Problem set 1

This problem set is due in class on February 22nd, 2007.

1. Show that in any graph $G=(V, E)$ (not necessarily bipartite), the size of any maximal matching M (i.e. a matching M in which one cannot add an edge while keeping it a matching) is at least half the size of a maximum matching M^{*}.
2. Can the following figure be tiled by dominoes (a domino being 2 adjacent squares)? Give a tiling or a short proof that no tiling exists.

3. Consider a bipartite graph $G=(V, E)$ with bipartition $(A, B): V=A \cup B$. Assume that, for some vertex sets $A_{1} \subseteq A$ and $B_{1} \subseteq B$, there exists a matching M_{A} covering all vertices in A_{1} and a matching M_{B} covering all vertices in B_{1}. Prove that there always exists a matching covering all vertices in $A_{1} \cup B_{1}$.
4. Consider the following 2-person game on a (not necessarily bipartite) graph $G=(V, E)$. Players 1 and 2 alternate and each selects a (yet unchosen) edge e of the graph so that e together with the previously selected edges form a simple path. The first player unable to select such an edge loses. Show that if G has a perfect matching then player 1 has a winning strategy.
5. Given a bipartite graph $G=(V, E)$ with bipartition $A, B(V=A \cup B)$, Hall's theorem gives a condition for the existence of a matching of size $|A|$ (i.e. every vertex in A is matched): For every $S \subseteq A$ we have $|N(S)| \geq|S|$, where $N(S)=\{b \in B: \exists a \in S$ with $(a, b) \in E\}$. Deduce Hall's theorem from König's theorem.
6. Consider a bipartite graph $G=(V, E)$ in which every vertex has degree k (a so-called k-regular bipartite graph). Prove that such a graph always has a perfect matching in two different ways:
(a) by using König's theorem,
(b) by using the linear programming formulation we saw in lecture for the assignment problem.
7. Using the previous problem, show that the edges of a k-regular bipartite graph G can be partitioned into k matchings (i.e. the number of colors needed to color the edges of a k-regular bipartite graph such that no two edges with an endpoint in common have the same color is precisely k).
(Optional: Are this result and the one in the previous exercise also true also for nonbipartite graphs?)
8. In lecture, we have shown that, given a bipartite graph $G=(V, E)$, the following linear program always has an optimum $0-1$ solution:

$$
\operatorname{Min} \sum_{i, j} c_{i j} x_{i j}
$$

subject to:

$$
\begin{array}{ll}
\sum_{j} x_{i j}=1 & i \in A \\
\sum_{i} x_{i j}=1 & j \in B \\
x_{i j} \geq 0 & i \in A, j \in B
\end{array}
$$

Prove this in the following way. Take a (possibly non-integral) optimum solution x^{*}. If there are many optimum solutions, take one with as few non-integral values $x_{i j}^{*}$ as possible. Show that, if x^{*} is not integral, there exists a cycle C with all edges $e=(i, j) \in C$ having a non-integral value $x_{i j}^{*}$. Now show how to derive another optimum solution with fewer non-integral values, leading to a contradiction.

