Solution to $4-12$

First, let us prove that the conditions are sufficient.
Consider two independent set I_{1} and I_{2} such that (i) holds. Let f be the only element in $I_{2} \backslash I_{1}$, and consider the weight function $c: E \rightarrow \mathbb{R}$ given by:

$$
c(e)= \begin{cases}1, & \text { if } e \in I_{1} \\ 0, & \text { if } e=f \\ -1, & \text { if } e \notin I_{2}\end{cases}
$$

For this cost, the only maximum weight independent sets are exactly I_{1} and I_{2}. Therefore I_{1} and I_{2} are adjacent. The case where (ii) holds is analogous.

Now, assume that I_{1} and I_{2} satisfy (iii). For this case let f be the only element in $I_{2} \backslash I_{1}$ and g be the only element in $I_{1} \backslash I_{2}$. Consider the weight function $c: E \rightarrow \mathbb{R}$ given by:

$$
c(e)= \begin{cases}2, & \text { if } e \in I_{1} \cap I_{2} \\ 1, & \text { if } e=f, \text { or } e=g \\ -1, & \text { if } e \notin I_{1} \cup I_{2} .\end{cases}
$$

For this cost, the only maximum weight independent sets are exactly I_{1} and I_{2}, and so they are adjacent in the matroid polytope.

Now let us prove that the conditions are necessary.
Assume that I_{1} and I_{2} are a pair of adjacent independent sets and let $c: E \rightarrow \mathbb{R}$ be a cost function that is maximized only by I_{1} and I_{2}. In particular note that $c(e) \geq 0$ for every element in $I_{1} \cup I_{2}$. Assume w.l.o.g. that $\left|I_{1}\right| \leq\left|I_{2}\right|$.

Case 1: $\left|I_{2}\right|>\left|I_{1}\right|$. By the exchange axiom (I3), there exists an element $f \in I_{2} \backslash I_{1}$ such that $I_{1}+f$ is an independent set and, by a previous observation, it has weight greater or equal than the weight of I_{1}. Since I_{1} is optimum it follows that so is $I_{1}+f$. Since I_{2} and I_{1} are the only optimums, it follows that $I_{2}=I_{1}+f$. Therefore, (i) holds.

Case 2: $\left|I_{2}\right|=\left|I_{1}\right|$. Let f be the element in $I_{1} \Delta I_{2}=I_{1} \backslash I_{2} \cup I_{2} \backslash I_{1}$ with minimum cost. Assume w.l.o.g. that $f \in I_{1}$. Clearly, $I_{1}-f$ is an independent set and $\left|I_{1}-f\right|<\left|I_{2}\right|$. It follows that there exists an element $g \in I_{2} \backslash I_{1}$ such that $I_{1}-f+g$ is an independent set. By choice of $f, c\left(I_{1}-f+g\right)=c\left(I_{1}\right)-c(f)+c(g) \geq c\left(I_{1}\right)$. But then $I_{1}-f+g$ is also a maximum weight independent set. Since I_{2} and I_{1} were the only optimums, it follows that $I_{2}=I_{1}-f+g$, which implies that $\left|I_{2} \backslash I_{1}\right|=\left|I_{2} \backslash I_{2}\right|=1$.

To conclude that (iii) holds, we only need to show that $I_{1} \cup I_{2} \notin \mathcal{I}$. But this is easy to see since, in other case, using that $c(e) \geq 0$ for every $e \in I_{1} \cup I_{2}$, we would have that $c\left(I_{1} \cup I_{2}\right) \geq c\left(I_{1}\right)$. This implies that $I_{1} \cup I_{2}$ is another optimum (different from I_{1} and I_{2}), which contradicts the adjacency condition of I_{1} and I_{2}.

