Problem set 2

This problem set is due in class on Tuesday March 6th, 2007

1. Let $G=(V, E)$ be a (not necessarily bipartite) graph. Given a set $S \subseteq V$, suppose that there exists a matching M covering S (i.e. S is a subset of the matched vertices in M). Prove that there exists a maximum matching M^{*} covering S as well.
2. Let U be any minimizer in the Tutte-Berge formula, i.e.

$$
\max _{M}|M|=\frac{1}{2}(|V|+|U|-o(G \backslash U))
$$

Let K_{1}, \cdots, K_{k} be the connected components of $G \backslash U$. Show that, for any maximum matching M, we must have that
(a) M contains exactly $\left\lfloor\frac{\left\lfloor K_{i}\right.}{2}\right\rfloor$ edges from $G\left[K_{i}\right]$ (the subgraph of G induced by the vertices in K_{i}), i.e. $G\left[K_{i}\right]$ is perfectly matched for the even components K_{i} and near-perfectly matched for the odd components.
(b) Each vertex $u \in U$ is matched to a vertex v in an odd component K_{i} of $G \backslash U$.
(c) the only unmatched vertices must be in odd components K_{i} of $G \backslash U$.
3. Could there be several minimizers U in the Tutte-Berge formula? Either give an example with several sets U achieving the minimum, or prove that the set U si unique.
4. (optional for the undergrads.) Given a graph $G=(V, E)$, an inessential vertex is a vertex v such that there exists a maximum matching of G not covering v. Let B be the set of all inessential vertices in G (e.g., if G has a perfect matching then $B=\emptyset$). Let C denote the set of vertices not in B but adjacent to at least one vertex in B (thus, if $B=\emptyset$ then $C=\emptyset)$. Let $D=V \backslash(B \cup C)$. The triple $\{B, C, D\}$ is called the Edmonds-Gallai partition of G. Show that $U=C$ is a minimizer in the Tutte-Berge formula. (In particular, this means that in the Tutte-Berge formula we can assume that U is such that the union of the odd connected components of $G \backslash U$ is precisely the set of inessential vertices.)
5. An edge cover of a graph is a subset F of edges such that for every vertex $v \in V$ there exists an edge of F adjacent to it. Consider a (not necessarily bipartite) connected graph $G=(V, E)$ with $n=|V|$ vertices, and assume that the maximum matching has size $\nu(G)$. Prove that the minimum cardinality of an edge cover is precisely $n-\nu(G)$.
6. Show that any 3-regular 2-edge-connected graph $G=(V, E)$ (not necessarily bipartite) has a perfect matching. (A 2-edge-connected graph has at least 2 edges in every cutset; a cutset being the edges between S and $V \backslash S$ for some vertex set S.)

