## Problem set 2

This problem set is due in class on March 1st, 2011.

1. Exercise 2-6 from the notes on non-bipartite matchings.
2. A graph $G=(V, E)$ is said to be factor-critical if, for all $v \in V$, we have that $G \backslash\{v\}$ contains a perfect matching. In parts (a) and (b) below, $G$ is a factor-critical graph.
(a) Let $U$ be any minimizer in the Tutte-Berge formula for $G$. Prove that $U=\emptyset$. (Hint: see Exercise 2-3 from the notes.)
(b) Deduce that when Edmonds algorithm terminates the final graph (obtained from $G$ by shrinking flowers) must be a single vertex.
(c) Given a graph $H=(V, E)$, an ear is a path $v_{0}-v_{1}-v_{2}-\cdots-v_{k}$ whose endpoints ( $v_{0}$ and $v_{k}$ ) are in $V$ and whose internal vertices ( $v_{i}$ for $1 \leq i \leq k-1$ ) are not in $V$. We allow that $v_{0}$ be equal to $v_{k}$, in which case the path would reduce to a cycle. Adding the ear to $H$ creates a new graph on $V \cup\left\{v_{1}, \cdots, v_{k-1}\right\}$. The trivial case when $k=1$ (a 'trivial' ear) simply means adding an edge to $H$. An ear is called $o d d$ if $k$ is odd, and even otherwise; for example, a trivial ear is odd.
i. Let $G$ be a graph that can be constructed by starting from an odd cycle and repeatedly adding odd ears. Prove that $G$ is factor-critical.
ii. Prove the converse that any factor-critical graph can be built by starting from an odd cycle and repeatedly adding odd ears.
3. Exercise 3-1 from the notes on polyhedral theory.
4. Exercise 3-2 from the notes on polyhedral theory.
