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Solution to 4-12

First, let us prove that the conditions are sufficient.
Consider two independent set I1 and I2 such that (i) holds. Let f be the only element

in I2 \ I1, and consider the weight function c : E → R given by:

c(e) =


1, if e ∈ I1,

0, if e = f ,

−1, if e /∈ I2.

For this cost, the only maximum weight independent sets are exactly I1 and I2. Therefore
I1 and I2 are adjacent. The case where (ii) holds is analogous.

Now, assume that I1 and I2 satisfy (iii). For this case let f be the only element in I2 \ I1

and g be the only element in I1 \ I2. Consider the weight function c : E → R given by:

c(e) =


2, if e ∈ I1 ∩ I2,

1, if e = f , or e = g

−1, if e /∈ I1 ∪ I2.

For this cost, the only maximum weight independent sets are exactly I1 and I2, and so they
are adjacent in the matroid polytope.

Now let us prove that the conditions are necessary.
Assume that I1 and I2 are a pair of adjacent independent sets and let c : E → R be a

cost function that is maximized only by I1 and I2. In particular note that c(e) ≥ 0 for every
element in I1 ∪ I2. Assume w.l.o.g. that |I1| ≤ |I2|.

Case 1:|I2| > |I1|. By the exchange axiom (I3), there exists an element f ∈ I2 \ I1 such
that I1 + f is an independent set and, by a previous observation, it has weight greater or
equal than the weight of I1. Since I1 is optimum it follows that so is I1 + f . Since I2 and I1

are the only optimums, it follows that I2 = I1 + f . Therefore, (i) holds.
Case 2: |I2| = |I1|. Let f be the element in I1∆I2 = I1 \ I2 ∪ I2 \ I1 with minimum cost.

Assume w.l.o.g. that f ∈ I1. Clearly, I1 − f is an independent set and |I1 − f | < |I2|. It
follows that there exists an element g ∈ I2 \ I1 such that I1 − f + g is an independent set.
By choice of f , c(I1 − f + g) = c(I1) − c(f) + c(g) ≥ c(I1). But then I1 − f + g is also a
maximum weight independent set. Since I2 and I1 were the only optimums, it follows that
I2 = I1 − f + g, which implies that |I2 \ I1| = |I2 \ I2| = 1.

To conclude that (iii) holds, we only need to show that I1 ∪ I2 6∈ I. But this is easy
to see since, in other case, using that c(e) ≥ 0 for every e ∈ I1 ∪ I2, we would have that
c(I1 ∪ I2) ≥ c(I1). This implies that I1 ∪ I2 is another optimum (different from I1 and I2),
which contradicts the adjacency condition of I1 and I2.


