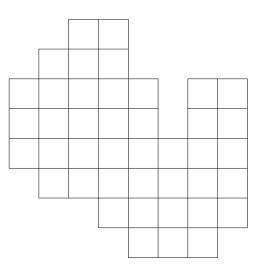
Problem set 1

This problem set is due in class on February 22nd, 2007.

- 1. Show that in any graph G = (V, E) (not necessarily bipartite), the size of any maximal matching M (i.e. a matching M in which one cannot add an edge while keeping it a matching) is at least half the size of a maximum matching M^* .
- 2. Can the following figure be tiled by dominoes (a domino being 2 adjacent squares)? Give a tiling or a short proof that no tiling exists.



- 3. Consider a bipartite graph G = (V, E) with bipartition (A, B): $V = A \cup B$. Assume that, for some vertex sets $A_1 \subseteq A$ and $B_1 \subseteq B$, there exists a matching M_A covering all vertices in A_1 and a matching M_B covering all vertices in B_1 . Prove that there always exists a matching covering all vertices in $A_1 \cup B_1$.
- 4. Consider the following 2-person game on a (not necessarily bipartite) graph G = (V, E). Players 1 and 2 alternate and each selects a (yet unchosen) edge e of the graph so that e together with the previously selected edges form a simple path. The first player unable to select such an edge loses. Show that if G has a *perfect* matching then player 1 has a winning strategy.
- 5. Given a bipartite graph G = (V, E) with bipartition A, B $(V = A \cup B)$, Hall's theorem gives a condition for the existence of a matching of size |A| (i.e. every vertex in A is matched): For every $S \subseteq A$ we have $|N(S)| \ge |S|$, where $N(S) = \{b \in B : \exists a \in S \text{ with } (a, b) \in E\}$. Deduce Hall's theorem from König's theorem.

- 6. Consider a bipartite graph G = (V, E) in which every vertex has degree k (a so-called k-regular bipartite graph). Prove that such a graph always has a perfect matching in two different ways:
 - (a) by using König's theorem,
 - (b) by using the linear programming formulation we saw in lecture for the assignment problem.
- 7. Using the previous problem, show that the edges of a k-regular bipartite graph G can be partitioned into k matchings (i.e. the number of colors needed to color the edges of a k-regular bipartite graph such that no two edges with an endpoint in common have the same color is precisely k).

(Optional: Are this result and the one in the previous exercise also true also for nonbipartite graphs?)

8. In lecture, we have shown that, given a bipartite graph G = (V, E), the following linear program always has an optimum 0 - 1 solution:

$$\begin{array}{ll} \operatorname{Min} & \sum_{i,j} c_{ij} x_{ij} \\ \text{subject to:} \\ & \sum_{j} x_{ij} = 1 \\ & \sum_{i} x_{ij} = 1 \\ & x_{ij} \geq 0 \end{array} \qquad \qquad i \in A, j \in B \end{array}$$

Prove this in the following way. Take a (possibly non-integral) optimum solution x^* . If there are many optimum solutions, take one with as few non-integral values x_{ij}^* as possible. Show that, if x^* is not integral, there exists a cycle C with all edges $e = (i, j) \in C$ having a non-integral value x_{ij}^* . Now show how to derive another optimum solution with fewer non-integral values, leading to a contradiction.