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Linear Programming and Polyhedral Combinatorics

Summary of what was seen in the introductory lectures on linear programming and
polyhedral combinatorics.

Definition 1 A halfspace in R
n is a set of the form {x ∈ R

n : aT x ≤ b} for some vector
a ∈ R

n and b ∈ R.

Definition 2 A polyhedron is the intersection of finitely many halfspaces: P = {x ∈ R
n :

Ax ≤ b}.

Definition 3 A polytope is a bounded polyhedron.

Definition 4 If P is a polyhedron in R
n, the projection Pk of P is defined as

{y = (x1, x2, · · · , xk−1, xk+1, · · · , xn) : x ∈ P for some xk}.

We claim that Pk is also a polyhedron and this can be proved by giving an explicit
description of Pk in terms of linear inequalities. For this purpose, one uses Fourier-Motzkin
elimination. Let P = {x : Ax ≤ b} and let

• S+ = {i : aik > 0},

• S− = {i : aik < 0},

• S0 = {i : aik = 0}.

Clearly, any element in Pk must satisfy the inequality aT
i x ≤ bi for all i ∈ S0 (these inequal-

ities do not involve xk). Similarly, we can take a linear combination of an inequality in S+

and one in S− to eliminate the coefficient of xk. This shows that the inequalities:

aik

(

∑

j

aljxj

)

− alk

(

∑

j

akjxj

)

≤ aikbl − alkbi (1)

for i ∈ S+ and l ∈ S− are satisfied by all elements of Pk. Conversely, for any vector
(x1, x2, · · · , xk−1, xk+1, · · · , xn) satisfying (1) for all i ∈ S+ and l ∈ S− and also

aT
i x ≤ bi for all i ∈ S0 (2)

we can find a value of xk such that the resulting x belongs to P (by looking at the bounds on
xk that each constraint imposes, and showing that the largest lower bound is smaller than
the smallest upper bound). This shows that Pk is described by (1) and (2), and therefore is
a polyhedron.



Linear Programming and Polyhedral Combinatorics 2

Definition 5 Given points a(1), a(2), · · · , a(k) ∈ R
n,

• a linear combination is
∑

i λia
(i) where λi ∈ R for all i,

• an affine combination is
∑

i λia
(i) where λi ∈ R and

∑

i λi = 1,

• a conical combination is
∑

i λia
(i) where λi ≥ 0 for all i,

• a convex combination is
∑

i λia
(i) where λi ≥ 0 for all i and

∑

i λi = 1.

The set of all linear combinations of elements of S is called the linear hull of S and
denoted by lin(S). Similarly, by replacing linear by affine, conical or convex, we define the
affine hull, aff(S), the conic hull, cone(S) and the convex hull, conv(S). We can give an
equivalent definition of a polytope.

Definition 6 A polytope is the convex hull of a finite set of points.

The fact that Definition 6 implies Definition 3 can be shown by using Fourier-Motzkin
elimination repeatedly on

x −
∑

k

λka
(k) = 0

∑

k

λk = 1

λk ≥ 0

to eliminate all variables λk and keep only the variables x. The converse will be discussed
later in these notes.

1 Necessary and Sufficient Conditions for the Solvabil-

ity of System of Inequalities

In linear algebra, we saw that, for A ∈ Rm×n, b ∈ Rm, Ax = b has no solution x ∈ R
n if

and only if there exists a y ∈ Rm with AT y = 0 and bT y 6= 0 (in 18.06 notation/terminology,
this is equivalent to saying that the column space C(A) is orthogonal to the left null space
N(AT )).

One can state a similar Theorem of the Alternatives for systems of linear inequalities.

Theorem 1 (Theorem of the Alternatives) Ax ≤ b has no solution x ∈ R
n if and only

if there exists y ∈ R
m such that y ≥ 0, AT y = 0 and bT y < 0.
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One can easily show that both systems indeed cannot have a solution since otherwise
0 > bT y = yT b ≥ yTAx = 0T x = 0. For the other direction, one takes the insolvable system
Ax ≤ b and use Fourier-Motzkin elimination repeatedly to eliminate all variables and thus
obtain an inequality like 0T x ≤ c where c < 0. In the process one has derived a vector y
with the desired properties (as Fourier-Motzkin only performs nonnegative combinations of
linear inequalities).

Another version of the above theorem is Farkas’ lemma:

Lemma 2 Ax = b, x ≥ 0 has no solution if and only if there exists y with AT y ≥ 0 and
bT y < 0.

Exercise 1. Prove Farkas’ lemma from the Theorem of the Alternatives.

2 Linear Programming Basics

A linear program (LP) is the problem of minimizing or maximizing a linear function over a
polyhedron:

Max cT x

subject to:

(P ) Ax ≤ b.

Any x satisfying Ax ≤ b is said to be feasible. If no x satisfies Ax ≤ b, we say that the
linear program is infeasible, and its optimum value is −∞ (as we are maximizing over an
empty set). If the objective function value of the linear program can be made arbitrarily
large, we say that the linear program is unbounded and its optimum value is +∞; otherwise
it is bounded. If it is neither infeasible, not unbounded, then its optimum value is finite.

Other equivalent forms involve equalities as well, or nonnegative constraints x ≥ 0.
One version that is often considered when discussing algorithms for linear programming
(especially the simplex algorithm) is min{cT x : Ax = b, x ≥ 0}.

Another linear program, dual to (P ), plays a crucial role:

Min bT y

subject to:

(D) AT y = c

y ≥ 0.

(D) is the dual and (P ) is the primal. The terminology for the dual is similar. If (D)
has no feasible solution, it is said to be infeasible and its optimum value is +∞ (as we are
minimizing over an empty set). If (D) is unbounded (i.e. its value can be made arbitrarily
negative) then its optimum value is −∞.

The primal and dual spaces should not be confused. If A is m×n then we have n primal
variables and m dual variables.
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Weak duality is clear: For any feasible solutions x and y to (P ) and (D), we have that
cT x ≤ bT y. Indeed, cT x = yTAx ≤ bT y. The dual was precisely built to get an upper bound
on the value of any primal solution. For example, to get the inequality yTAx ≤ bT y, we need
that y ≥ 0 since we know that Ax ≤ b. In particular, weak duality implies that if the primal
is unbounded then the dual must be infeasible.

Strong duality is the most important result in linear programming; it says that we can
prove the optimality of a primal solution x by exhibiting an optimum dual solution y.

Theorem 3 (Strong Duality) Assume that (P ) and (D) are feasible, and let z∗ be the
optimum value of the primal and w∗ the optimum value of the dual. Then z∗ = w∗.

The proof of strong duality is obtained by writing a big system of inequalities in x and y
which says that (i) x is primal feasible, (ii) y is dual feasible and (iii) cT x ≥ bT y. Then use
the Theorem of the Alternatives to show that the infeasibility of this system of inequalities
would contradict the feasibility of either (P ) or (D).
Proof: Let x∗ be a feasible solution to the primal, and y∗ be a feasible solution to the
dual. The proof is by contradiction. Because of weak duality, this means that there are no
solution x ∈ R

n and y ∈ R
m such that















Ax ≤ b
AT y = c
Iy ≤ 0

−cT x +bT y ≤ 0

By a variant of the Theorem of the Alternatives or Farkas’ lemma (for the case when we
have a combination of inequalities and equalities), we derive that there must exist s ∈ R

m,
t ∈ R

n, u ∈ R
m, v ∈ R such that:

s ≥ 0

u ≥ 0

v ≥ 0

AT s − vc = 0

At − u + vb = 0

bT s + cT t < 0.

We distinguish two cases.

Case 1: v = 0. Then s satisfies s ≥ 0 and AT s = 0. This means that, for any α ≥ 0,
y∗ + αs is feasible for the dual. Similarly, At = u ≥ 0 and therefore, for any α ≥ 0, we have
that x∗ − αt is primal feasible. By weak duality, this means that, for any α ≥ 0, we have

cT (x∗ − αt) ≤ bT (y∗ + αs)
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or
cT x∗ − bT y∗ ≤ α(bT s + cT t).

The right-hand-side tend to −∞ as α tends to ∞, and this is a contradiction as the left-
hand-side is fixed.

Case 2: v > 0. By dividing throughout by v, we get that there exists s ≥ 0, u ≥ 0 with

AT s = c

At − u = −b

bT s + cT t < 0.

This means that s is dual feasible and −t is primal feasible, and therefore by weak duality
cT (−t) ≤ bT s contradicting bT s + cT t < 0. 4

Exercise 2. Show that the dual of the dual is the primal.

Exercise 3. Show that we only need either the primal or the dual to be feasible for strong
duality to hold. More precisely, if the primal is feasible but the dual is infeasible, prove that
the primal will be unbounded, implying that z∗ = w∗ = +∞.

Looking at cT x = yTAx ≤ bT y, we observe that to get equality between cT x and bT y, we
need complementary slackness:

Theorem 4 (Complementary Slackness) If x is feasible in (P ) and y is feasible in (D)
then x is optimum in (P ) and y is optimum in (D) if and only if for all i either yi = 0 or
∑

j aijxj = bi (or both).

Linear programs can be solved efficiently either by interior-point algorithms or by the
ellipsoid algorithm.

3 Faces of Polyhedra

Definition 7 {a(i) ∈ R
n : i ∈ K} are linearly independent if

∑

i λia
(i) = 0 implies that

λi = 0 for all i ∈ K.

Definition 8 {a(i) ∈ R
n : i ∈ K} are affinely independent if

∑

i λia
(i) = 0 and

∑

i λi = 0
together imply that λi = 0 for all i ∈ K.

Observe that {a(i) ∈ R
n : i ∈ K} are affinely independent if and only if

{[

a(i)

1

]

∈ R
n+1 : i ∈ K

}

are linearly independent.
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Definition 9 The dimension, dim(P ), of a polyhedron P is the maximum number of affinely
independent points in P minus 1.

The dimension can be -1 (if P is empty), 0 (when P consists of a single point), 1 (when
P is a line segment), and up to n when P is in R

n. In the latter case, we say that P is
full-dimensional. The dimension of a cube in R

3 is 3, and so is the dimension of R
3 itself.

Definition 10 αT x ≤ β is a valid inequality for P if αT x ≤ β for all x ∈ P .

Observe that for an inequality to be valid for conv(S) we only need to make sure that it
is satisfied by all elements of S.

Definition 11 A face of a polyhedron P is {x ∈ P : αTx = β} where αT x ≤ β is some valid
inequality of P .

By definition, all faces are polyhedra. The empty face (of dimension -1) is trivial, and so
is the entire polyhedron P (which corresponds to the valid inequality 0T x ≤ 0). Non-trivial
are those whose dimension is between 0 and dim(P ) − 1. Faces of dimension 0 are called
extreme points or vertices, faces of dimension 1 are called edges, and faces of dimension
dim(P )− 1 are called facets. Sometimes, one uses ridges for faces of dimension dim(P )− 2.

Exercise 4. List all 28 faces of the cube P = {x ∈ R
3 : 0 ≤ xi ≤ 1 for i = 1, 2, 3}.

Although there are infinitely many valid inequalities, there are only finitely many faces.

Theorem 5 Let A ∈ R
m×n. Then any non-empty face of P = {x ∈ R

n : Ax ≤ b} corre-
sponds to the set of solutions to

∑

j

aijxj = bi for all i ∈ I

∑

j

aijxj ≤ bi for all i /∈ I,

for some set I ⊆ {1, · · · , m}. Therefore, the number of non-empty faces of P is at most 2m.

Proof: Consider any valid inequality αTx ≤ β. Suppose the corresponding face F is
non-empty. Thus F are all optimum solutions to

Max αTx

subject to:

(P ) Ax ≤ b.
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Choose an optimum solution y∗ to the dual LP. By complementary slackness, the face F is
defined by those elements x of P such that aT

i x = bi for i ∈ I = {i : y∗
i > 0}. Thus F is

defined by
∑

j

aijxj = bi for all i ∈ I

∑

j

aijxj ≤ bi for all i /∈ I.

As there are 2m possibilities for F , there are at most 2m non-empty faces. 4
The number of faces given in Theorem 5 is tight for polyhedra (see exercise below), but

can be considerably improved for polytopes in the so-called upper bound theorem.

Exercise 5. Let P = {x ∈ R
n : xi ≥ 0 for i = 1, · · · , n}. Show that P has 2n + 1 faces.

How many faces of dimension k does P have?

For extreme points (faces of dimension 0), the characterization is even stronger (we do
not need the inequalities):

Theorem 6 Let x∗ be an extreme point for P = {x : Ax ≤ b}. Then there exists I such
that x∗ is the unique solution to

∑

j

aijxj = bi for all i ∈ I.

Proof: Given an extreme point x∗, define I by I = {i :
∑

j aijx
∗
j = bi}. This means that

for i /∈ I, we have
∑

j aijx
∗
j < bi.

From Theorem 5, we know that x∗ is uniquely defined by

∑

j

aijxj = bi for all i ∈ I (3)

∑

j

aijxj ≤ bi for all i /∈ I. (4)

Now suppose there exists another solution x̂ when we consider only the equalities for i ∈ I.
Then because of

∑

j aijx
∗
j < bi, we get that (1 − ε)x∗ + εx̂ also satisfies (3) and (4) for ε

sufficiently small. A contradiction (as the face was supposed to contain a single point). 4
If P is given as {x : Ax = b, x ≥ 0} (as is often the case), the theorem still applies (as

we still have a system of inequalities). In this case, the theorem says that every extreme
point x∗ can be obtained by setting some of the variables to 0, and solving for the unique
solution to the resulting system of equalities. Without loss of generality, we can remove from
Ax = b equalities that are redundant; this means that we can assume that A has full row
rank (rank(A) = m for A ∈ R

m×n). Letting N denote the indices of the non-basic variables
that we set of 0 and B denote the remaining indices (of the so-called basic variables), we
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can partition x∗ into x∗
B and x∗

N (corresponding to these two sets of variables) and rewrite
Ax = b as ABxB +ANxN = b, where AB and AN are the restrictions of A to the indices in B
and N respectively. The theorem says that x∗ is the unique solution to ABxB + ANxN = 0
and xN = 0, which means x∗

N = 0 and ABx∗
B = b. This latter system must have a unique

solution, which means that AB must have full column rank (rank(AB) = |B|). As A itself
has rank m, we have that |B| ≤ m and we can augment B to includee indices of N such that
the resulting B satisfies (i) |B| = m and (ii) AB is a m×m invertible matrix (and thus there
is still a unique solution to ABxB = b). In linear programming terminology, a basic feasible
solution or bfs of {x : Ax = b, x ≥ 0} is obtained by choosing a set |B| = m of indices with
AB invertible and letting xB = A−1

B b and xN = 0 where N are the indices not in B. All
extreme points are bfs and vice versa (although two different bases B may lead to the same
extreme point, as there might be many ways of extending AB into a m×m invertible matrix
in the discussion above).

One consequence of Theorem 5 is:

Corollary 7 The maximal (inclusion-wise) non-trivial faces of a polyhedron P are the
facets.

Similarly,

Corollary 8 The minimal (inclusion-wise) non-trivial faces of a polyhedron P are the ver-
tices.

Exercise 6. Prove Corollary 7.

Exercise 7. Prove Corollary 8.

We now go back to the equivalence between Definitions 3 and 6 and claim that we can
show that Definition 3 implies Definition 6.

Theorem 9 If P = {x : Ax ≤ b} is bounded then P = conv(X) where X is the set of
extreme points of P .

This is a nice exercise using the Theorem of the Alternatives.
Proof: Since X ⊆ P , we have conv(X) ⊆ P . Assume, by contradiction, that we do not
have equality. Then there must exist x̃ ∈ P \ conv(X). The fact that x̃ /∈ conv(X) means
that there is no solution to:







∑

v∈X λvv = x̃
∑

v∈X λv = 1
λv ≥ 0 v ∈ X.

By the Theorem of the alternatives, this implies that ∃c ∈ R
n, t ∈ R:

{

t +
∑n

j=1 cjvj ≥ 0 ∀v ∈ X

t +
∑n

j=1 cjx̃j < 0.
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Since P is bounded, min{cT x : x ∈ P} is finite (say equal to z∗), and the face induced by
cT x ≥ z∗ is non-empty but does not contain any vertex (as all vertices are dominated by x̃
by the above inequalities). This is a contradiction with Corollary 8. 4

When describing a polyhedron P in terms of linear inequalities, the only inequalities that
are needed are the ones that define facets of P . This is stated in the next few theorems. We
say that an inequality in the system Ax ≤ b is redundant if the corresponding polyhedron is
unchanged by removing the inequality. For P = {x : Ax ≤ b}, we let I= denote the indices
i such that aT

i x = bi for all x ∈ P , and I< the remaining ones (i.e. those for which there
exists x ∈ P with aT

i x < bi).
This theorem shows that facets are sufficient:

Theorem 10 If face associated with aT
i x ≤ bi for i ∈ I< is not a facet then the inequality is

redundant.

And this one shows that facets are necessary:

Theorem 11 If F is a facet of P then there must exists i ∈ I< such that the face induced
by aT

i x ≤ bi is precisely F .

In a minimal description of P , we must have a set of linearly independent equalities
together with precisely one inequality for each facet of P .

Exercise 8. Given two extreme points a and b of a polyhedron P , we say that they are
adjacent if the line segment between them forms an edge (i.e. a face of dimension 1) of the
polyhedron P . This can be rephrased by saying that a and b are adjacent on P if and only
if there exists a cost function c such that a and b are the only two extreme points of P
minimizing cT x over P .

Consider the polyhedron (polytope) P defined as the convex hull of all perfect matchings
in a (not necessarily bipartite) graph G. Give a necessary and sufficient condition for two
matchings M1 and M2 to be adjacent on this polyhedron (hint: think about M1 4 M2 =
(M1 \ M2) ∪ (M2 \ M1)) and prove that your condition is necessary and sufficient.

Exercise 9. Show that two vertices u and v of a polyhedron P are adjacent if and only
there is a unique way to express their midpoint ( 1

2
(u+v)) as a convex combination of vertices

of P .

Exercise 10. Suppose P = {x ∈ R
n : Ax ≤ b, Cx ≤ d}. Show that the set of vertices of

Q = {x ∈ R
n : Ax ≤ b, Cx = d} is a subset of the set of vertices of P .

4 Polyhedral Combinatorics

In one sentence, polyhedral combinatorics deals with the study of polyhedra or polytopes as-
sociated with discrete sets arising from combinatorial optimization problems (such as match-
ings for example). If we have a discrete set X (say the incidence vectors of matchings in a
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graph, or the set of incidence vectors of stable sets1 in a graph), we can consider conv(X)
and attempt to describe it in terms of linear inequalities. This is useful in order to apply
the machinery of linear programming. However, in some (most) cases, it is actually hard to
describe the set of all inequalities defining conv(X); this occurs whenever optimizing over X
is hard and this statement can be made precise in the setting of computational complexity.
For matchings, or spanning trees, or several other structures, we will be able to describe
their convex hull in terms of linear inequalities.

Given a set X and a proposed system of inequalities P = {x : Ax ≤ b}, it is usually easy
to check whether conv(X) ⊆ P . Indeed, for this, we only need to check that every member
of X satisfies every inequality in the description of P . The reverse inclusion is more difficult.
Here are 3 general techniques to prove that P ⊆ conv(X) (if it is true!) (once we know that
conv(X) ⊆ P ).

1. Algorithmically. This involves linear programming duality. This is what we did
in the lecture on the assignment problem (minimum weight matchings in bipartite
graphs). In general, consider any cost function c and consider the combinatorial opti-
mization problem of maximizing cT x over x ∈ X. We know that:

max{cTx : x ∈ X} = max{cT x : x ∈ conv(X)}

≤ max{cT x : Ax ≤ b}

= min{bT y : AT y = c, y ≥ 0},

the last equality coming from strong duality. If we can exhibit a solution x ∈ X (say
a perfect matching in the assignment problem) and a dual feasible solution y (values
ui, vj in the assignment problem) such that cT x = bT y we will have shown that we
have equality throughout, and if this is true for any cost function, this implies that
P = conv(X).

This is usually the most involved approach but also the one that works most often.

2. Focusing on extreme points. Show first that P = {x : Ax ≤ b} is bounded (thus a
polytope) and then study its extreme points. If we can show that every extreme point
of P is in X then we would be done since P = conv(ext(P )) ⊆ conv(X), where ext(P )
denotes the extreme points of P (see Theorem 9). The assumption that P is bounded
is needed to show that indeed P = conv(ext(P )) (not true if P is unbounded).

In the case of the convex hull of bipartite matchings, this can be done easily and this
leads to the notion of Totally Unimodular Matrices (TUM), see the lecture notes on
bipartite matchings.

3. Focusing on the facets of conv(X). This leads usually to the shortest and cleanest
proofs. Suppose that our proposed P is of the form {x ∈ R

n : Ax ≤ b, Cx = d}. We
have already argued that conv(X) ⊆ P and we want to show that P ⊆ conv(X).

1A set S of vertices in a graph G = (V, E) is stable if there are no edges between any two vertices of S.
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First we need to show that we are not missing any equality. This can be done for
example by showing that dim(conv(X)) = dim(P ) (i.e. showing that if there are n−d
linearly independent rows in C we can find d + 1 affinely independent points in X).

Then we need to show that we are not missing a valid inequality that induces a facet
of conv(X). Consider any valid inequality αT x ≤ β for conv(X) with α 6= 0. We can
assume that α is any vector in R

n \ {0} and that β = max{αTx : x ∈ conv(X)}. The
face of conv(X) this inequality defines is F = conv({x ∈ X : αT x = β}). Assume that
this is a non-trivial face; this will happen precisely when α is not in the row space of
C. We need to make sure that if F is facet then we have in our description of P an
inequality representing it. What we will show is that if F is non-trivial then we can find
an inequality aT

i x ≤ bi in our description of P such that F ⊆ {x : aT
i x = bi}, or simply

that every optimum solution to max{αTx : x ∈ X} satisfies aT
i x = bi. This means that

if F was a facet, by maximality, we have a representative of F in our description.

Example. Let X = {(σ(1), σ(2), · · · , σ(n)) : σ is a permutation of {1, 2, · · · , n}}. We
claim that

conv(X) = {x ∈ R
n :

∑n

i=1 xi =
(

n+1
2

)

∑

i∈S xi ≥
(

|S|+1
2

)

S ⊂ {1, · · · , n}}.

Here conv(X) is not full-dimensional; we only need to show that we are not missing
any facets and any equality in the description of conv(P ). For the equalities, this can
be seen easily as it is easy to exhibit n affinely independent permutations in X. For
the facets, suppose that αT x ≤ β defines a non-trivial facet F of conv(X). Consider
maximizing αT x over all permutations x. Let S = arg min{αi}; by our assumption that
F is non-trivial we have that S 6= {1, 2, · · · , n}. Moreover, it is easy to see that any
permutation that maximizes αT x will need to satisfy α(i) ∈ {1, 2, · · · , |S|} for i ∈ S,
in other words, it will satisfy the inequality

∑

i∈S xi ≥
(

|S|+1
2

)

at equality, which was
what we needed to prove. That’s it!

Exercise 11. A stable set S (sometimes, it is called also an independent set) in a graph
G = (V, E) is a set of vertices such that there are no edges between any two vertices in S.
If we let P denote the convex hull of all (incidence vectors of) stable sets of G = (V, E), it
is clear that xi + xj ≤ 1 for any edge (i, j) ∈ E is a valid inequality for P .

1.Give a graph G for which P is not equal to

{x ∈ R
|V | : xi + xj ≤ 1 for all (i, j) ∈ E

xi ≥ 0 for all i ∈ V }

2.Show that if the graph G is bipartite then P equals

{x ∈ R
|V | : xi + xj ≤ 1 for all (i, j) ∈ E

xi ≥ 0 for all i ∈ V }.



Linear Programming and Polyhedral Combinatorics 12

Exercise 12. Suppose we have n activities to choose from. Activity i starts at time ti and
ends at time ui (or more precisely just before ui); if chosen, activity i gives us a profit of pi

units. Our goal is to choose a subset of the activities which do not overlap (nevertheless, we
can choose an activity that ends at t and one that starts at the same time t) and such that
the total profit (i.e. sum of profits) of the selected activities is maximum.

1.Defining xi as a variable that represents whether activity i is selected (xi = 1) or not
(xi = 0), write an integer program of the form max{pT x : Ax ≤ b, x ∈ {0, 1}n} that
would solve this problem.

2.Show that the matrix A is totally unimodular, implying that one can solve this problem
by solving the linear program max{pT x : Ax ≤ b, 0 ≤ xi ≤ 1 for every i}.

Exercise 13. Let ek ∈ R
n (k = 0, . . . , n − 1) be a vector with the first k entries being 1,

and the following n − k entries being −1. Let S = {e0, e1, . . . , en−1,−e0,−e1, . . . ,−en−1},
i.e. S consists of all vectors consisting of +1 followed by −1 or vice versa. In this problem
set, you will study conv(S).

1.Consider any vector a ∈ {−1, 0, 1}n such that (i)
∑n

i=1 ai = 1 and (ii) for all j =

1, . . . , n−1, we have 0 ≤
∑j

i=1 ai ≤ 1. (For example, for n = 5, the vector (1, 0,−1, 1, 0)
satisfies these conditions.) Show that

∑n

i=1 aixi ≤ 1 and
∑n

i=1 aixi ≥ −1 are valid
inequalities for conv(S).

2.How many such inequalities are there?

3.Show that any such inequality defines a facet of conv(S).

(This can be done in several ways. Here is one approach, but you are welcome to
use any other one as well. First show that either ek or −ek satisfies this inequality at
equality, for any k. Then show that the resulting set of vectors on the hyperplane are
affinely independent (or uniquely identifies it).)

4.Show that the above inequalities define the entire convex hull of S.

(Again this can be done in several ways. One possibility is to consider the 3rd technique
described above.)


