Problem set 2

This problem set is due in class on Tuesday March 6th, 2007

- 1. Let G = (V, E) be a (not necessarily bipartite) graph. Given a set $S \subseteq V$, suppose that there exists a matching M covering S (i.e. S is a subset of the matched vertices in M). Prove that there exists a maximum matching M^* covering S as well.
- 2. Let U be any minimizer in the Tutte-Berge formula, i.e.

$$\max_{M} |M| = \frac{1}{2}(|V| + |U| - o(G \setminus U)).$$

Let K_1, \dots, K_k be the connected components of $G \setminus U$. Show that, for any maximum matching M, we must have that

- (a) M contains exactly $\lfloor \frac{|K_i|}{2} \rfloor$ edges from $G[K_i]$ (the subgraph of G induced by the vertices in K_i), i.e. $G[K_i]$ is perfectly matched for the even components K_i and near-perfectly matched for the odd components.
- (b) Each vertex $u \in U$ is matched to a vertex v in an odd component K_i of $G \setminus U$.
- (c) the only unmatched vertices must be in odd components K_i of $G \setminus U$.
- 3. Could there be several minimizers U in the Tutte-Berge formula? Either give an example with several sets U achieving the minimum, or prove that the set U si unique.
- 4. (optional for the undergrads.) Given a graph G = (V, E), an *inessential* vertex is a vertex v such that there exists a maximum matching of G not covering v. Let B be the set of all inessential vertices in G (e.g., if G has a perfect matching then $B = \emptyset$). Let C denote the set of vertices not in B but adjacent to at least one vertex in B (thus, if $B = \emptyset$ then $C = \emptyset$). Let $D = V \setminus (B \cup C)$. The triple $\{B, C, D\}$ is called the Edmonds-Gallai partition of G. Show that U = C is a minimizer in the Tutte-Berge formula. (In particular, this means that in the Tutte-Berge formula we can assume that U is such that the union of the odd connected components of $G \setminus U$ is precisely the set of inessential vertices.)
- 5. An edge cover of a graph is a subset F of edges such that for every vertex $v \in V$ there exists an edge of F adjacent to it. Consider a (not necessarily bipartite) connected graph G = (V, E) with n = |V| vertices, and assume that the maximum matching has size $\nu(G)$. Prove that the minimum cardinality of an edge cover is precisely $n \nu(G)$.
- 6. Show that any 3-regular 2-edge-connected graph G = (V, E) (not necessarily bipartite) has a perfect matching. (A 2-edge-connected graph has at least 2 edges in every cutset; a cutset being the edges between S and $V \setminus S$ for some vertex set S.)