex set S. We will typically identify a cutset δ+(S) with the
corresponding vertex set S. We say that a cut δ+(S) is an s − t cut (where s and t are
vertices) if s ∈ S and t /∈ S.

For an undirected graph G = (V,E), δ+(S) and δ−(S) are identical and will be denoted
by δ(S) = {(u, v) ∈ E : |{u, v} ∩ S| = 1}. Observe that now δ(S) = δ(V \ S).

For a maximum flow instance on a digraph G = (V,E) and upper and lower capacity
functions u and l, we define the capacity C(S) of the cut induced by S as

C(S) =
∑

e∈δ+(S)

u(e)−
∑

e∈δ−(S)

l(e) = u(δ+(S))− l(δ−(S)).

By definition of a flow x, we have that

C(S) ≥
∑

e∈δ+(S)

xe −
∑

e∈δ−(S)

xe.



4. Lecture notes on flows and cuts March 30, 2015 5

We have shown earlier that the net flow out of s is equal to the net flow into t. Similarly,
we can show that for any S with s ∈ S and t /∈ S (i.e. the cut induced is an s− t cut), we
have that the flow value |x| equals:

|x| =
∑

e∈δ+(S)

xe −
∑

e∈δ−(S)

xe.

This is shown by summing (1) over u ∈ S \ {s} together with (2). Thus, we get that for any
S with s ∈ S and t /∈ S and any s− t flow x, we have:

|x| ≤ C(S).

Therefore, maximizing over the s− t flows and minimizing over the s− t cuts, we get

max |x| ≤ min
S:s∈S,t/∈S

C(S).

This is weak duality, but in fact, one always has equality as stated in the following theorem.
Of course, we need the assumption that the maximum flow problem is feasible. For example
if there is an edge with l(e) > u(e) then no flow exists (we will show later that a necessary
and sufficient condition for the existence of a flow is that (i) l(e) ≤ u(e) for every e ∈ E and
(ii) for any S ⊂ V with |S ∩ {s, t}| 6= 1, we have u(δ+(S)) ≥ l(δ−(S))).

Theorem 4.3 (max s− t flow-min s− t cut) For any maximum flow problem for which
a feasible flow exists, we have that that the maximum s−t flow value is equal to the minimum
capacity of any s− t cut:

max
flow x

|x| = min
S:s∈S,t/∈S

C(S).

One way to prove this theorem is by using strong duality of linear programming and show
that from any optimum dual solution one can derive an s− t cut of that capacity. Another
way, and this is the way we pursue, is to develop an algorithm to find a maximum flow and
show that when it terminates we have also a cut whose capacity is equal to the flow we have
constructed, therefore proving optimality of the flow and equality in the minmax relation.

Here is an algorithm for finding a maximum flow. Let us assume that we are given a
feasible flow x (if u(e) ≥ 0 and l(e) ≤ 0 for all e, we could start with x = 0). Given a flow
x, we define a residual graph Gx on the same vertex set V . In Gx, we have an arc (i, j) if
(i) (i, j) ∈ E and xij < u((i, j)) or if (ii) (j, i) ∈ E and xji > l((j, i)). In case (i), we say
that (i, j) is a forward arc and in case (ii) it is a backward arc. If both (i) and (ii) happen,
we introduce two arcs (i, j), one forward and one backward; to be precise, Gx is thus a
multigraph. Consider now any directed path P from s to t in the residual graph; such a path
is called an augmenting path. Let P+ denote the forward arcs in P , and P− the backward
arcs. We can modify the flow x in the following way:

x′e =


xe + ε e ∈ P+

xe − ε e ∈ P−
xe e /∈ P



4. Lecture notes on flows and cuts March 30, 2015 6

This is known as pushing ε units of flow along P , or simply augmenting along P . Oberve
that flow conservation at any vertex u still holds when pushing flow along a path. This is
trivial if u is not on the path, and if u is on the path, the contributions of the two arcs
indicent to u on P cancel each other. To make sure the resulting x′ is feasible (satisfies the
capacity constraints), we choose

ε = min

(
min
e∈P+

(u(e)− xe), min
e∈P−

xe − l(e)
)
.

By construction of the residual graph we have that ε > 0. Thus, pushing ε units of flow
along an augmenting path provides a new flow x′ whose value |x′| satisfy |x′| = |x|+ ε. Thus
the flow x was not maximum.

Conversely, assume that the residual graph Gx does not contain any directed path from
s to t. Let S = {u ∈ V : there exists a directed path in Gx from s to u}. By definition,
s ∈ S and t /∈ S (otherwise there would be an augmenting path). Also, by definition, there
is no arc in Gx from S to V \ S. This means that, for e ∈ E, if e ∈ δ+(S) then xe = u(e)
and if e ∈ δ−(S) then xe = l(e). This implies that

C(S) =
∑

e∈δ+(S)

u(e)−
∑

e∈δ−(S)

l(e) = u(δ+(S))− l(δ−(S)) =
∑

e∈δ+(S)

xe −
∑

e∈δ−(S)

xe = |x|.

This shows that the flow x is maximum and there exists an s − t cut of the same capacity
as |x|.

This almost proves Theorem 4.3. Indeed, as long as there exists an augmenting path, we
can push flow along it, update the residual graph and continue. Whenever this algorithm
stops, if it stops, we have a maximum flow and a corresponding minimum cut. But maybe
this algorithm never stops; this can actually happen if the capacities might be irrational and
the “wrong” augmenting paths are chosen at every iteration. To complete the proof of the
max flow min cut theorem, we can simply use the linear programming formulation of the
maximum flow problem and this shows that a maximum flow exists (in a linear program,
the max is a real maximum (as it is achieved by a vertex) and not just a supremum which
may not be attained). Starting from that flow x and constructing its residual graph Gx, we
get that there exists a corresponding minimum s− t cut of the same value.

4.2.1 Interpretation of max flow min cut

The max s − t flow min s − t cut theorem together with integrality of the maximum flow
allows to derive several combinatorial min-max relations.

Bipartite matchings. Consider for example the maximum bipartite matching problem
and its formulation as a maximum flow problem given in section 4.1.1. We said that for
the arcs between A and B we had flexibility on how we choose u(e); here, let us assume
we have set them to be equal to +∞ (or any sufficiently large integer). Consider any set



4. Lecture notes on flows and cuts March 30, 2015 7

S ⊆ ({s} ∪ A ∪ B) with s ∈ S (and t /∈ S). For C(S) to be finite there cannot be any edge
(i, j) ∈ E between i ∈ A∩S and j ∈ B \S. In other words, N(A∩S) ⊆ B ∩S, i.e. if we set
C = (A \ S) ∪ (B ∩ S) we have that C is a vertex cover. What is the capacity C(S) of the
corresponding cut? It is precisely C(S) = |A \ S|+ |B ∩ S|, the first term corresponding to
the arcs from s to A\S and the second term correspodning to the arcs between B∩S and t.
The max s− t flow min s− t cut theorem therefore implies that there exists a vertex cover C
whose cardinality equals the size of the maximum matching. We have thus rederived König’s
theorem. We could also derive Hall’s theorem about the existence of a perfect matching.

Arc-disjoint paths. For the problem of teh maximum number of arc-disjoint paths be-
tween s and t, the max s − t flow min s − t cut theorem can be interpreted as Menger’s
theorem:

Theorem 4.4 In a directed graph G = (V,A), there are k arc-disjoint paths between s and
t if and only if for all S ⊆ V \ {t} with s ∈ S, we have |δ+(S)| ≥ k.

Exercise 4-2. At some point during baseball season, each of n teams of the American
League has already played several games. Suppose team i has won wi games so far, and
gij = gji is the number of games that teams i and j have yet to play. No game ends in a tie,
so each game gives one point to either team and 0 to the other. You would like to decide if
your favorite team, say team n, can still win. In other words, you would like to determine
whether there exists an outcome to the games to be played (remember, with no ties) such
that team n has at least as many victories as all the other teams (we allow team n to be
tied for first place with other teams).

Show that this problem can be solved as a maximum flow problem. Give a necessary and
sufficient condition on the gij’s so that team n can still win.

Exercise 4-3. Consider the following orientation problem. We are given an undirected
graph G = (V,E) and integer values p(v) for every vertex v ∈ V . we would like to know
if we can orient the edges of G such that the directed graph we obtain has at most p(v)
arcs incoming to v (the “indegree requirements”). In other words, for each edge {u, v}, we
have to decide whether to orient it as (u, v) or as (v, u), and we would like at most p(v) arcs
oriented towards v.

1.Show that the problem can be formulated as a maximum flow problem. That is, show
how to create a maximum flow problem such that, from its solution, you can decide
whether or not the graph can be oriented and if so, it also gives the orientation.

2.Consider the case that the graph cannot be oriented and meet the indegree requirements.
Prove from the max-flow min-cut theorem that there must exist a set S ⊆ V such that
|E(S)| >

∑
v∈S p(v), where as usual E(S) denotes the set of edges with both endpoints

within S.



4. Lecture notes on flows and cuts March 30, 2015 8

4.3 Efficiency of Maximum Flow Algorithm

The proof of the max s − t flow min s − t cut theorem suggests a simple augmenting path
algorithm for finding the maximum flow. Start from any feasible flow and keep pushing flow
along an augmenting in the residual graph until no such augmenting path exists. The main
question we address now is how many iterations does this algorithm need before terminating.

As mentioned earlier, if the capacities are irrational, this algorithm may never terminate.
In the case of integral capacities, if we start from an integral flow, it is easy to see that
we always maintain an integral flow and we will always be pushing an integral amount of
flow. Therefore, the number of iterations is bounded by the maximum difference between the
values of two flows, which is at most

∑
e∈δ(s)(u(e)− l(e)). This is finite, but not polynomial

in the size of the input (which depends only logarithmically on the capacities u and l).

Shortest augmenting path variant. Edmonds and Karp proposed a variant of the aug-
menting path algorithm which is guaranteed to terminate in a polynomial number of itera-
tions depending only on n = |V | and m = |E|. No assumptions on the capacities are made,
and the algorithm is even correct and terminates for irrational capacities.

The idea of Edmonds and Karp is to always find in the residual graph a shortest aug-
menting path, i.e. one with the fewer number of arcs. Given a flow x, consider the residual
graph Gx. For any vertex v, let d(v) denote the distance (number of arcs) from s to v in Gx.
The shortest augmenting path algorithm is to select a path v0− v1− · · · − vk in the residual
graph where v0 = s, vk = t and d(vi) = i.

The analysis of the algorithm proceeds as follows. Let P be a shotest augmenting path
from s to t in Gx and let x′ be the resulting flow after pushing as much flow as possible
along P . Let d′ be the distance labels corresponding to Gx′ . Observe that only reverse
arcs (i, j) along P (thus satisfying d(i) = d(j) + 1) may get introduced in Gx′ . Therefore,
after augmentation, we have that d(j)− d(i) ≤ 1 for every arc (i, j) ∈ Ex′ . Summing these
inqualities along the edges of any path P ′ in Gx′ from s to j ∈ V , we get that d(j) ≤ d′(j)
for any j ∈ V . In particular, we have that d(t) ≤ d′(t). As distance labels can never become
greater than n−1, we have that the distance to t can only increase at most n−1 times. But
d′(t) can also be equal to d(t). In this case though, the fact that an arc of P is saturated
means that there is one fewer arc (i, j) with d(j) = d(i) + 1 in Gx′ than in Gx. Thus
after at most m such iterations, we must have a strict increase in the distance label of t.
Summarizing, this means that the number of augmentations is at most m(n− 1). The time
it takes to build the residual graph and to find an augmenting path in it is at most O(m)
time. This means that the total running time of the shortest augmenting path algorithm is
at most O(m2n). This can be further improved but this is not the focus of these notes.

4.4 Minimum cuts

From now on, we assume that we have only upper capacities u and no lower capacities l
(l(e) = 0 for all e). The minimum s− t cut problem that we have solved so far corresponds



4. Lecture notes on flows and cuts March 30, 2015 9

to:
min

S:s∈S,t/∈S
u(δ+(S)).

If our graph G = (V,E) is undirected and we would like to find the minimum s− t cut,
i.e.

min
S:s∈S,t/∈S

u(δ(S)),

we can simply replace every edge e by two opposite arcs of the same capacity and reduce the
problem to finding a minimum s − t cut in a directed graph. As we have just shown, this
can be done by a maximum flow computation.

Now, consider the problem of finding the global minimum cut in a graph. Let us first
consider the directed case. Finding the global mincut (or just the mincut) means finding S
minimizing:

min
S:∅6=S 6=V

u(δ+(S)).

This problem can be reduced to 2(n − 1) maximum flow computations (where n = |V |) in
the following way. First we can arbitrarily choose a vertex s ∈ V and s will either be in S
or in V \ S. Thus, for any t ∈ V \ {s}, we solve two maximum flow problems, one giving us
the minimum s − t cut, the other giving us the minimum t − s cut. Taking the minimum
over all such cuts, we get the global mincut in a directed graph.

To find the minimum cut problem in an undirected graph, we do not even need to solve
two maximum flow problems for each t ∈ V \ {s}, only one of them is enough. Thus the
global minimum cut problem in an undirected graph can be solved by computing n − 1
maximum flow problems. The fastest maximum flow algorithms currently take slightly more
than O(mn) time (for example, Goldberg and Tarjan’s algorithm [1] take O(mn log(n2/m))
time). Since we need to use it n− 1 times, we can find a mincut in O(mn2 log(n2/m)) time.
However, these n− 1 maxflow problem are related, and Hao and Orlin [2] have shown that
it is possible to solve all of them in O(mn log(n2/m)) by modifying Goldberg and Tarjan’s
algorithm. Thus the minimum cut problem can be solved within this time bound.

We will now derive an algorithm for the mincut problem which is not based on network
flows, and which has a running time slightly better than Hao and Orlin’s. The algorithm is
due to Stoer and Wagner [6], and is a simplification of an earlier result of Nagamochi and
Ibaraki [5]. We should also point out that there is a randomized algorithm due to Karger
and Stein [4] whose running time is O(n2 log3 n), and a subsequent one due to Karger [3]
that runs in O(m log3 n).

We first need a definition. Define, for any two sets A,B ⊆ V of vertices,

u(A : B) :=
∑

i∈A,j∈B

u((i, j)).

The algorithm is described below. In words, the algorithm starts with any vertex, and
build an ordering of the vertices by always adding to the selected vertices the vertex whose
total cost to the previous vertices is maximized; this is called the maximum adjacency order-
ing. The cut induced by the last vertex in this maximum adjacency ordering is considered,



4. Lecture notes on flows and cuts March 30, 2015 10

as well as the cuts obtained by recursively applying the procedure to the graph obtained by
shrinking the last two vertices. (If there are edges from a vertex v to these last two vertices
then we substitute those two edges with only one edge having capacity equal to the sum of
the capacities of the two edges.) The claim is that the best cut among the cuts considered
is the overall mincut. The formal description is given below.

mincut(G)
. Let v1 be any vertex of G
. n = |V (G)|
. S = {v1}
. for i = 2 to n

. let vi the vertex of V \ S s.t.

. c(S : {v}) is maximized (over all v ∈ V \ S)

. S := S ∪ {vi}
. endfor
. if n = 2 then return the cut δ({vn})
. else

. Let G′ be obtained from G by shrinking vn−1 and
vn

. Let C be the cut returned by mincut(G′)

. Among C and δ({vn}) return the smaller cut (in
terms of cost)

. endif

The analysis is based on the following crucial claim.

Claim 4.5 {vn} (or {v1, v2, ..., vn−1}) induces a min (vn−1, vn)-cut in G. (Notice that we do
not know in advance vn−1 and vn.)

From this, the correctness of the algorithm follows easily. Indeed, the mincut is either a
(vn−1, vn)-cut or not. If it is, we are fine thanks to the above claim. If it is not, we can assume
by induction on the size of the vertex set that it will be returned by the call mincut(G′).
Proof: Let v1, v2, ..., vi, ..., vj, ..., vn−1, vn be the sequence of vertices chosen by the algo-
rithm and let us denote by Ai the sequence v1, v2, ..., vi−1. We are interested in the cuts that
separate vn−1 and vn. Let C be any set such that vn−1 ∈ C and vn 6∈ C. Then we want to
prove that the cut induced by C satisfies

u(δ(C)) ≥ u(δ(An)).

Let us define vertex vi to be critical with respect to C if either vi or vi−1 belongs to C
but not both. We claim that if vi is critical then

u(Ai : {vi}) ≤ u(Ci : Ai ∪ {vi} \ Ci)

where Ci = (Ai ∪ {vi}) ∩ C.



4. Lecture notes on flows and cuts March 30, 2015 11

Notice that this implies that u(δ(C)) ≥ u(δ(An)) because vn is critical. Now let us prove
the claim by induction on the sequence of critical vertices.

Let vi be the first critical vertex. Then

u(Ai : {vi}) = u(Ci : Ai ∪ {vi} \ Ci)

Thus the base of the induction is true.
For the inductive step, let the assertion be true for critical vertex vi and let vj be the

next (after vi) critical vertex. Then

u(Aj : {vj}) = u(Ai : {vj}) + u(Aj \ Ai : {vj})
≤ u(Ai : {vi}) + u(Aj \ Ai : {vj})
≤ u(Ci : Ai ∪ {vi} \ Ci) + u(Aj \ Ai : {vj})
≤ u(Cj : Aj ∪ {vj} \ Cj),

the first inequality following from the definition of vi, the second inequality from the inductive
hypothesis, and the last from the fact that vj is the next critical vertex. The proof is
concluded observing that An induces the cut {v1, v2, · · · , vn−1} : {vn}. 4

The running time depends on the particular implementation. Using Fibonacci heaps we
can implement each iteration in O(m+ n log n) time and this yields a total running time of
O(mn+ n2 log n).

Exercise 4-4. Let G be an undirected graph in which the degree of every vertex is at least
k. Show that there exist two vertices s and t with at least k edge-disjoint paths between
them.

4.5 Minimum T -odd cut problem

Given a graph G = (V,E) with nonnegative edge capacities given by u and an even set T of
vertices, the minimum T -odd cut problem is to find S minimizing:

min
S⊂V :|S∩T | odd

u(δ(S)).

We’ll say that S is T -odd if |S ∩ T | is odd. Observe that if S is T -odd, so is V \ S and vice
versa.

We give a polynomial-time algorithm for this problem. We won’t present the most
efficient one, but one of the easiest ones. Let ALG(G, T ) denote this algorithm. The first
step of ALG(G, T ) is to find a minimum cut having at least one vertex of T on each side:

min
S⊂V :∅6=S∩T 6=T

u(δ(S)).

This can be done by doing |T | − 1 minimum s− t cut computations, by fixing one vertex s
in T and then trying all vertices t ∈ T \ {s}, and then returning the smallest cut S obtained
in this way.



4. Lecture notes on flows and cuts March 30, 2015 12

Now, two things can happen. Either S is a T -odd cut in which case it must be minimum
and we are done, or S is T -even (i.e. T ∩S has even cardinality). If S is T -even, we show in
the lemma below that we can assume that the minimum T -even cut A is either a subset of
S or a subset of V \ S. Thus we can find by recursively solving 2 smaller minimum T -odd
cut problems, one in the graph G1 = G/S obtained by shrinking S into a single vertex and
letting T1 = T \ S and the other in the graph G2 = G/(V \ S) obtained by shrinking V \ S
and letting T2 = T \ (V \S) = T ∩S. Thus the algorithm makes two calls, ALG(G1, T1) and
ALG(G2, T2) and returns the smallest (in terms of capacity) T -odd cut returned.

At first glance, it is not obvious that this algorithm is polynomial as every call may
generate two recursive calls. However, letting R(k) denote an upper bound on the running
time of ALG(G, T ) for instances with |T | = k (and say |V | ≤ n), we can see that

1. R(2) = A, where A is the time needed for a minimum s− t cut computation,

2. R(k) ≤ maxk1≥2,k2≥2,k=k1+k2 ((k − 1)A+R(k1) +R(k2)) .

By induction, we can see that R(k) ≤ k2A, as this is true for k = 2 and the inductive step
is also satisfied:

R(k) ≤ max
k1≥2,k2≥2,k=k1+k2

(
(k − 1)A+ k21A+ k22A

)
≤ (k − 1)A+ 4A+ (k − 2)2A

= (k2 − 3k + 7)A

≤ k2A,

for k ≥ 4. Thus, this algorithm is polynomial.
We are left with stating and proving the following lemma.

Lemma 4.6 If S is a minimum cut among those having at least one vertex of T on each
side, and |S∩T | is even then there exists a minimum T -odd cut A with A ⊆ S or A ⊆ V \S.

Proof: Let B be any minimum T -odd cut. Partition T into T1, T2, T3 and T4 as follows:
T1 = T \ (B∪S), T2 = (T ∩S)\B, T3 = T ∩B∩S, and T4 = (T ∩B)\S. Since by definition
of B and S we have that T1 ∪ T2 6= ∅, T2 ∪ T3 6= ∅, T3 ∪ T4 6= ∅ and T4 ∪ T1 6= ∅, we must
have that either T1 and T3 are non-empty, or T2 and T4 are non-empty. Possibly replacing
B by V \B, we can assume that T1 and T3 are non-empty.

By submodularity of the cut function, we know that∑
e∈δ(S)

u(e) +
∑
e∈δ(B)

u(e) ≥
∑

e∈δ(S∪B)

u(e) +
∑

e∈δ(S∩B)

u(e). (3)

Since T1 6= ∅ and T3 6= ∅, both S ∪ B and S ∩ B separate vertices of T . Furthermore,
one of them has to be T -even and the other T -odd, as |(S ∩ B) ∩ T | + |(S ∪ B) ∩ T | =
|T2| + 2|T3| + |T4| = |S ∩ T | + |B ∩ T | is odd. Thus, one of S ∪ B and S ∩ B has to have a
cutvalue no greater than the one of B while the other has a cut value no greater than the
one of S. This means that either S ∩B or S ∪B is a minimum T -odd cut. 4



4. Lecture notes on flows and cuts March 30, 2015 13

References

[1] A.V. Goldberg and R.E. Tarjan, “A new approach to the maximum flow problem”,
Journal of the ACM, 35, 921–940, 1988.

[2] X. Hao and J.B. Orlin, “A faster algorithm for finding the minimum cut in a graph”,
Proc. of the 3rd ACM-SIAM Symposium on Discrete Algorithms, 165–174, 1992.

[3] D. Karger, “Minimum cuts in near-linear time”, Proc. of the 28th STOC, 56–63, 1996.

[4] D. Karger and C. Stein, “An Õ(n2) algorithm for minimum cuts”, Proc. of the 25th
STOC, 757–765, 1993.

[5] H. Nagamochi and T. Ibaraki, “Computing edge-connectivity in multigraphs and ca-
pacitated graphs”, SIAM Journal on Discrete Mathematics, 5, 54–66, 1992.

[6] M. Stoer and F. Wagner, “A simple mincut algorithm”, Proc. of ESA94, Lecture Notes
in Computer Science, 855, 141–147, 1994.


