
Massachusetts Institute of Technology Handout 20
18.433: Combinatorial Optimization May 10th, 2007
Michel X. Goemans

Lecture notes on the mincut problem

1 Minimum Cuts

In this lecture we will describe an algorithm that computes the minimum cut (or simply
mincut) in an undirected graph. A cut is defined as follows.

Definition 1 Given a graph G = (V, E) and a subset S of V , the cut δ(S) induced by S is
the subset of edges (i, j) ∈ E such that |{i, j} ∩ S| = 1.

That is, δ(S) consists of all those edges with exactly one endpoint in S.
Given an undirected graph G = (V, E) and for each edge e ∈ E a nonnegative cost (or

capacity) ce, the cost of a cut δ(S), is the sum of the costs of the edges in the cut, that is

c(δ(S)) =
∑

e∈δ(S)

ce.

The minimum cut problem (or mincut problem) is to find a cut of minimum cost. If all
costs are 1 then the problem becomes the problem of finding a cut with as few edges as
possible.

Cuts are often defined in a different, not completely equivalent, way. Define a cutset to be
a set of edges whose removal disconnects the graph into at least two connected components.
Minimal cutsets (a minimal cutset C is a cutset such that any proper subset of C is not
anymore a cutset) can be seen to correspond to cuts δ(S) for which the subgraphs induced
by S and V − S are connected. Observe that only minimal cutsets can be of minimum cost
(among all cutsets) and that only cuts δ(S) for which both S and V − S induce connected
components can be of minimum cost (among all cuts) since the costs are assumed to be
nonnegative. For this reason, the problem of finding a cutset of minimum cost is equivalent
to the problem of finding a cut δ(S) of minimum cost, namely the mincut problem. From
now on, we will only look at cuts δ(S) (and not cutsets).

An important variant of the mincut problem is often considered. This is the problem
of finding the minimum cost cut separating two given two vertices s and t. A cut δ(S) is
said to separate s and t if only one of them belongs to S. We refer to this problem as the
minimum (s, t)-cut problem.

As seen in lecture, the minimum (s, t)-cut problem can be solved by means of network
flow algorithms. Indeed it can be reduced to a max flow problem. Given a source s and a
sink t of the graph G, we have seen that

MAX FLOW(s, t) = min
S:s∈S,t6∈S

c(δ(S)).

Lecture notes on the mincut problem 2

Notice that this result relates the value of the maximum flow from s to t and the value of
the minimum (s, t)-cut It does not specify any relationship between the minimum (s, t)-cut
itself (meaning the edges composing the cut) and the way the maximum flow can be pushed
into the graph. However, given a maximum flow, it is easy to obtain the corresponding
(s, t)-mincut. If you look at the residual graph corresponding to the maximum flow, the set
S of vertices reachable from S will induce a minimum cut. By definition of the residual graph
(and properties of maximum flows), the cost of this cut is equal to the value of the maximum
flow and thus it is a min (s, t)-cut. On the other hand, the knowledge of a min (s, t)-cut does
not help in finding the actual maximum flow (not just its value but the flow on every edge).
Indeed, consider the following example. Let C∗ be the min (s, t)-cut value in G = (V, E)
and let us consider the graph G′ = (V ′, E ′) where V ′ = {s′} ∪ V and E ′ = {(s′, s)} ∪E with
c(s′, s) = C∗. Then a possible minimum (s′, t)-cut is δ({s′}). However this does not give any
more information on how the flow can be pushed from s′ to t (than just its value C∗). So
far no algorithm that finds a minimum (s, t)-cut without using a reduction to the max flow
problem has been discovered. We will see that for general mincuts (ot separating two given
vertices), the situation is different.

How can we find a minimum cut in an undirected graph? One possibility is to choose
a vertex s and compute the min (s, t)-cuts for every t ∈ V − {s}, and choose the cut of
minimum cost among all the cuts obtained. The fastest maximum flow algorithms currently
take slightly more than O(mn) time (for example, Goldberg and Tarjan’s algorithm [1]
take O(mn log(n2/m)) time). Since we need to use it n times, we can find a mincut in
O(mn2 log(n2/m)) time. However, these n − 1 maxflow problem are related, and Hao and
Orlin [2] have shown that it is possible to solve all of them in O(mn log(n2/m)) by modifying
Goldberg and Tarjan’s algorithm. Thus the minimum cut problem can be solved within this
time bound.

In this lecture, we will derive an algorithm for the mincut problem which is not based
on network flows, and which has a running time slightly better than Hao and Orlin’s. The
algorithm is due to Stoer and Wagner [6], and is a simplification of an earlier result of
Nagamochi and Ibaraki [5]. We should also point out that there is a randomized algorithm
due to Karger and Stein [4] whose running time is O(n2 log3 n), and a subsequent one due
to Karger [3] that runs in O(m log3 n).

We first need a definition. Define, for any two sets A, B of vertices of the graph,

c(A : B) :=
∑

i∈A,j∈B

ci,j

The algorithm is described below. In words, the algorithm starts with any vertex, and
build an ordering of the vertices by always adding to the selected vertices the vertex whose
total cost to the previous vertices is maximized. The cut induced by the last vertex in the
ordering is considered, as well as the cuts obtained by recursively applying the procedure
to the graph obtained by shrinking the last two vertices. (If there are edges from a vertex
v to these last two vertices then we substitute those two edges with only one edge having
capacity equal to the sum of the capacities of the two edges.) The claim is that the best cut

Lecture notes on the mincut problem 3

among the cuts considered is the overall mincut. The formal description is given below.

mincut(G)
Let v1 be any vertex of G
n = |V (G)|
S = {v1}
for i = 2 to n

let vi the vertex of V \ S s.t.
c(S : {v}) is maximized (over all v ∈ V \ S)
S := S ∪ {vi}

endfor

if n = 2 then return the cut δ({vn})
else

Let G′ be obtained from G by shrinking vn−1 and vn

Let C be the cut returned by mincut(G′)
Among C and δ({vn}) return the smaller cut (in terms of

cost)
endif

Figure 1 illustrates how the algorithm works on an example.

1v v2

v3
v3

v21v
a

1v
a

v2

2 1 5

4

3

v4

cut=7

d

a b

c

62

3
b

cd

cut=8

bcd

5

cut=5

Figure 1: Illustration of the mincut algorithm.

The analysis is based on the following crucial claim.

Claim 1 {vn} (or {v1, v2, ..., vn−1}) induces a min (vn−1, vn)-cut in G. (Notice that we do
not know in advance vn−1 and vn.)

Lecture notes on the mincut problem 4

From this, the correctness of the algorithm follows easily. Indeed, the mincut is either a
(vn−1, vn)-cut or not. If it is, we are fine thanks to the above claim. If it is not, we can assume
by induction on the size of the vertex set that it will be returned by the call mincut(G′).
Proof: Let v1, v2, ..., vi, ..., vj, ..., vn−1, vn be the sequence of vertices chosen by the algo-
rithm and let us denote by Ai the sequence v1, v2, ..., vi−1. We are interested in the cuts that
separate vn−1 and vn. Let C be any set such that vn−1 ∈ C and vn 6∈ C. Then we want to
prove that the cut induced by C satisfies

c(δ(C)) ≥ c(δ(An))

Let us define vertex vi to be critical with respect to C if either vi or vi−1 belongs to C
but not both. We claim that if vi is critical then

c(Ai : {vi}) ≤ c(Ci : Ai ∪ {vi} \ Ci)

where Ci = (Ai ∪ {vi}) ∩ C.
Notice that this implies that c(δ(C)) ≥ c(δ(An)) because vn is critical. Now let us prove

the claim by induction on the sequence of critical vertices.
Let vi be the first critical vertex. Then

c(Ai : {vi}) = c(Ci : Ai ∪ {vi} \ Ci)

Thus the base of the induction is true.
For the inductive step, let the assertion be true for critical vertex vi and let vj be the

next (after vi) critical vertex. Then

c(Aj : {vj}) = c(Ai : {vj}) + c(Aj \ Ai : {vj})

≤ c(Ai : {vi}) + c(Aj \ Ai : {vj})

≤ c(Ci : Ai ∪ {vi} \ Ci) + c(Aj \ Ai : {vj})

≤ c(Cj : Aj ∪ {vj} \ Cj),

the first inequality following from the definition of vi, the second inequality from the inductive
hypothesis, and the last from the fact that vj is the next critical vertex. The proof is
concluded observing that An induces the cut {v1, v2, · · · , vn−1} : {vn}. 4

The running time depends on the particular implementation. Using Fibonacci heaps we
can implement each iteration in O(m + n log n) time and this yields a total running time of
O(mn + n2 log n).

References

[1] A.V. Goldberg and R.E. Tarjan, “A new approach to the maximum flow problem”,
Journal of the ACM, 35, 921–940, 1988.

Lecture notes on the mincut problem 5

[2] X. Hao and J.B. Orlin, “A faster algorithm for finding the minimum cut in a graph”,
Proc. of the 3rd ACM-SIAM Symposium on Discrete Algorithms, 165–174, 1992.

[3] D. Karger, “Minimum cuts in near-linear time”, Proc. of the 28th STOC, 56–63, 1996.

[4] D. Karger and C. Stein, “An Õ(n2) algorithm for minimum cuts”, Proc. of the 25th
STOC, 757–765, 1993.

[5] H. Nagamochi and T. Ibaraki, “Computing edge-connectivity in multigraphs and ca-
pacitated graphs”, SIAM Journal on Discrete Mathematics, 5, 54–66, 1992.

[6] M. Stoer and F. Wagner, “A simple mincut algorithm”, Proc. of ESA94, Lecture Notes
in Computer Science, 855, 141–147, 1994.

